Supplementary information

Bis(2-pyridylmethyl)amine functionalized alizarin: Efficient and simple colorimetric sensor for fluoride and fluorescence turn-on sensor for Al³⁺ in organic solution

Ling Zhu, Yue-Ling Bai, Yongmei Zhao, Feifei Xing, * Ming-Xing Li and Shourong Zhu*

Department of Chemistry, Shanghai University, Shanghai 200444, China

Scheme S1. Proposed structure of H_2L-F^- and $HL^--Ni^{2+}-F^-$ complex.

Figure S1. ¹H and ¹³C NMR spectra of H_2L in (CD₃)SO

Figure S2. Mass spectral data for H_2L in methanol

Figure S3. UV-Vis spectra of 1.0×10^{-4} M H₂L in the absence and presence of 5.0×10^{-3} M different anions (TBA salt) in water(a), DMF(b), methanol(c), acetone(d).

Figure S4. (a) UV-Vis spectra of 1.0×10^{-4} M H₂L in the absence and presence of 5.0×10^{-3} M different anions (TBA salt) in acetonitrile; (b) UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of $0 \sim 9$ equiv of F⁻ in acetonitrile. The inset is a plot of 356, 436 and 578 nm absorbance vs F⁻ eqs.

Figure S5. (a)UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of 0_{\sim} 4 equiv of TBAF in DMF. (b) UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of 0_{\sim} 1 equiv of TBAF in acetone.

Figure S6. (a)UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of $0 \sim 4$ equiv of Ac⁻ in DMF. (b) UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of $0 \sim 3$ equiv of Ac⁻ in acetone (TBA salt).

Figure S7. (a)UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of $0 \sim 6$ equiv of H₂PO₄⁻ in DMF. (b) UV-vis spectral changes of 1.0×10^{-4} M H₂L upon gradually addition of $0 \sim 10$ equiv of H₂PO₄⁻ in acetone.

Figure S8. UV-vis spectral of 1.0×10^{-4} M H₂L in the absence (none) and presence of different metal ion (1.0×10^{-4}) in water (top) and acetonitrile (bottom).

Figure S9. Fluorescence spectra of 1.0×10^{-4} M H₂L in the presence of 2.0×10^{-4} M AlCl₃ in DMF (slid width 2 nm)

Figure S10. Fluorescent titration of H₂L (5.0×10^{-5} M) in the presence of different concentrations of AlCl₃ in DMF. Inset: the fluorescence at 623 nm of H₂L as a function of the AlCl₃ concentration. $\lambda_{ex} = 430$ nm, slid width 3 nm.

Fig. S11 NaOH titration spectra of 1.0×10^{-4} M H₂L in the presence of 1 eq Al(NO₃)₃ in DMF.

Figure S12. NaOH titration spectra of 1.0×10^{-4} M H₂L in the presence of 1 eq Fe(NO₃)₃ (top), FeCl₃(middle) and their A₅₅₂ vs NaOH eqs (bottom) in DMF.

Figure S13. H-H Cosy of $\sim 1 \times 10^{-2}$ M H₂L-ZnCl₂ in d₆-DMSO

Figure S14. Jobs-plot of 331 nm (corresponding to HL⁻ species) and 586 nm (corresponding to F⁻– NiCl₂–HL⁻ species) for 2.0×10^{-4} M TBAF and 2.0×10^{-4} M NiCl₂–H₂L system in acetonitrile.

Figure S15. Jobs-plot of 580 nm (corresponding to $F^--2NiCl_2-HL^-$ species) for 2.0×10^{-4} M TBAF and 2.0×10^{-4} M H₂L-2NiCl₂ system in acetonitrile.

Figure S16. Plot of 635 nm absorbance at different F⁻ concentrations for 1.0×10^{-4} M H₂L–2NiCl₂ system.

Fig. S17 (a) UV-Vis spectra of 1.0×10^{-4} M H₂L in the presence of 1.0×10^{-3} M TBAF (3.0 ml) upon gradually addition of $0 \sim 120 \ \mu L H_2O$ ($0 \sim 4\%$) in acetonitrile; The inset is a plot of 356, 436 and 578 nm absorbance vs V_{H2O} (μL). (b) UV-Vis spectra of 1.0×10^{-4} M NiCl₂–H₂L complex in the presence of 1.0×10^{-3} M TBAF (3.0 ml) upon gradually addition of $0 \sim 120 \ \mu L H_2O$ in acetonitrile;

Fig. S18 UV-Vis spectra of 1.0×10^{-4} M H₂L-NiCl₂ in the presence of different eqs. of TBAF in H₂O (a) and 20% (V/V) CH₃CN aqueous solution (b).

Fig. S19 UV-Vis spectra of 1.0×10^{-4} M H₂L in the presence of 5.0×10^{-3} M F⁻ and 5.0×10^{-3} M other anions in CH₃CN. All are TBA⁺ salt. This figure indicates that 1 eq of Cl⁻, Br⁻, I⁻, Ac⁻, H₂PO₄⁻ and HSO₄- have no significant influence on F⁻ sensitivity.

Fig. S20 Relative fluorescence intensity of 1.0×10^{-4} M H₂L in the presence of 2.0×10^{-4} M different metal ion chloride in DMF solution. Of the investigated metal ions, Fe³⁺, Cu²⁺, Ni²⁺, Co²⁺ and Ca²⁺ significantly decrease fluorescence intensity and thus greatly decrease Al³⁺ fluorescence turn-on sensitivity.

	Acetonitrile	DMF	Acetone
F-	7.54×10 ⁻⁶	5.276×10 ⁻⁶	3.067×10 ⁻⁵
Ac-	insensitive	7.666×10-6	2.098×10-5
$H_2PO_4^-$	insensitive	3.055×10-5	2.021×10 ⁻⁴

Table S1. The limit of detection (3σ /slope) for 1.0×10^{-4} M H₂L in different solvents.