Supporting Information

The interconversion between $THF \cdot B_3H_7$ and $B_3H_8^-$: an efficient synthetic method for MB_3H_8 (M = Li and Na)

Xin-Ran Liu,^a Xi-Meng Chen,^a Jie Zhang,^a Torben R. Jensen^{*c} and Xuenian Chen^{*a,b}

^a Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.

^cCenter for Materials Crystallography (CMC) at the Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus, Dennmark.

E-mails: <u>xnchen@htu.edu.cn</u> (X.C.); <u>trj@chem.au.dk</u> (T.R.J.)

Table of Contents:

1. Experimental Section:	
1.1. General Remarks	S3
1.2. Reaction of KB ₃ H ₈ with HCl.	
1.3. Reaction of THF·B ₃ H ₇ with LiNH ₂ BH ₃	
1.4 Reaction of THF·B ₃ H ₇ with NaNH ₂ BH ₃	S4
1.5. Reaction of THF·B ₃ H ₇ with LiBH ₄	
1.6. Reaction of THF·B ₃ H ₇ with NaBH ₄	S4
1.7. Synthesis of $NH_4B_3H_8$	S5
1.8. Synthesis of NBu ₄ B ₃ H ₈ .	S5
2. Supporting Results:	
Fig. S1 X-ray powder diffraction data of KCl.	
Fig. S2 X-ray powder diffraction data of the formed [NH ₂ BH ₂] _n	S6
Fig. S3 IR spectrum of the formed [NH ₂ BH ₂] _n	
Fig. S4 ¹¹ B NMR spectrum of the prepared Li(THF) _{1.5} B ₃ H ₈ in CD ₃ CN.	
Fig. S5 ¹ H spectrum of the prepared Li(THF) _{1.5} B ₃ H ₈ in CD ₃ CN	
Fig. S6 ¹ H{ ¹¹ B} spectrum of the prepared Li(THF) _{1.5} B ₃ H ₈ in CD ₃ CN	
Fig. S7 ¹¹ B NMR spectrum of the prepared unsolvated NaB ₃ H ₈ in CD ₃ CN.	
Fig. S8 ¹ H NMR spectrum of the prepared unsolvented NaB ₃ H ₈ in CD ₃ CN	
Fig. S9 ¹¹ B NMR spectrum of the reaction solution of LiBH ₄ and THF \cdot B ₃ H ₇ in THF	at room temperature.
Fig. S10 ¹¹ B NMR spectrum of the prepared Li(THF) _{1.5} B ₃ H ₈ in CD ₃ CN.	S10
Fig. S11 ¹¹ H NMR spectrum of the prepared Li(THF) _{1.5} B ₃ H ₈ in CD ₃ CN.	S11
Fig. S12 ¹¹ B NMR spectrum of the reaction solution of NaBH ₄ and THF \cdot B ₃ H ₇ in TH	IF at room temperature.
Fig. S13 X-ray powder diffraction data of the formed KCl.	S12
Fig. S14 ¹¹ B NMR spectrum of the prepared NH ₄ B ₃ H ₈ in CD ₃ CN.	
Fig. S15 ¹ H NMR spectrum of the prepared NH ₄ B ₃ H ₈ in CD ₃ CN.	S13
Fig. S16 X-ray powder diffraction data of the formed KBr	S13
Fig. S17 ¹¹ B NMR spectrum of the prepared NBu ₄ B ₃ H ₈ in CD ₃ CN	S14
Fig. S18 ¹ H NMR spectrum of the prepared NBu ₄ B ₃ H ₈ in CD ₃ CN	

3. Supporting Scheme:	S15
Scheme S1 The reaction of MBH_4 (M = Li, Na) with THF \cdot B ₃ H ₇ .	S15
4. References:	S15

1. Experimental Section:

1.1. General Remarks.

All manipulations were carried out on a Schlenk line or in a glovebox filled with high purity nitrogen. The ¹¹B NMR spectra were recorded using either a 128 MHz or a 193 MHz spectrometer and externally referenced to BF₃·OEt₂ in C₆D₆ ($\delta = 0.00$ ppm). The ¹H NMR spectra was recorded using either a 400 MHz or a 600 MHz spectrometer. X-ray diffraction (XRD) data were obtained with a Rigaku D/max 2500 diffractometer using Cu/Ka radiation, $\lambda = 0.1542$ nm, 40 kV, 100 mA. IR spectra were measured by a Spectrum 400F.

