Electronic Supplementary Information

Deprotonation, Insertion and Isomerisation in the Post-functionalisation of *Tris*-pyridyl Aluminates

Alex J. Plajer, Sara Kopf, Annie L. Colebatch, Andrew D. Bond, Dominic S. Wright*, Raúl García-Rodríguez.*

1. Synthetic Procedures

General Experimental Methods

All experiments were carried out on a Schlenk-line under nitrogen atmosphere or with the aid of a N_2 -filled glove box (Saffron type α). Toluene and THF were dried under nitrogen over sodium or sodium/benzophenone, respectively, whereas acetonitrile was dried over calcium hydride. Trispyridylaluminates were synthesized according to literature methods. ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra were recorded on a Bruker Avance 400 QNP or Bruker Avance 500 MHz cryo-spectrometer. All spectra were recorded in d₈-toluene or d₈-THF with SiMe₄ (¹H, ¹³C), AlCl₃ (¹²⁷Al, in D₂O) and LiCl (⁷Li, in D₂O) as external standards. Unambiguous assignments of NMR resonances were made on the basis of 2D NMR experiments (¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HMQC and ¹H-¹³C HMBC). Elemental analysis was obtained using a Perkin Elmer 240 Elemental Analyser, and UV-visible spectra were collected on a Varian Cary 50 UV spectrometer.

2. NMR Spectroscopy

Figure S1: Labelling scheme for 2Li; hydrogen atoms are labelled according to the number of the attached carbon atom

Figure S2: ¹H NMR (500 MHz, d₈-Toluene, 25 °C) spectrum of (**2**Li)₂

Figure S4: ²⁷Al NMR (130 MHz, d₈-Toluene, 25 °C) spectrum of (2Li)₂

Figure S5: ⁷Li NMR (194 MHz, d₈-Toluene, 25 °C) spectrum of (2Li)₂

Figure S6: Labelling scheme for (**3**Li)₂; hydrogen atoms are labelled according to the number of the attached carbon atom

Figure S7: ¹H NMR (500 MHz, d₈-Toluene, 25 °C) spectrum of (3Li)₂

Figure S8: ¹³C NMR (126 MHz, d₈-Toluene, 25 °C) spectrum of (3Li)₂

Figure S9: ⁷Li NMR (194 MHz, d₈-Toluene, 25 °C) spectrum of (**3**Li)₂

Figure S10: ¹H-⁷Li HOESY (d₈-toluene, 500 MHz, 25 °C, mixing time of 100 ms) spectrum of $(\mathbf{3}Li)_2$ (left) showing cross peaks between the ⁷Li resonance and hydrogens of the 6-MePy group and the ortho hydrogens of the Ph group. Solid-state X-ray structure of $(\mathbf{3}Li)_2$ (right) showing the close spatial proximity of these hydrogens to the Li centre.

Figure S11: Labelling scheme for (4Li)₂; hydrogen atoms are labelled according to the number of the attached carbon atom

Figure S12: ¹H NMR (500 MHz, d₈-Toluene, 25 °C) spectrum of (4Li)₂

Figure S14: ¹H-¹H NOESY (400 MHz, d₈-Toluene, 25 °C, mixing time of 600 ms) spectrum of (4Li)₂. Crosspeaks are observed between the H3 py proton and the protons of Al-CH₂CH₃ and the ortho protons of the phenyl group, as well as between the ortho-Ph protons and 2-py-CH₃ (insert at the right). The crosspeaks arise from intramolecular cross-relaxation of protons that are close to each other in space. This confirms the presence of an EtAl(6-Me-2-py)₂(PhCO₂) linkage.

3. X-Ray Crystallography

Single-crystal X-ray diffraction data were collected on a Bruker D8-QUEST PHOTON-100 diffractometer equipped with an Incoatec I μ S Cu microsource. Data integration and reduction were undertaken with SAINT in the APEX3 software suite. Multi-scan empirical absorption corrections were applied using SADABS. Structures were solved using SHELXT-2014 and refined using full-matrix least squares on F² using SHELXL-2018/1.

