Palladium pincer complexes featuring an unsymmetrical SCN

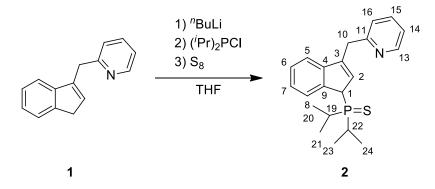
indene-based ligand with an hemilabile pyridine sidearm

Paul Brunel,^a Chloé Lhardy,^a Sonia Mallet-Ladeira,^b Julien Monot, *^a Blanca Martin-Vaca*^a and Didier Bourissou*^a

^aCNRS, Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.

^bUniversité de Toulouse, UPS, Institut de Chimie de Toulouse, FR2599, 118 Route de Narbonne, F-31062 Toulouse, France.

Email: monot@chimie.ups-tlse.fr; bmv@chimie.ups-tlse.fr and dbouriss@chimie.ups-tlse.fr

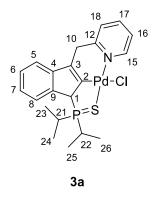

Table of contents

I.	General remarks	S2
II.	Synthesis of compound 2 to 4:	S2
III.	Lability test in presence of triphenylphosphine	S6
IV.	Lability test in presence of 2,6-dimethylisocyanide	S7
V.	Hemilability test in presence of TFA and DIEA	S8
VI.	In situ infrared experiments using reactIR 15 Metler Toledo Optic silicium fiber	S9
VII.	General procedure for catalytic cycloisomerization reactions	S10
VIII	. Selected crystal data	S10
IX.	NMR Spectra	S12

I. General remarks

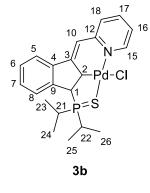
All reactions and manipulations were carried out under argon atmosphere using standard Schlenk techniques. Dry oxygen–free solvents were employed using an Mbraun SPS-800 prior to use. All reagents were obtained from commercial sources. Compound **1** was synthesized following the literature procedures.^{1 1}H and ¹³C spectra were recorded on Bruker Avance 300, 400 and 500 spectrometers. Chemical shifts are expressed with a positive sign, in parts per million, relative to external Me₄Si for ¹H NMR and to external H₃PO₄ for ³¹P NMR. NMR spectra were recorded at 293 K.


II. Synthesis of compound 2 to 4:


Synthesis of pro ligand 2: In a 250 mL round-bottomed schlenk, *n*-BuLi (11.2 mL of a 1.6 M hexane solution, 0.018 mol) was added dropwise at -80°C to a solution of 1 (3.7 g, 0.018 mol) in THF (100 mL). The solution was stirred at -80°C for 30 min and then allowed to warm to room temperature and stirred for 30 min. Then, a solution of chlorodiisopropylphosphine (2.9 mL, 0.018 mol in 10 mL of THF) was added dropwise at -80°C. The reaction mixture was stirred at this temperature for 30 min and then allowed to warm to room temperature overnight. Finally, the crude was transferred *via* canula in a 250 mL round-bottomed schlenk containing elemental sulfur (1.10 g, 0.036 mmol). The reaction mixture was stirred for 2 h. After the addition of 100 mL of a saturated solution of NaHCO₃ the organic products were extracted 3 times with 50 mL of DCM. The combined organic phases were then washed with water and dried over Na₂SO₄ and evaporated. The residue was purified by silica gel flash chromatography. The impurities were first eluted with 100% pentane and then 80:20 pentane/EtOAc. Finally, the product **2** was eluted with a gradient from 60:40 pentane/EtOAc to 100% EtOAC to afford a highly viscous brown oil in 76% yield (4.7 g).

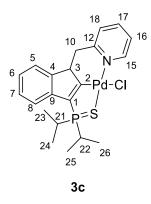
¹ V. Vreshch, J. Monot, B. Martin-Vaca and D. Bourissou, *Polyhedron*, 2018, **143**, 49.

³¹P{¹H}–NMR (121 MHz, CDCl₃): δ *ppm* 70.2 (s). ¹H–NMR (300 MHz, CDCl₃): δ *ppm* 8.55 (m, 1H, H13), 8.07 (m, 1H, H8), 7.60 (m, 1H, H14), 7.37 (m, 1H, H5), 7.32 (m, 1H, H7), 7.24 (m, 1H, H6), 7.21 (m, 1H, H16), 7.15 (m, 1H, H15), 6.36, (m, 1H, H2), 4.26 (dd, ³*J*_{HH} = 1.8 Hz, ²*J*_{HP} = 23.4 Hz, 1H, H1), 4.11 (m, 2H, H10), 2.22 (m, 1H, H22), 2.03 (m, 1H, H19), 1.19 (dd, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 16.8 Hz, 3H, H24), 1.07 (dd, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 16.8 Hz, 3H, H23), 1.03 (dd, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 16.8 Hz, 3H, H21), 0.90 (dd, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 16.8 Hz, 3H, H20); ¹³C{¹H}–NMR (75 MHz, CDCl₃): δ *ppm* 158.6 (d, ⁵*J*_{CP} = 1.8 Hz, C11), 149.5 (s, C13), 144.5 (d, ²*J*_{CP} = 3.3 Hz, C9), 143.8 (d, ³*J*_{CP} = 8.5 Hz, C3), 141.0 (d, ³*J*_{CP} = 3.5 Hz, C4), 136.5 (s, C14), 128.1 (d, ²*J*_{CP} = 4.9 Hz, C2), 127.4 (s, C7), 125.5 (d, ³*J*_{CP} = 3.8 Hz, C1), 37.3 (d, ⁴*J*_{CP} = 1.4 Hz, C10), 28.0 (d, ¹*J*_{CP} = 30.8 Hz, C22), 27.4 (d, ¹*J*_{CP} = 29.8 Hz, C19) 17.5 (d, ²*J*_{CP} = 2.6 Hz, C21), 17.3 (d, ²*J*_{CP} = 2.6 Hz, C24), 16.9 (d, ²*J*_{CP} = 2.4 Hz, C23), 16.7 (d, ²*J*_{CP} = 2.3 Hz, C20). HRMS (ESI): m/z [M+H]⁺ Calcd: 356.1596, Found: 356.1602.

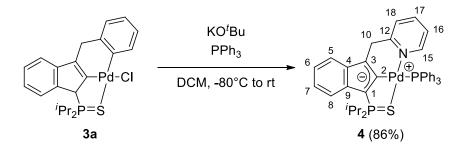


Synthesis of {PdCl[('Pr₂P=S)(CH₂Pyr)(C₉H₅)]} (3): A solution of **2** in DCM (248.8 mg, 0.7 mmol in 1 mL) was added to a solution of PS-DIEA (233.3 mg at 3 mmol/g) and [PdCl₂(NCPh)₂] (268.5 mg, 0.7 mmol) in DCM (9 mL) at room temperature. The reaction mixture was stirred at room temperature for 20 hours and, then filtered over a celite pad. The products were extracted 3 times with 2 mL of DCM. The combined organic phases were evaporated and the residue was purified by silica gel flash chromatography. The products **3** were eluted with 100% DCM to afford 78.1 mg of a pale reddish powder, 103.9 mg of a yellowish powder and 84 mg of an orange powder, respectively for **3c**, **3a** and **3b** (overall yield = 77 %).