The THF·BH₃ tetrahydrofuran (THF) solution, HCl diethel ether solution, and ammonia borane (NH_3BH_3) were purchased from United Boron (Zhengzhou) Energy Materials S&T LLC and used as received. K, LiH, NaH, LiBH₄, NaBH₄, NH₄Cl and N(C₄H₉)₄Br were purchased from Sinopharm Chemical Reagents Co., Ltd. NH₄Cl was recrystallized from methanol and NBu₄Br was recrystallized from tetrahydrofuran (THF). Dichloromethane was dried over calcium hydride, THF and toluene were dried over sodium and freshly distilled prior to use. LiNH₂BH₃ and NaNH₂BH₃ were prepared according the literature methods.^{S1}

1.2. Reaction of KB₃H₈ with HCl.

A solution of KB₃H₈ (0.40 g, 5 mmol) in 25 mL of THF was added to a 50 mL flask. A solution of 1 M HCl in diethyl ether (5 mL, 5 mmol) was added dropwisely to the flask at room temperature and stirred for 20 min. After KCl was filtered (Fig. S1), the solution of THF·B₃H₇ was obtained. ¹¹B NMR (128 MH_Z, THF): δ -8.23 (*br*, *2B of BHB*), -12.99 (*br*, *B*H₂) ppm (Fig. 1).

In another batch of reaction, KB_3H_8 (0.40 g, 5 mmol) was added to a 100 mL flask and then 25 mL of THF was condensed. A solution of 1 M HCl in diethyl ether (5 mL, 5 mmol) was added dropwisely to the flask at room temperature and stirred for 20 min. The ¹¹B NMR showed the formation of B_3H_7 (Fig. 2b). Then 5 mL, 10 mL, 15 mL of 1 M HCl diethyl ether solution was added dropwisely to above reaction mixture in turn. Reaction mixture was stirring for 20 min after each addition of HCl and then monitored by ¹¹ B NMR. The results are listed in Fig. 2c, d, and e.

1.3. Reaction of THF·B₃H₇ with LiNH₂BH₃.

A THF·B₃H₇ solution (30 mL, 5 mmol) and LiNH₂BH₃ (0.19 g, 5 mmol) were added to a 50 mL flask. The mixture was stirred for 20 min at room temperature. The formed precipitate was filtered and dried under dynamic vacuum to give the $[NH_2BH_2]_n$ white product, which was confirmed by XRD and IR (Figs. S2 and S3). Removal of THF from the filtrate under dynamic vacuum to give

Li(THF)_{1.5}B₃H₈ as a clear oily product (0.64 g, 82%). ¹¹B NMR (193 MH_Z, CD₃CN): δ -30.8 (*nonet*, *J* = 33 Hz) ppm. ¹H NMR (600 MH_Z, CD₃CN): δ 3.64 (*m*, 4 α -H of THF), 1.79 (*m*, 4 β -H of THF), 0.14 (*decet*, *J* = 33 Hz, 8H of B₃H₈) ppm. ¹H{¹¹B} (600 MH_Z, CD₃CN): δ 3.65 (*m*, 4 α -H of THF), 1.80 (*m*, 4 β -H of THF), 0.13 (*s*, 8H of B₃H₈) ppm (Figs. S4, S5 and S6). [NH₂BH₂]_n: IR (cm-1): 3300 (s, br), 3248 (w), 2398 (s, br), 1560 (s), 1405 (s), 1209 (s, br), 1081 (m), 846 (w), 708 (w).