	(2 Li) ₂	(2 Li) ₂	(3 Li) ₂	(7 Li) ₂
		(SQUEEZED)		
CCDC number	1897739	1897741	1897740	1897742
Cambridge data number	DW_B2_0295	DW_B2_0295	DW_B1_0111	DW_B2_0038
Chemical formula	$C_{72.9}H_{79.6}Al_2Li_2N_6O_2$	$C_{82}H_{90}AI_{2}Li_{2}N_{6}O_{2}$	$C_{49}H_{52}Al_{2}Li_{2}N_{4}O_{4}$	$C_{38}H_{32}AI_2Br_4Li_2N_4O_4$
Formula weight	1140.05	1259.43	828.78	996.15
Temperature / K	180(2)	180(2)	180(2)	180(2)
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P -1	P -1	P 2 ₁ /n	P -1
a / Å	10.7764(4)	10.7764(4)	11.9268(3)	10.4621(3)
<i>b</i> / Å	11.6195(4)	11.6195(4)	25.7178(7)	13.0873(4)
c/Å	15.5555(6)	15.5555(6)	15.3307(4)	16.4267(6)
α/°	72.5308(19)	72.5308(19)	90	86.2550(15)
β/°	75.6187(18)	75.6187(18)	100.0816(13)	71.9417(15)
γ/°	68.8699(16)	68.8699(16)	90	71.1903(14)
V / Å ³	1711.41(11)	1711.41(11)	4629.8(2)	2022.67(11)
Z	1	1	4	2
Calc. density / g cm ⁻³	1.106	1.222	1.189	1.636
F(000)	607	672	1752	984
Radiation type	CuKα	CuKα	CuKα	СиКα
Absorption coefficient / mm^{-1}	0.742	0.790	0.933	5.636
Crystal size / mm3	0.25 x 0.12 x 0.08	0.25 x 0.12 x 0.08	0.22 x 0.10 x 0.06	0.21 x 0.12 x 0.09
2θ range / degrees	6.03-133.99	6.03-133.99	6.79-133.23	5.66-133.61
Completeness to max 2θ	0.982 (-1)	0.982 (-1)	0.998 (2/m)	0.997 (-1)
No. of reflections measured	34421	34421	56906	57695
No. of independent	5992	5992	8164	7182
reflections				
R _{int}	0.0585	0.0585	0.0446	0.0444
No. parameters / restraints	335 / 15	302/0	568/0	489/0
Final R1 values ($I > 2\sigma(I)$)	0.1029	0.0563	0.0454	0.0374
Final wR(F ²) values (all data)	0.1169	0.0667	0.0613	0.0480
Goodness-of-fit on F ²	1.054	1.058	1.012	1.062
Largest difference peak & hole / e Å ⁻³	1.393, -0.583	0.380, -0.251	0.416, -0.355	0.589, -0.670

Table S1: Details of the Data Collections and Structural Refinements of (2Li)₂, (3Li)₂ and (7Li)₂

Notes on Crystal Structure Solution and Refinement for 2(Li)₂

Problems arise in the refinement of $(2Li)_2$ because of disordered toluene molecules lying in layers between the Li/Al complexes. The "full" refinement (CCDC-1897739) does not model this region particularly well (hence the residual electron density and the relatively high R-factors) but it was difficult to define further toluene molecules with acceptable geometry. There are clearly two sites for toluene in the asymmetric unit, giving a potential total of four molecules per unit cell. One site is modelled as disordered over two components (summing to one molecule) while the other has a common site occupancy factor refined with ADPs constrained to a common value shared over all non-H atoms of all toluene molecules. This gives partial occupancy (0.352(7)) and produces the quoted indicative formula $[C_{54}H_{58}AlLi_2N_4O_2].2.7(C_7H_8)$. There are other peaks in this area in the residual electron density but it is hard to model any further sensible toluene molecules.

A *SQUEEZED* version of the structure is also provided, with all toluene molecule omitted and dealt with via the continuous solvent-area model (CCDC-1897741). This gives wR2 ca 15%, confirming that this solvent disorder is the principal source of the problems. *SQUEEZE* corrects for 171 electrons per unit cell, correponding to ca 3.5 toluene molecules.

The toluene molecules occupy layers in the *ab* planes of the structure and there appears from the disorder to be more than one orientation of those layers. The diffraction pattern shows streaks along c* indicative of layer stacking disorder. It also shows modulation peaks in the *hk* planes, but interpretation of these was not attempted. This could be an interesting system for further crystallographic study, but we were interested solely in the chemical interpretation (which is clear).

0kl