Mp = 191.6°C (decomp.); ³¹**P**{¹**H**}–**NMR** (121 MHz, CDCl₃): δ *ppm* 81.9 (s); ¹**H**–**NMR** (500 MHz, CDCl₃): δ *ppm* 9.70 (dd, ${}^{3}J_{HH}$ = 5.8 Hz, ${}^{4}J_{HH}$ = 1.3 Hz, 1H, H15), 7.75 (ddd, ${}^{3}J_{HH}$ = 7.7 Hz, ${}^{3}J_{HH}$ = 7.7 Hz, ${}^{4}J_{HH}$ = 1.3 Hz, 1H, H17), 7.45 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 1H, H18), 7.37 (m, 1H, H8) 7.36 (m, 2H, H_{Arolnd}), 7.25 (brdd, ${}^{3}J_{HH}$ = 7.7 Hz, ${}^{3}J_{HH}$ = 5.8 Hz, 1H, H16), 7.11 (m, H_{Arolnd}), 4.78 (dd, ${}^{2}J_{HP}$ = 20.6 Hz, J_{HH} = 2.8 Hz, 1H, H1), 4.12 (brs, 2H, H10), 2.78 (m, 1H, H22), 1.83 (m, 1H, H21), 1.63 (dd, ${}^{3}J_{HP}$ = 17.6 Hz,

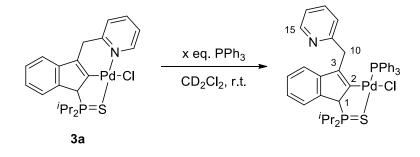

 ${}^{3}J_{HH}$ = 7.1 Hz, 3H, H26), 1.49 (dd, ${}^{3}J_{HP}$ = 17.4 Hz, ${}^{3}J_{HH}$ = 7.0 Hz, 3H, H25), 0.97 (dd, ${}^{3}J_{HP}$ = 17.8 Hz, ${}^{3}J_{HH}$ = 7.2 Hz, 6H, H24 and H23); ${}^{13}C{}^{1}H$ -**NMR** (126 MHz, CDCl₃): δ *ppm* 156.70 (d, ${}^{5}J_{CP}$ = 1.0 Hz, C12), 154.96 (s, C15), 153.78 (d, ${}^{2}J_{CP}$ = 1.2 Hz, C2), 145.72 (d, ${}^{3}J_{CP}$ = 3.6 Hz, C4), 140.55 (d, ${}^{2}J_{CP}$ = 1.9 Hz, C9), 138.08 (s, C18), 133.35 (d, ${}^{3}J_{CP}$ = 8.3 Hz, C3), 128.15 (d, J_{CP} = 1.5 Hz, CAroind), 125.13 (s, C17), 123.53 (d, J_{CP} = 2.0 Hz, C8), 123.19 (d, J_{CP} = 1.6 Hz, CAroind), 122.81 (s, C16), 117.90 (s, C6), 63.88 (d, ${}^{1}J_{CP}$ = 45.8 Hz, C1), 37.60 (d, ${}^{4}J_{CP}$ = 0.9 Hz, C10), 25.49 (d, ${}^{1}J_{CP}$ = 41.5 Hz, C21), 24.69 (d, ${}^{1}J_{CP}$ = 39.6 Hz, C22), 17.66 (d, ${}^{2}J_{CP}$ = 2.5 Hz, C26), 17.43 (d, ${}^{2}J_{CP}$ = 3.0 Hz, C24), 17.37 (d, ${}^{2}J_{CP}$ = 2.7 Hz, C25), 16.95 (d, ${}^{2}J_{CP}$ = 2.7 Hz, C23). **HRMS** (ESI): m/z [M-CI]⁺ Calcd: 460.0480, Found: 460.0481. **Elemental Anal Calcd for** C₂₁H₂₅CINPPdS: C, 50.82; H, 5.08; N, 2.82. Found: C, 51.05; H, 5.35; N, 2.58.

Mp = 265.4°C (decomp.); ³¹P{¹H}–**NMR** (121 MHz, CDCl₃): δ *ppm* 82.5 (s); ¹H–**NMR** (500 MHz, CDCl₃): δ *ppm* 9.61 (d, ³J_{HH} = 5.6Hz, 1H, H15), 7.69 (d, ³J_{HH} = 7.6 Hz, 1H, H8), 7.66 (dd, ³J_{HH} = 7.7 Hz, ⁴J_{HH} = 7.7 Hz, 1H, H18), 7.39 (dd, ³J_{HH} = 7.6 Hz, ⁴J_{HH} = 7.6 Hz, 1H, H6), 7.34 (dd, ³J_{HH} = 7.6 Hz, ⁴J_{HH} = 7.6 Hz, 1H, H7), 7.27 (d, ³J_{HH} = 7.7 Hz, 1H, H17), 7.24 (d, ³J_{HH} = 7.6 Hz, 1H, H5), 7.17 (dd, ³J_{HH} = 5.6 Hz, ⁴J_{HH} = 7.6 Hz, 1H, H16), 6.94 (brs, 1H, H10), 5.12 (pseudot, ³J_{HP} = 11.3 Hz, ³J_{HH} = 11.3 Hz, 1H, H2), 4.63

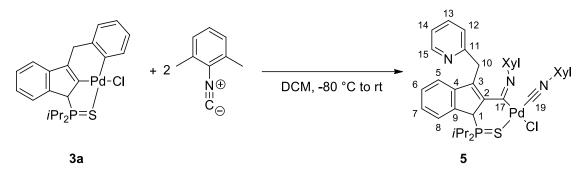

(dd, ${}^{2}J_{HP}$ = 10.0 Hz, ${}^{3}J_{HH}$ = 11.3 Hz, 1H, H1), 2.50 (m, 1H, H22), 2.47 (m, 1H, H21), 1.56 (dd, ${}^{3}J_{HP}$ = 16.2 Hz, ${}^{3}J_{HH}$ = 7.1 Hz, 3H, H24), 1.39 (dd, ${}^{3}J_{HP}$ = 17.6 Hz, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, H26), 1.33 (dd, ${}^{3}J_{HP}$ = 16.5 Hz, ${}^{3}J_{HH}$ = 7.0 Hz, 3H, H23), 0.84 (dd, ${}^{3}J_{HP}$ = 16.9 Hz, ${}^{3}J_{HH}$ = 7.1 Hz, 3H, H25); ${}^{13}C{^{1}H}$ -NMR (126 MHz, CDCl₃): δ *ppm* 154.46 (s, C15), 154.35 (s, C9), 152.77 (s, C12), 141.76 (d, ${}^{3}J_{CP}$ = 4.2 Hz, C4), 141.33 (d, ${}^{2}J_{CP}$ = 5.4 Hz, C3), 137.83 (s, C18), 129.73 (d, ${}^{4}J_{CP}$ = 3.1 Hz, C7), 128.68 (d, ${}^{5}J_{CP}$ = 3.0 Hz, C6), 124.54 (d, ${}^{4}J_{CP}$ = 3.4 Hz, C5), 122.56 (s, C17), 122.39 (s, C16), 122.13 (d, ${}^{3}J_{CP}$ = 2.4 Hz, C8), 115.48 (d, ${}^{4}J_{CP}$ = 1.8 Hz, C10), 53.56 (d, ${}^{1}J_{CP}$ = 54.0 Hz, C1), 37.05 (d, ${}^{2}J_{CP}$ = 2.0 Hz, C2),

28.02 (d, ${}^{1}J_{CP}$ = 42.6 Hz, C22), 25.76 (d, ${}^{1}J_{CP}$ = 32.7 Hz, C21), 19.00 (d, ${}^{2}J_{CP}$ = 2.9 Hz, C26), 17.23 (d, ${}^{2}J_{CP}$ = 2.0 Hz, C24), 16.55 (d, ${}^{2}J_{CP}$ = 2.0 Hz, C25), 16.11 (d, ${}^{2}J_{CP}$ = 2.2 Hz, C23). **Elemental Anal Calcd for** C₂₁H₂₅ClNPPdS: C, 50.82; H, 5.08; N, 2.82. Found: C, 51.41; H, 5.38; N, 2.65.

Mp = 201.2°C (decomp.); ³¹**P**{¹**H**}–**NMR** (121 MHz, CDCl₃): δ *ppm* 81.9 (s); ¹**H**–**NMR** (500 MHz, CDCl₃): δ *ppm* 9.93 (dd, ³*J*_{HH} = 5.8 Hz, ⁴*J*_{HH} = 1.2 Hz, 1H, H15), 7.85 (ddd, ³*J*_{HH} = 7,6 Hz, *J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.6 Hz, 1H, H18), 7.49 (d, ³*J*_{HH} = 7.6 Hz, 2H, H8 and H17), 7.33 (m, 1H, H16), 7.27 (dd, ³*J*_{HH} = 7.4 Hz, ³*J*_{HH} = 7.4 Hz, 1H, H7), 7.18 (ddd, ³*J*_{HH} = 7.4 Hz, ³*J*_{HH} = 7.4 Hz, ⁴*J*_{HH} = 0.8 Hz, 1H, H6), 7.16 (brd, ³*J*_{HH} = 7.4 Hz, 1H, H5), 3.46 (dd, ²*J*_{HH} = 14.0 Hz, ³*J*_{HH} = 2.6 Hz, 1H, H10), 3.28 (dt, ³*J*_{HH} = 14.0 Hz, ³*J*_{HH} =