1.4 Reaction of THF·B₃H₇ with NaNH₂BH₃.

A THF·B₃H₇ (30 mL, 5 mmol) solution and NaNH₂BH₃ (0.27 g, 5 mmol) were added to a 50 mL flask. The reaction was stirred for 30 min at room temperature. The formed precipitate was filtered. Then THF in the filtrate was pumped to give an oily product, which was dissolved in 20 mL CH₂Cl₂ and converted into suspension under stirring. After filtration, the solid was dried under dynamic vacuum, unsolvated NaB₃H₈ was obtained (0.24 g, 76%). NaB₃H₈: ¹¹B NMR (193 MH_Z, CD₃CN): δ - 30.0 (*nonet*, *J* = 33 Hz) ppm. ¹H NMR (600 MH_Z, CD₃CN): δ 0.14 (*decet*, *J* = 33 Hz) ppm (Figs. S7 and S8).

1.5. Reaction of THF·B₃H₇ with LiBH₄.

In a 50 mL flask, LiBH₄ (0.11 g, 5 mmol) was added and then THF·B₃H₇ (30 mL, 5 mmol) was injected. The reaction was stirred 1 h at room temperature, B₃H₇ was completely consumed and the formed B₃H₈⁻ and BH₃ signals, and a small amount of BH₄⁻ signal were observed in ¹¹B NMR (Fig. S9). The THF solvent and the formed THF·BH₃ solution was removed under dynamic vaccum to produce a sticky solid, into which 20 mL of THF was added and then 20 µL of H₂O was injected. After stirring 10 min, a small amount of precipitate was formed which was filtered. Removal of THF from the filtrate produced Li(THF)_{1.5}B₃H₈ as a clear oily product (0.61 g, 79%). ¹¹B NMR (128 MH_Z, CD₃CN): δ -31.2 (*nonet*, *J* = 33 Hz) ppm. ¹H NMR (600 MH_Z, CD₃CN): δ 3.64 (*m*, 4α-H of THF), 1.80 (*m*, 4β-H of THF), 0.14 (*decet*, *J* = 33 Hz, 8H of B₃H₈) ppm (Figs. S10 and S11).

1.6. Reaction of THF·B₃H₇ with NaBH₄.

In a 50 mL flask, NaBH₄ (0.19 g, 5 mmol) was added and then THF·B₃H₇ (30 mL, 5 mmol) was injected. The reaction was stirred for 12 h at room temperature, B₃H₇ was completely consumed and the formed B₃H₈⁻ and BH₃ signals, and a small amount of BH₄⁻ signal were observed in the ¹¹B NMR (Fig. S12). The formed THF·BH₃ and the THF solvent were removed under dynamic vaccum to produce a sticky solid, into which 20 mL of THF was added and then 30 μ L H₂O was injected. After stirring 50 min, a small amount of precipitate was formed which was filtered. Removal of THF from the filtrate produced an oily product. The oily product was dissolved in 20 mL CH₂Cl₂ to convert into

suspension under stirring. After filtration, the solid was dried under dynamic vacuum to produce unsolvated NaB_3H_8 (0.23 g, 73%).

1.7. Synthesis of NH₄B₃H₈.

The prepared unsolvated KB₃H₈ (0.80 g, 10 mmol) and NH₄Cl (0.54 g, 10 mmol) were added into a 50 mL Schlenk flask and then 30 mL liquid ammonia was condesed at -78 °C. After 50 min stirring, ammonia was removed and the flask was warmed to room temperature. The prepared NH₄B₃H₈ was extracted using dry THF. The KCl residue was washed with THF (3 × 10 mL), which was confirmed by XRD (Fig. S13). The conbined filtrate and the wash solution was then evaporated to produe a white solid, which was dried under dynamic vacuum to give the NH₄B₃H₈ white powder (0.57 g, 96%). ¹¹B NMR (193 MH_z, CD₃CN): δ -30.6 (*nonet*, *J* = 33 Hz) ppm (Fig. S14). ¹H NMR (400 MH_z, CD₃CN): δ 5.85 (*s*, 4H of NH₄), 0.14 (*decet*, *J* = 33 Hz, 8H of B₃H₈) ppm (Fig. S15).

