Supplementary information for

Indium thisspinel $In_{1-x}\Box_x In_2S_4$ – structural characterization and thermoelectric properties

Paweł Wyżga^{a,b}, Igor Veremchuk^b, Cameliu Himcinschi^c, Ulrich Burkhardt^b, Wilder Carrillo-Cabrera^b,

Matej Bobnar^b, Christoph Hennig^{d,e}, Andreas Leithe-Jasper^b, Jens Kortus^c, Roman Gumeniuk^{*a}

^a Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany

^b Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

^c Institut für Theoretische Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany

^d Institute of Resource Ecology, HZDR, 01314 Dresden, Germany

^e Rossendorf Beamline BM20, ESRF, 38043 Grenoble, France

internal standard.

Table S1.	Selected crystallographic d	lata for $In_{1-x}\Box_x In_2$	S ₄ samples (B3)) at 293 K ob	tained from	Rietveld		
refinement.								

Nominal <i>x</i>	0.33	0.28	0.28		0.22
Type of refinement	single-phase single-phase		two-phase		single-phase
Composition,	$In_{2.67}S_4$, ^{<i>a</i>}	$In_{2.69(1)}S_4$, ^{<i>a</i>}	$In_{2.67}S_4,^b$	$In_{2.72}S_4,^b$	$In_{2.72(1)}S_4$, ^{<i>a</i>}
molar mass /g·mol⁻¹	434.5	437.8	434.5	440.6	440.6
Space group, no. of formula unit Z	<i>I</i> 4 ₁ / <i>amd</i> (no. 141), 12			<i>Fd</i> 3 <i>m</i> (no. 227), 8	
a /Å	7.6194(1)	7.6160(1)	7.6192(1)	10.7685(1)	10.75811(5)
c /Å	32.327(1)	32.293(1)	32.329(1)	-	-
$V/\text{\AA}^3$	1876.8 (1)	1873.1(1)	1876.8(1)	1248.73(3)	1245.11(1)
$d/g\cdot cm^{-3}$	4.6129	4.6526	4.6129	4.6867	4.6991
λ /Å			0.4591		
$2\theta_{\max}$ /°; $\sin\theta/\lambda$ (max)			41, 0.763		
$R_{ m P},R_{ m wp}$ /%	2.67, 3.82	4.14, 6.11	4.15, 5.82		3.85, 5.46
Phase fraction /%	-	-	27.5(7)	72.5(7)	-
a – refined composition.					

a – refined composition. b – composition was fixed.

Atoms	<i>x/a</i>	y/b	z/c	$U_{\rm iso} [\rm pm^2]$	SOF				
single-phase $x = 0.33$ ($I4_1/amd$)									
In1 (8 <i>c</i>)	0	0	0	143(8)	1				
In2 (8 <i>e</i>)	0	1/4	0.20436(9)	91(4)	1				
In3 (16 <i>h</i>)	0	0.5192(2)	0.33272(9)	123(5)	1				
S1 (16 <i>h</i>)	0	0.506(2)	0.2509(5)	120(20)	1				
S2 (16 <i>h</i>)	0	0.007(1)	0.0788(5)	90(20)	1				
S3 (16 <i>h</i>)	0	0.022(1)	0.4126(5)	86(17)	1				
single-phase $x = 0.28$ ($I4_1/amd$)									
In1 (8 <i>c</i>)	0	0	0	150(30)	1				
In2 (8 <i>e</i>)	0	1/4	0.2058(4)	102(14)	0.83(1)				
In3 (16 <i>h</i>)	0	-0.0098(9)	0.3328(4)	188(18)	1				
In4 (4 <i>a</i>)	0	1/4	7/8	250^{a}	0.42(2)				
S1 (16 <i>h</i>)	0	-0.006(3)	0.2513(9)	110^{a}	1				
S2 (16 <i>h</i>)	0	0.014(3)	0.080(1)	110^{a}	1				
S3 (16 <i>h</i>)	0	0.019(3)	0.414(1)	110^{a}	1				
two-phase $x = 0.28$ (<i>I</i> 4 ₁ / <i>amd</i>)									
In1 (8 <i>c</i>)	0	0	0	$140(20)^{b}$	1				
In2 (8 <i>e</i>)	0	1/4	0.2045	$140(20)^{b}$	1				
In3 (16 <i>h</i>)	0	0.519	0.3325	$140(20)^{b}$	1				
S1 (16 <i>h</i>)	0	0.5116	0.2491	$110(60)^{b}$	1				
S2 (16 <i>h</i>)	0	0.0109	0.0805	$110(60)^{b}$	1				
S3 (16 <i>h</i>)	0	0.026	0.414	$110(60)^{b}$	1				
two-phase $x = 0.28 (Fd\overline{3}m)$									
In1 (8b)	3/8	3/8	3/8	161(11)	0.72				
In2 (16 <i>c</i>)	0	0	0	169(8)	1				
S (32e)	0.2426(3)	0.2426(3)	0.2426(3)	98(15)	1				
single-phase $x = 0.22 \ (Fd\overline{3}m)$									
In1 (8b)	3/8	3/8	3/8	155(9)	0.72(1)				
In2 (16 <i>c</i>)	0	0	0	206(5)	1				
S (32e)	0.2428(2)	0.2428(2)	0.2428(2)	114(9)	1				