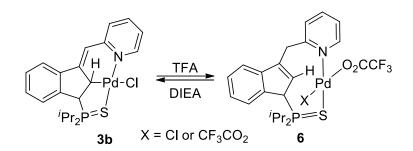

2.6 Hz, 1H, H3), 2.74 (dd, ${}^{2}J_{HH}$ = 14.0 Hz, ${}^{3}J_{HH}$ = 14.0 Hz, 1H, H10) 2.71 (m, 1H, H22), 2.60 (m, 1H, H21), 1.46 – 1.27 (12H, H26, H25, H24 and H23); ${}^{13}C{^{1}H}$ –NMR (126 MHz, CDCl₃): δ *ppm* 191.57 (d, J_{CP} = 18.6 Hz, C2), 158.87 (s, C12), 155.10 (s, C15), 143.49 (d, J_{CP} = 9.3 Hz, C4), 143.07 (d, J_{CP} = 17.9 Hz, C9), 138.50 (s, C18), 135.50 (d, J_{CP} = 92.0 Hz, C1), 127.38 (s, C7), 125.60 (s, C17), 124.01 (s, C6), 123.34 (s, C8), 122.86 (s, C16), 117.99 (d, J_{CP} = 1.0 Hz, C5), 52.64 (d, J_{CP} = 15.3 Hz, C3), 39.45 (d, J_{CP} = 0.7 Hz, C10), 27.37 (d, ${}^{2}J_{CP}$ = 44.9 Hz, C21), 26.06 (d, ${}^{2}J_{CP}$ = 44.5 Hz, C22), 17.45 (d, ${}^{3}J_{CP}$ = 1.9 Hz, H₃C_{*i*Pr}), 16.95 (d, ${}^{3}J_{CP}$ = 2.1 Hz, H₃C_{*i*Pr}), 16.23 (d, ${}^{3}J_{CP}$ = 2.1 Hz, H₃C_{*i*Pr}). HRMS (ESI): m/z [M-Cl]⁺ Calcd: 460.0480, Found: 460.0470.

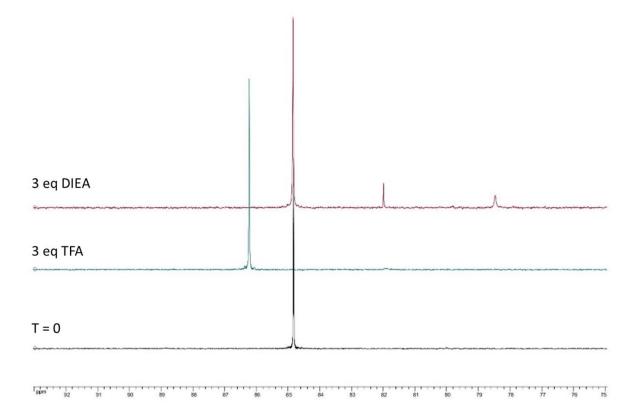
Synthesis of {PdPPh₃[(^{*i***}Pr₂P=S)(CH₂Pyr)(C₉H₄)]} (4):** In a schlenk, potassium tert-butoxide (9 mg, 0.08 mmol) and triphenylphosphine (21 mg, 0.08 mmol) were added at -80°C to a solution of **3a** (40 mg, 0.08 mmol) in DCM (4 mL). Then the reaction mixture was allowed to warm to room temperature overnight under stirring. The mixture was filtered *via* canula and the product was extracted two times with 2 mL of DCM and precipitated with pentane. After drying under vacuum, **4** was obtained as a dark red powder in 86% yield (50 mg).


³¹P{¹H}–NMR (121 MHz, C₆D₆): δ *ppm* 76.6 (d, ³*J*_{PP} = 45.5 Hz), 17.8 (d, ³*J*_{PP} = 45.5 Hz); ¹H–NMR (500 MHz, C₆D₆): δ *ppm* 8.16 (d, ³*J*_{HH} = 5.5 Hz, 1H, H15), 7.93 (d, *J*_{HH} = 7.5 Hz, 1H, H_{Arolnd}), 7.70 (m, 6H, H_{ortho-PPh3}), 7.60 (d, *J*_{HH} = 7.7 Hz, 1H, H_{Arolnd}), 7.42 (m, 1H, H_{Arolnd}), 7.35 (m, 1H, H_{Arolnd}), 6.99-6.97 (m, 9H, H_{para-PPh3} and H_{meta-PPh3}), 6.53 (m, 1H, H18), 6.52 (m, 1H, H17), 5.71 (m, 1H, H16), 4.40 (s, 2H, H10), 2.44 (m, 2H, CH_{iPr}), 1.27 (dd, ³*J*_{HP} = 16.6 Hz, ³*J*_{HH} = 7.0 Hz, 3H, H₃C_{iPr}), 1.11 (dd, ³*J*_{HP} = 17.6 Hz, ³*J*_{HH} = 7.0 Hz, 3H, H₃C_{iPr}); ¹³C{¹H}–NMR (126 MHz, C₆D₆): δ *ppm* 163.25 (dd, *J*_{CP} = 103.9 Hz, *J*_{CP} = 24.5 Hz, C2), 163.06 (s, C12), 153.92 (d, ³*J*_{CP} = 10.3 Hz, C15), 136.68 (s, C17), 134.85 (dd, ²*J*_{CP} = 18.4 Hz, ⁴*J*_{CP} = 5.0 Hz, C9), 134.55 (d, ²*J*_{CP} = 13.3 Hz, Co-Ph3), 122.66 (d, ³*J*_{CP} = 9.1 Hz, C_{i-PPh3}), 122.66 (dd, ³*J*_{CP} = 11.8 Hz, ⁴*J*_{CP} = 10.1 Hz, C4), 129.87 (s, C_{p-PPh3}), 128.41 (d, ³*J*_{CP} = 9.1 Hz, C_{m-PPh3}), 124.67 (s, C18), 120.10 (s, C16), 116.07 (s, CArolnd), 116.06 (s, CArolnd), 115.35 (s, CArolnd), 102.71 (dd, ³*J*_{CP} = 15.1 Hz, ³*J*_{CP} = 2.7 Hz, C3), 83.87 (dd, ¹*J*_{CP} = 118.6 Hz, ³*J*_{CP} = 4.5 Hz, C1), 38.63 (s, C10), 26.63 (d, ¹*J*_{CP} = 47.1 Hz, CH_{iPr}), 16.73 (s, H₃C_{iPr}), 16.36 (d, ²*J*_{CP} = 2.1 Hz, H₃C_{iPr}).

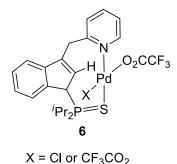
III. Lability test in presence of triphenylphosphine.

In a NMR pressure tube, triphenyphosphine (5 mg, 0.02 mmol) was added to a solution of **3a** (10 mg, 0.020 mmol) in CD_2Cl_2 (0.4 mL) under argon atmosphere. Then, subsequent additions of increasing amounts of PPh₃ (up to 250 mg, 1.0 mmol) were monitored by ¹H and ³¹P NMR.


IV. Lability test in presence of 2,6-dimethylisocyanide


In a schlenk, a solution of 2,6-dimethyl isonitrile (5.2 mg, 0.04 mmol) in DCM (1 mL) was added dropwise to a solution of **3a** (10 mg, 0.02 mmol) in DCM (4 mL) cooled down at -80°C. Then the reaction mixture was allowed to warm slowly to room temperature overnight. The reaction crude was directly analysed by NMR spectroscopy to characterize **5** as the major product. Suitable crystals of **5** were grown by slow diffusion of pentane in a saturated solution in DCM at room temperature.