1.8. Synthesis of NBu₄B₃H₈.

The prepared unsolvated KB₃H₈ (0.80 g, 10 mmol) and NBu₄Br (3.22 g, 10 mmol) were added into a 50 mL flask and then 30 mL of THF was condensed. After the reaction mixture stirring for 6 hours at room temperature, the reaction solution was filtered and the KBr frit was washed with THF (3 × 10 mL), which was confirmed by XRD (Fig. S16). The filtrate was evaporated to produce a sticky solid, which was washed with diethyl ether (3 x 30 mL) and dried under vacuum to give a free-flowing NBu₄B₃H₈ white powder (2.69 g, 95%). ¹¹B NMR (193 MH_Z, CD₃CN): δ -31.4 (*nonet*, *J* = 33 Hz) ppm (Fig. S17). ¹H NMR (600 MH_Z, CD₃CN): δ 3.09 (*t*, 2H of CH₂), 1.58 (*m*, 2H of CH₂), 1.35 (*m*, 2H of CH₂), 0.97 (*t*, *J* = 7 Hz, 3H of CH₃), 0.14 (*decet*, *J* = 33 Hz, 8H of B₃H₈) ppm (Fig. S18).

2. Supporting Results:

Fig. S1 X-ray powder diffraction data of KCl.

Fig. S2 X-ray powder diffraction data of the formed $[NH_2BH_2]_n$.

Fig. S3 IR spectrum of the formed $[NH_2BH_2]_n$.

Fig. S4 ¹¹B NMR spectrum of the prepared $Li(THF)_{1.5}B_3H_8$ in CD₃CN.

Fig. S5 ¹H spectrum of the prepared Li(THF)_{1.5}B₃H₈ in CD₃CN.

Fig. S6 ${}^{1}H{}^{11}B{}$ spectrum of the prepared Li(THF)_{1.5}B₃H₈ in CD₃CN.

Fig. S7 ¹¹B NMR spectrum of the prepared unsolvated NaB_3H_8 in CD_3CN .

Fig. S8 ¹H NMR spectrum of the prepared unsolvented NaB₃H₈ in CD₃CN.

Fig. S9 ¹¹B NMR spectrum of the reaction solution of $LiBH_4$ and $THF \cdot B_3H_7$ in THF at room temperature.

Fig. S10 ¹¹B NMR spectrum of the prepared Li(THF)_{1.5}B₃H₈ in CD₃CN.

Fig. S11 ¹¹H NMR spectrum of the prepared Li(THF)_{1.5}B₃H₈ in CD₃CN.

Fig. S12 ¹¹B NMR spectrum of the reaction solution of NaBH₄ and THF \cdot B₃H₇ in THF at room temperature.

Fig. S13 X-ray powder diffraction data of the formed KCl.

Fig. S14 11 B NMR spectrum of the prepared NH₄B₃H₈ in CD₃CN.

Fig. S15 ¹H NMR spectrum of the prepared $NH_4B_3H_8$ in CD_3CN .

Fig. S16 X-ray powder diffraction data of the formed KBr.

Fig. S17 ¹¹B NMR spectrum of the prepared $NBu_4B_3H_8$ in CD_3CN .

Fig. S18 ¹H NMR spectrum of the prepared NBu₄B₃H₈ in CD₃CN.

3. Supporting Scheme:

Scheme S1 The reaction of MBH_4 (M = Li, Na) with THF B_3H_7 .

4. References:

S1. (a) Y. S. Chua, P. Chen, G. Wu, Z. Xiong, *Chem. Commun.*, 2011, 47, 5116-5129; (b) W. Xu, H.
Fan, G. Wu and P. Chen, *New J. Chem.*, 2012, 36, 1496-1501; (c) H. V. K. Diyabalanage, T.
Nakagawa, R. P. Shrestha, T. A. Semelsberger, B. L. Davis, B. L. Scott, A. K. Burrell, W. I. F. David,
K. R. Ryan, M. O. Jones and P. P. Edwards, *J. Am. Chem. Soc.*, 2010, 132, 11836-11837; (d) Z. Xiong,
C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P.
Edwards, W. I. F. David, *Nat. Mater.*, 2008, 7, 138-141; (e) Z. Xiong, G. Wu, Y. S. Chua, J. Hu, T.
He, W. Xu and P. Chen, *Energy Environ. Sci.*, 2008, 1, 360-363.