Table S2. Fractional positions, isotropic displacement parameters (U_{iso}) and site occupancy factors (SOF) of atoms for In_{1-x} \Box_x In₂S₄ samples (B3) at 293 K obtained from Rietveld refinement.

a - refinement yielded U_{iso} with unreliable error and thus the parameter was fixed. *b* - U_{iso} were not stable and thus they were refined as: $U_{In1} = U_{In2} = U_{In3}$ and $U_{S1} = U_{S2} = U_{S3}$.

Figure S2. Experimental (a,b) and simulated (c,d) Kikuchi patterns for $In_{0.67}\square_{0.33}In_2S_4$ single crystal. Patterns a) and b) were assigned to $Fd\bar{3}m$ and $I4_1/amd$ space group, respectively. Color code as for Figure 6.

This work					Literature – measured values		
<i>x</i> = 0.33	<i>x</i> = 0.33	<i>x</i> = 0.28	<i>x</i> = 0.22	<i>x</i> = 0.16	β -In ₂ S ₃ ¹	FeIn ₂ S ₄	$MnIn_2S_4$
(single crystal)						(cubic) ²	(cubic) ²
64	64		67	67	61		
73	72	71			70		
85	84			79		82	87
91	90	(89)					
102	100	(100)	100	100	102	96	102
116	115	(113)	(112)		113		
122	121						
137	135	(134)			137		
171	~171		170			167	166
181	177	174		~178	180	182	180
198	193	189	~206	~211	196		
219	~219				217	231	221
246	244	244	243	~252	244	253	245
267	265	261	260	~268	266	271	261
309	307	306	304	~295	306	313	303
327	324	320	~333	~332	326	329	320
369	365	364	361	~360	367	370	353

Table S3. List of all Raman modes $[cm^{-1}]$ observed for $In_{1-x}\Box_x In_2S_4$ (x = 0.16, 0.22, 0.28, 0.33) samples (batch B3 + single crystal). Values in parenthesis indicate modes observed only for some grains. Modes in green are visible only for the β polymorph.

Figure S4. Cyclic TE measurement of x = 0.33 sample: a) electrical resistivity, b) Seebeck coefficient, c) power factor and d) *ZT* parameter. Lines are guide for the eye.

Figure S5. a) Temperature dependence of Hall coefficient $R_{\rm H}$ for $\ln_{1-x} \Box_x \ln_2 S_4$ (x = 0.16, 0.22, 0.28, 0.33) samples. b) Estimation of phonon mean free path for $\ln_{0.67} \Box_{0.33} \ln_2 S_4$ and $\ln_{0.84} \Box_{0.16} \ln_2 S_4$.

References

- 1 K. Kambas, J. Spyridelis and M. Balkanski, *Phys. Status Solidi*, 1981, **105**, 291–296.
- 2 M. Guc, V. V. Ursaki, I. V. Bodnar, D. V. Lozhkin, E. Arushanov, V. Izquierdo-Roca and A. Pérez Rodríguez, *Mater. Chem. Phys.*, 2012, **136**, 883–888.
- 3 M. Amlouk, M. A. Ben Said, N. Kamoun, S. Belgacem, N. Brunet and D. Barjon, *Jpn. J. Appl. Phys.*, 1999, **38**, 26–30.
- 4 V. Krasnenko and M. G. Brik, *Mater. Res. Express*, 2014, 1, 015905.