³¹P{¹H}–NMR (162 MHz, CD₂Cl₂, 213.15 K): δ ppm 71.81 (s); ¹H–NMR (400 MHz, CD₂Cl₂, 213.15 K): δ ppm 8.42 (d, ³J_{HH} = 3.7 Hz, 1H, H15), 7.77 (d, J_{HH} = 7,6 Hz, 1H, H_{Ind(aro)}), 7.63 (d, J_{HH} = 7,6 Hz, 1H, H_{Ind(aro)}), 7.52 (m, 1H, H_{Pyr}), 7.48 (m, 1H, H_{Ind(aro)}), 7.42 (d, J_{HH} = 7.5 Hz, 1H H), 7.41 (d, J_{HH} = 7.5 Hz, 1H, H_{Ind(aro)}), 7.40 (d, J_{HH} = 7.3 Hz, 1H, H_{Pyr}), 7.23 (m, 1H, H_{Xyl(aro)}), 7,21 (m, 1H, $H_{Xyl(aro)}$), 7.10 (m, 1H, H_{Pyrl}), 7.09 (m, 1H, $H_{Xyl(aro)}$), 6.94 (t, J_{HH} = 7.5 Hz, $H_{Xyl(aro)}$), 6.64 (d, J_{HH} = 7.5 Hz, 1H, H_{Xvl(aro)}), 5.81 (d, ${}^{2}J_{HP}$ = 21.3 Hz, 1H, H1), 5.04 (d, ${}^{2}J_{HH}$ = 13,8 Hz, 1H, H10), 4.69 (d, ${}^{2}J_{HH}$ = 13.8 Hz, 1H, H10), 3.01 (m, 1H, CH_{iPr}), 2.46 (s, 3H, H₃C_{Xyl}), 2.12 (s, 6H, H₃C_{Xyl}), 1.94 (m, 1H, CH_{iPr}), 1.83 (m, 3H, H₃C_{iPr}), 1.76 (s, 3H, H₃C_{Xvl}), 1.35 (m, 3H, H₃C_{iPr}), 0.79 (m, 3H, H₃C_{iPr}), 0.50 (m, 3H, H₃C_{*i*Pr}); ¹³C{¹H}–NMR (101 MHz, CD₂Cl₂, 213.15 K): δ ppm 191.88 (d, J_{CP} = 18.3 Hz, C17), 171.22 (s, C19), 158.96 (s, C11), 151.31 (s, C^{IV}_{XVI}), 149.06 (s, C_{Pyr}), 146.77 (s, C4 or C9), 142.68 (d, ${}^{2}J_{CP}$ = 7.7 Hz, C2), 138.00 (s, C4 or C9), 137,54 (d, ${}^{3}J_{CP}$ = 6.4 Hz, C3), 136.35 (s, C_{Pvr}), 135.45 (s, C^{IV}_{XyI}), 129.59 (s, C_{XyI}), 129.10 (s, C^{III}_{Ind}), 128.40 (s, C^{III}_{XyI}), 127.91 (s, C^{III}_{XyI}), 127.39 (s, C^{III}_{XyI}), 127.23 (s, C^{III}_{Ind}), 127.04 (s, C^{IV}_{XVI}), 125.82 (s, C^{IV}_{XVI}), 125.44 (s, C^{IV}_{XVI}), 124.05 (s, C^{III}_{Ind}), 123.97 (s, C^{III}_{Ind}), 123.51 (s, C_{Pyr}), 123.19 (s, C^{III}_{Xyl}), 121.61 (s, C_{Pyr}), 57.38 (d, ¹J_{CP} = 35.6 Hz, C1), 35.24 (s, C10), 27.36 (d, ${}^{1}J_{CP}$ = 47.7 Hz, CH_{iPr}), 24.68 (d, ${}^{1}J_{CP}$ = 47.7 Hz, CH_{iPr}), 20.19 (s, H₃C_{Xvl}), 18.87 (s, H₃C_{Xyl}) 18.85 (s, H₃C_{Xyl}), 17.86 (s, H₃C_{iPr}), 16.73 (s, H₃C_{iPr}), 16.65 (s, H₃C_{iPr}), 15.99 (s, H₃C_{iPr}).


V. Test in presence of TFA and DIEA

In a J. Young NMR tube, trifluoroacetic acid (4.6 μ L, 0.060 mmol) was added to a solution of complex **3b** (10 mg, 0.020 mmol) in CD₂Cl₂ (0.5 mL) under argon at room temperature. The reaction was monitored by ¹H and ³¹P NMR and revealed the clean formation of **6**. Then, N,N-Diisopropylethylamine was added (10.4 μ L, 0.060 mmol) and **3b** was recovered according to the ¹H and ³¹P NMR.

Figure S1: ³¹P NMR monitoring of the addition of trifluoroacetic acid (3 equivalent) on **3b** and then N,N-diisopropylamine (3 equivalent).

³¹P{¹H}–NMR (162 MHz, CDCl₃): δ *ppm* 86.2 (s); ¹H–NMR (400 MHz, CDCl₃): δ *ppm* 8.89 (dd, ³*J*_{HH} = 5.6 Hz, ⁴*J*_{HH} = 0.8 Hz, 1H, H15), 8.09 (m, 1H, H_{Arolnd}), 8.03 (ddd, ³*J*_{HH} = 7.6 Hz, ³*J*_{HH} = 7.6 Hz, ⁴*J*_{HH} = 1.6 Hz, 1H, H17), 7.73 (m, 2H, H_{Arolnd}), 7.66 (d, ³*J*_{HH} = 7.6 Hz, 1H, H18), 7.53 (m, 1H, H16), 7.47 (m, 1H, H_{Arolnd}), 6.38 (brs, 1H, H2),

 $\begin{array}{l} X = \text{Cl or CF}_{3}\text{CO}_{2} \\ 5,29 (\text{brd}, {}^{2}J_{HP} = 8 \text{ Hz}, 1\text{H}, \text{H1}), 5,14 (\text{brd}, 1\text{H}, {}^{2}J_{HH} = 20 \text{ Hz}, \text{H10}), 3.89 \\ (\text{brd}, {}^{2}J_{HH} = 20 \text{ Hz}, \text{H10}), 3.11 (m, 1\text{H}, \text{H22}), 2.71 (m, 1\text{H}, \text{H21}), 1.82 (dd, {}^{3}J_{HP} = 19.6 \text{ Hz}, {}^{3}J_{HH} = \\ 8.0 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}), 1.76 (dd, {}^{3}J_{HP} = 18.0 \text{ Hz}, {}^{3}J_{HH} = 7.2 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}) 1.73 (dd, {}^{3}J_{HP} = 9.6 \text{ Hz}, {}^{3}J_{HH} \\ = 7.2 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}), 1.27 (dd, {}^{3}J_{HP} = 16.6 \text{ Hz}, {}^{3}J_{HH} = 7.0 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}), 1.11 (dd, {}^{3}J_{HP} = 17.6 \text{ Hz}, {}^{3}J_{HH} = 7.0 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}), 1.11 (dd, {}^{3}J_{HP} = 17.6 \text{ Hz}, {}^{3}J_{HH} = 7.0 \text{ Hz}, 3\text{H}, \text{H}_{3}\text{C}_{iPr}), 151.22 (\text{s}, \text{C15}), 143.05 (d, d, {}^{2}J_{CP} = 3.8 \text{ Hz}, \text{C9}), 141.85 (\text{s}, \text{C17}), 141.01 \\ (d, {}^{3}J_{CP} = 3.4 \text{ Hz}, \text{C3}), 139.50 (d, {}^{3}J_{CP} = 4.6 \text{ Hz}, \text{C4}), 132.57 (d, J_{CP} = 2.3 \text{ Hz}, \text{CArolnd}), 130.92 (d, J_{CP} = 1.8 \text{ Hz}, \text{CArolnd}), 125.58 (d, J_{CP} = 3.1 \text{ Hz}, \text{C8}), 125.39 (\text{s}, \text{C16}), 124.93 (\text{s}, \text{C18}), 124.74 (\text{s}, \text{CArolnd}), 115.78 (q, {}^{1}J_{CF} = 286.3 \text{ Hz}, \text{C7}), 30.37 (d, {}^{1}J_{CP} = 37.3 \text{ Hz}, \text{C20}), 20.04 (d, {}^{2}J_{CP} = 2.9 \text{ Hz}, \text{C26}), 18.74 (d, {}^{2}J_{CP} = 2.7 \text{ Hz}, \text{C24}), 18.72 (d, {}^{2}J_{CP} = 2.0 \text{ Hz}, \text{C24}), 16.05 (d, {}^{2}J_{CP} = 2.1 \text{ Hz}, \text{C23}) \end{aligned}$

VI. In situ infrared experiments using reactIR 15 Metler Toledo Optic silicium fiber.

To a solution of **3b** (20 mg) in DCM (2 mL) was added 202 μ l (1 equivalent) solution of trifluoroacetic acid (0.1 M in DCM) at room temperature under stirring. The reaction mixture was monitored *in situ* by an infrared reactIR. Two new COO stretching bands (v_a(COO) = 1610 and v_s(COO) = 1375 cm⁻¹) were identified as coordinated TFA. Then subsequent addition of increasing amounst of the solution of TFA was done up to 3 equivalents to get complete conversion.

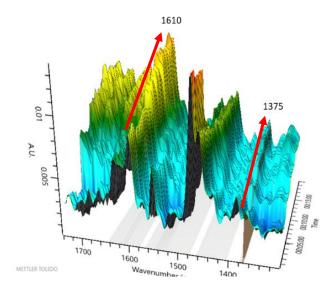
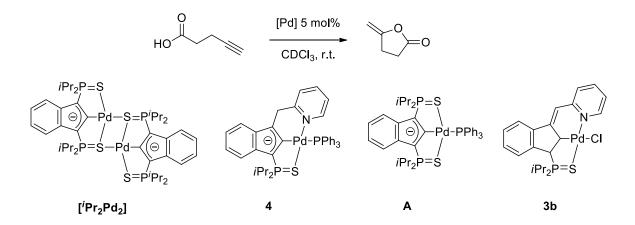



Figure S2. IR spectra of the reaction mixture between 1740 and 1300 cm⁻¹.

VII. General procedure for catalytic cycloisomerization reactions

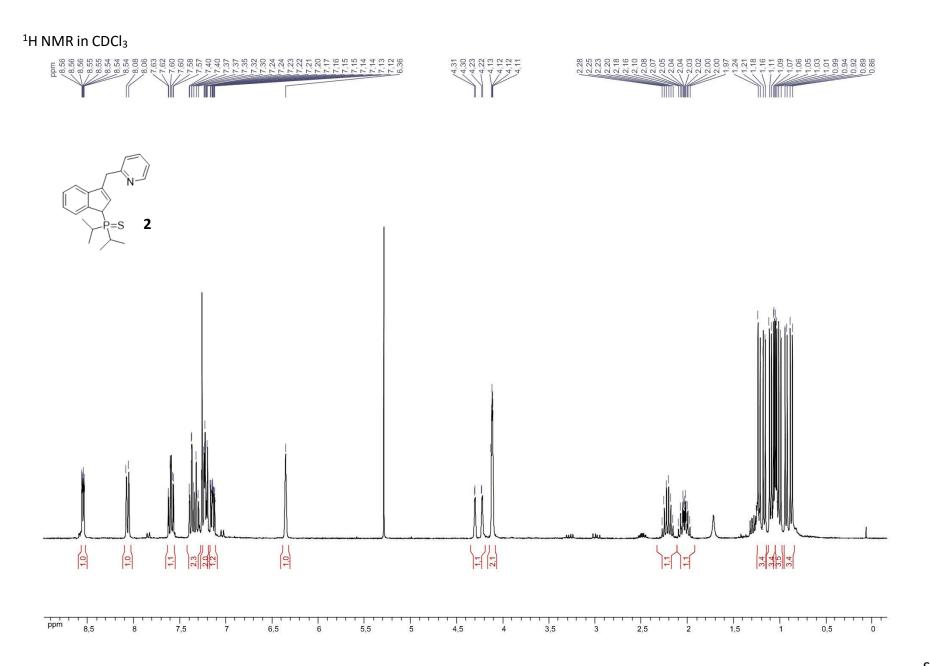
In a NMR pressure tube, 4-pentynoic acid (0.050 mmol) and complex (5 mol% [Pd]) were dissolved in $CDCl_3$ (0.5 mL) at room temperature under argon. The reactions were monitored by ¹H NMR spectroscopy.

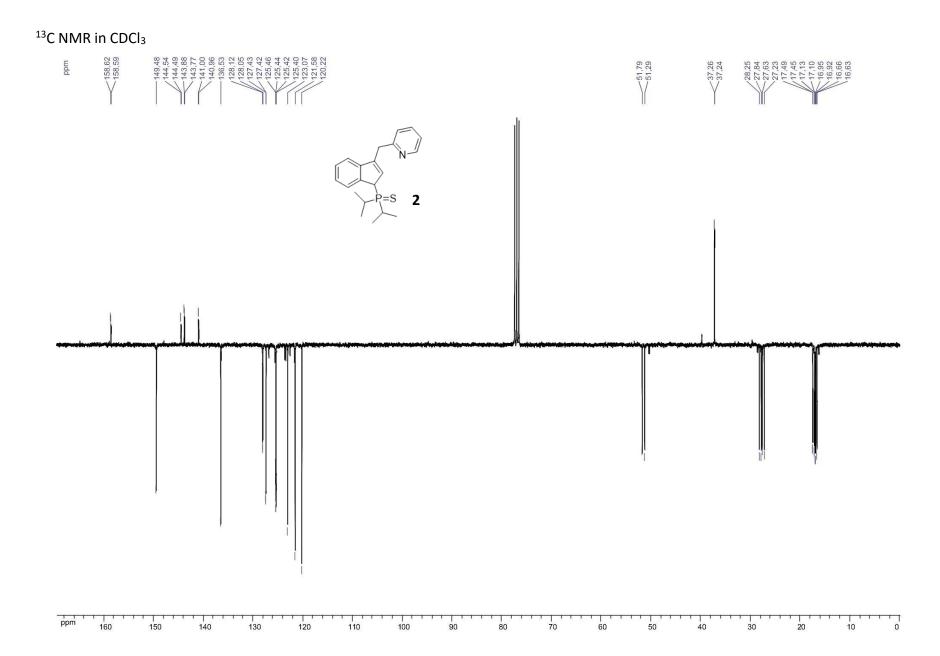
VIII. Selected crystal data

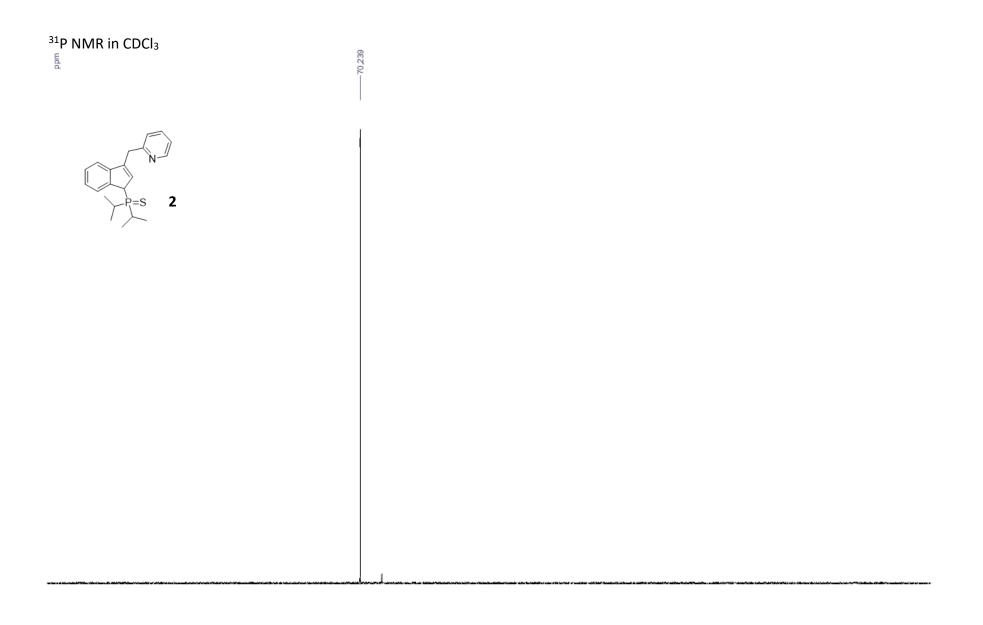
The data were collected at low temperature on a Bruker-AXS APEX II QUAZAR diffractometer (5) equipped with a 30W air-cooled microfocus source, and on a Bruker-AXS D8-Venture diffractometer (3b) equipped with a CMOS area detector, using MoK α radiation (λ = 0.71073Å). Phi- and omega- scans were used. The data were integrated with SAINT, and an

empirical absorption correction with SADABS was applied.² The structures were solved using an intrinsic phasing method (SHELXT)³ and refined using the least-squares method on F2.⁴ All non-H atoms were refined with anisotropic displacement parameters. The H atoms were refined isotropically at calculated positions using a riding model.

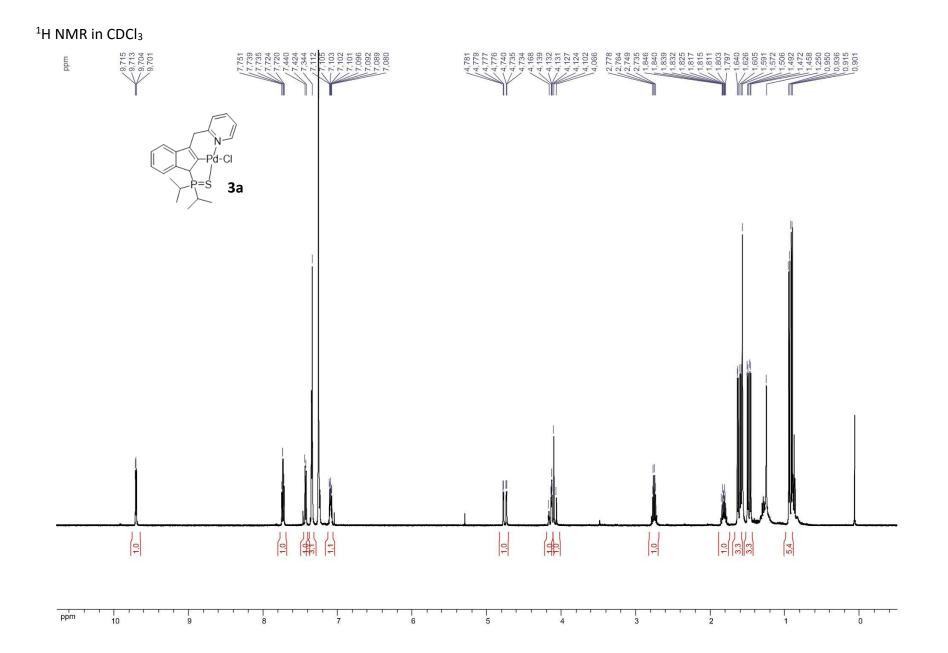
CCDC-1898996 (**3b**) and CCDC-1898855 (**5**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.a-c.uk/data_request/cif</u>.

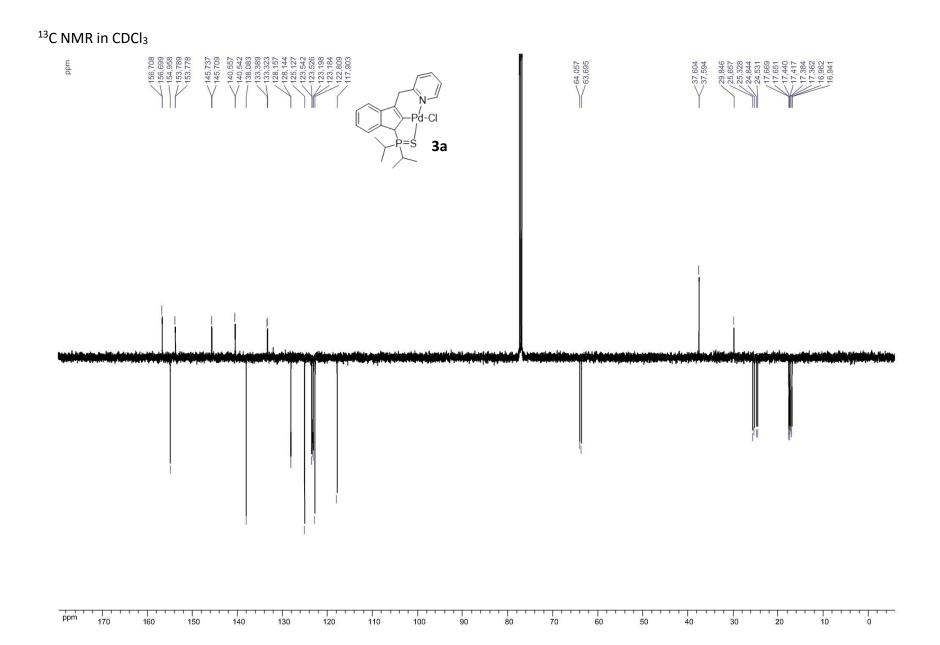

	3b	5
chemical formula	C ₂₁ H ₂₅ ClNPPdS,CH ₂ Cl ₂	C ₃₉ H ₄₃ ClN ₃ PPdS
Mr	581.22	758.64
crystal system	triclinic	monoclinic
space group	$P \overline{1}$	$P2_1/n$
<i>a</i> [Å]	9.0650(5)	10.0673(7)
<i>b</i> [Å]	10.7440(6)	20.0097(13)
<i>c</i> [Å]	13.3785(8)	17.8258(12)
α [°]	80.298(2)	90
β [°]	75.096(2)	98.505(2)
γ [°]	78.795(2)	90
<i>V</i> [Å ³]	9573.8(5)	3551.4(4)
Z	2	4
$\rho_{calc} [g \text{ cm}^{-3}]$	1.575	1.419
λ [Å]	0.71073	0.71073
T [K]	253(2)	193(2)
μ (Mo _{Ka}) [mm ⁻¹]	1.245	0.734
crystal size (mm ³)	0.12 x 0.08 x 0.06	0.12 x 0.08 x 0.04
Reflections collected	21191	69386
Independent reflections	4316 [R(int) = 0.0399]	6479 [R(int) = 0.0850]
Data/Restraints/Parameters	4316 / 72 / 294	6479 / 0 / 423
GOF on F ²	1.127	1.087
$R (I > 2\sigma(I))$	0.0388	0.0402
wR ² (all data)	0.0838	0.1157
Largest difference peak and hole [e $Å^{-3}$]	1.010 and -0.629	0.787 and -0.682

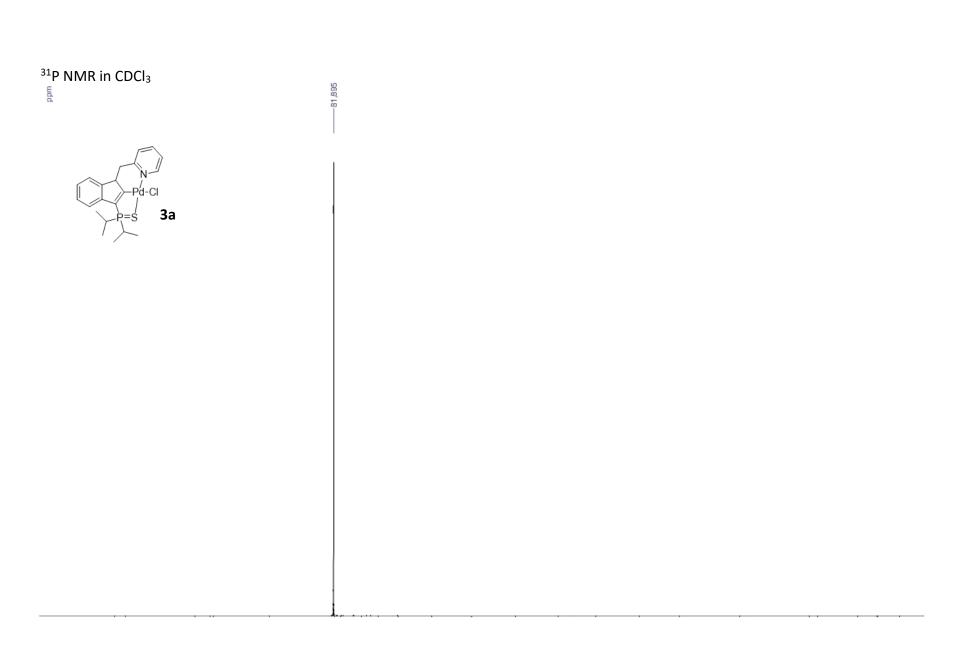

Table S1. Crystal Data, Data Collection, and Structure Refinement for 3b and 5

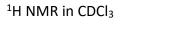

² SAINT, SADABS, Programs for data correction, Bruker–AXS.

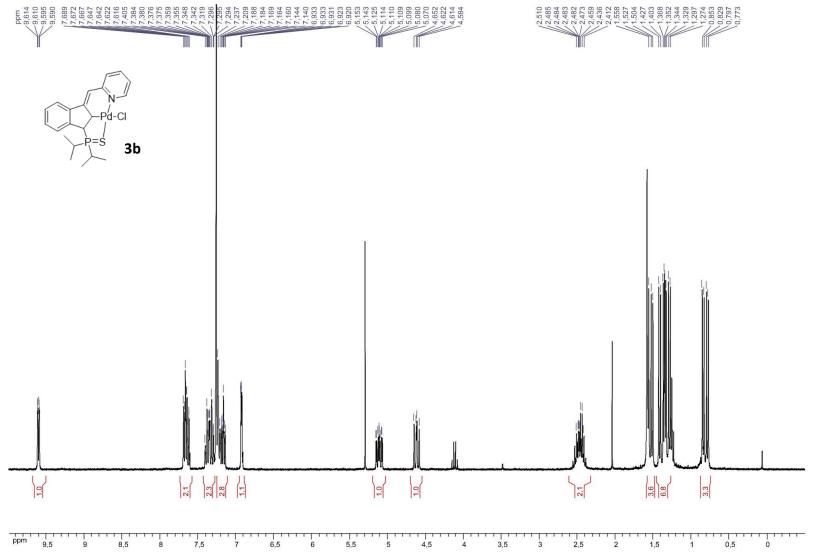
³ ShelXT, G. M. Sheldrick, University of Göttingen, Acta Crystallogr. Sect. A, 2015, **71**, 3.

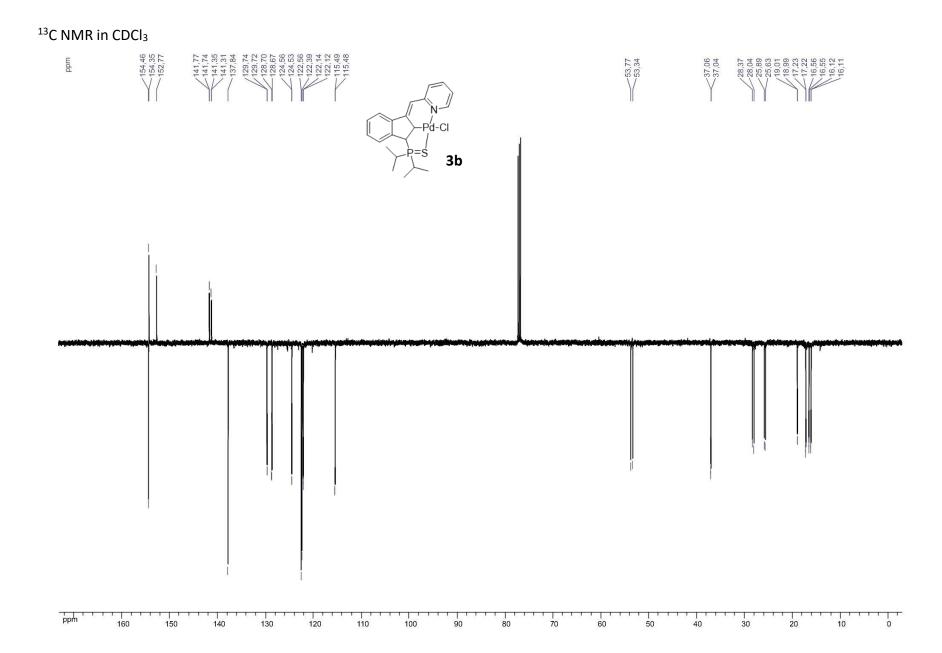

⁴ ShelXL, G. M. Sheldrick, University of Göttingen, Acta Crystallogr. Sect. C, 2015, **71**, 3.

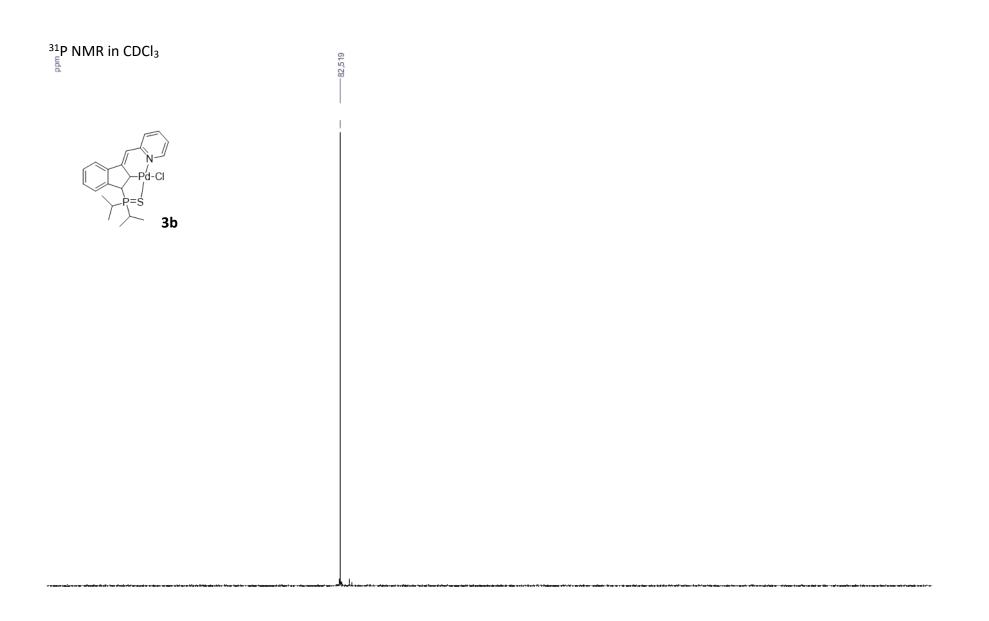




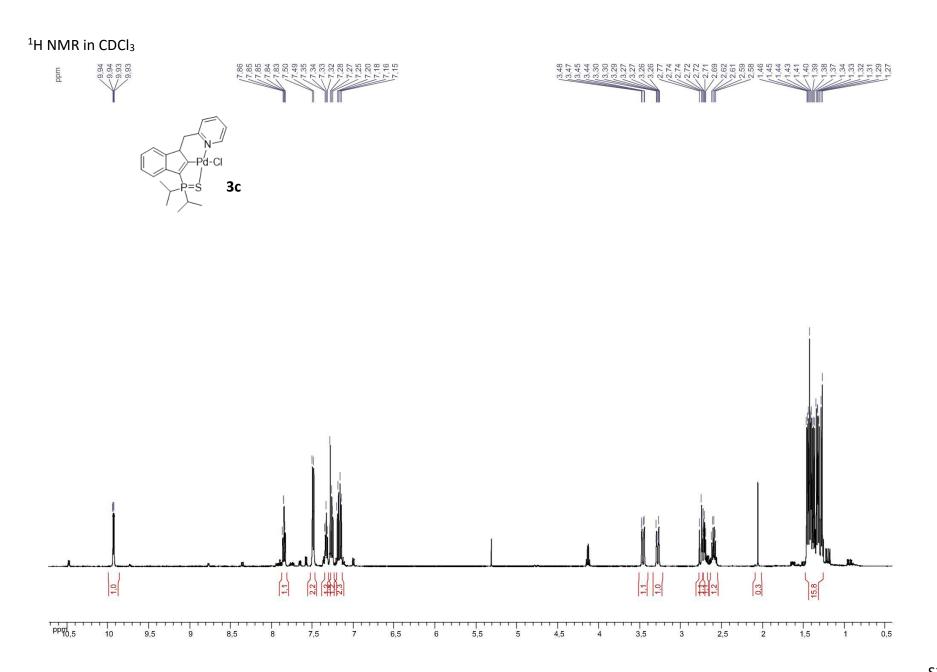

nnm						1.1.1													
200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180

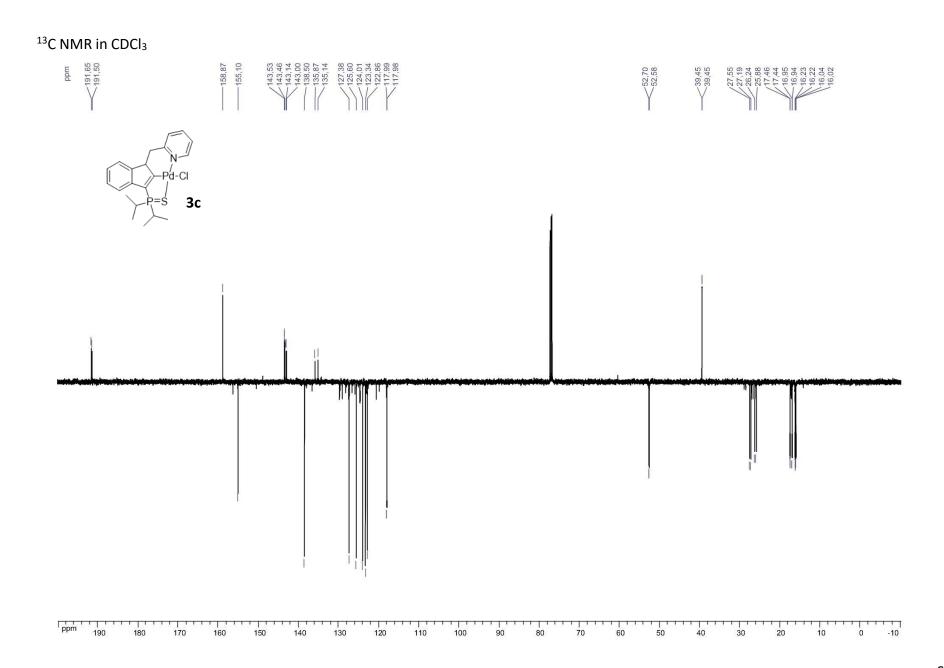


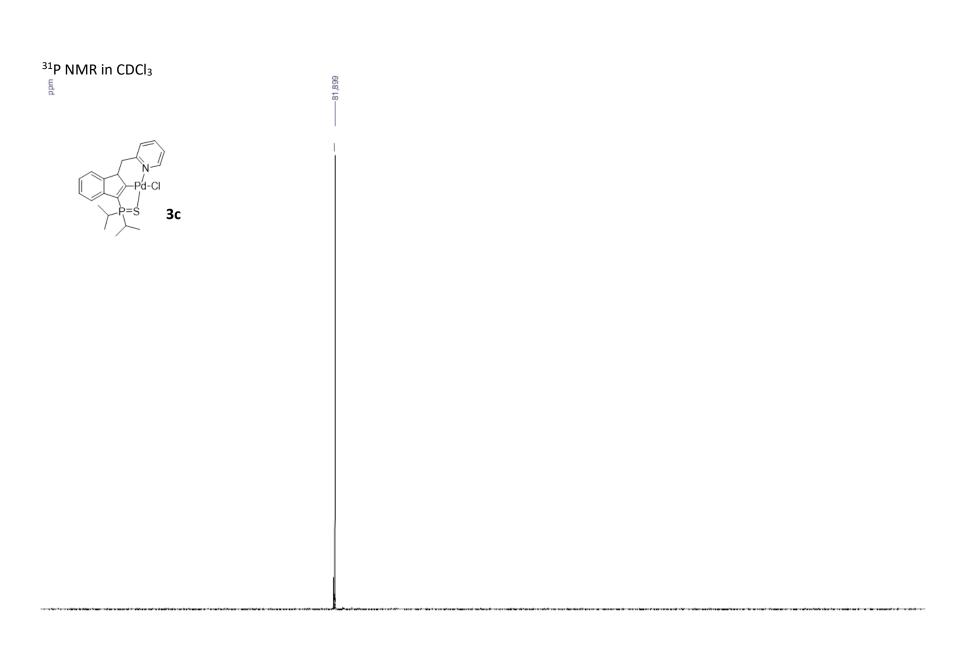


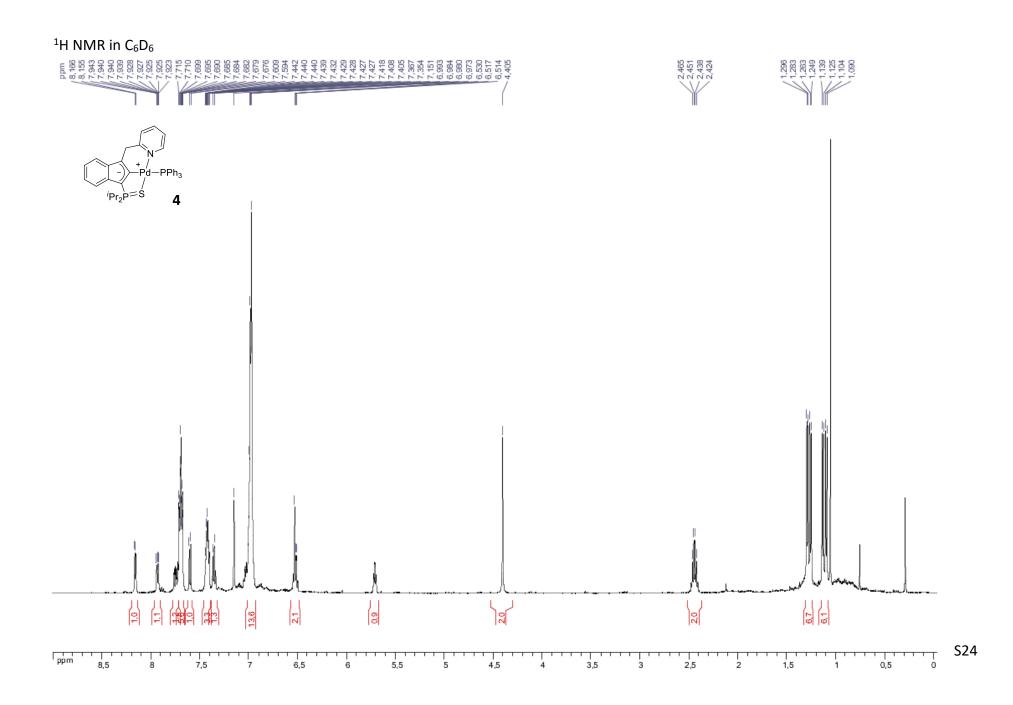


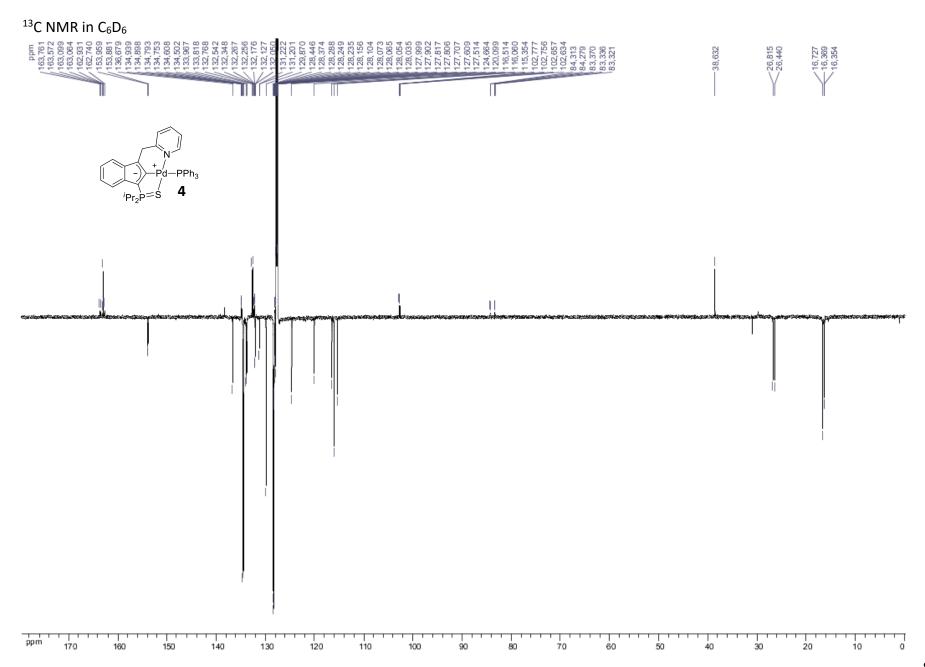
rom																				1						
ppm	220	200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	- 120) -	140	-160	-180	-200	-220	-240	

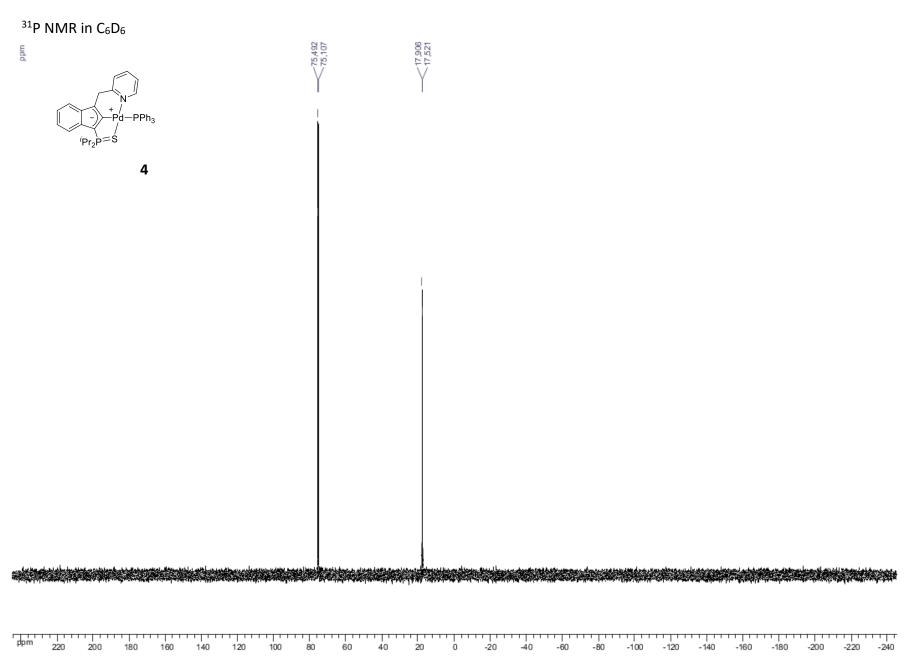


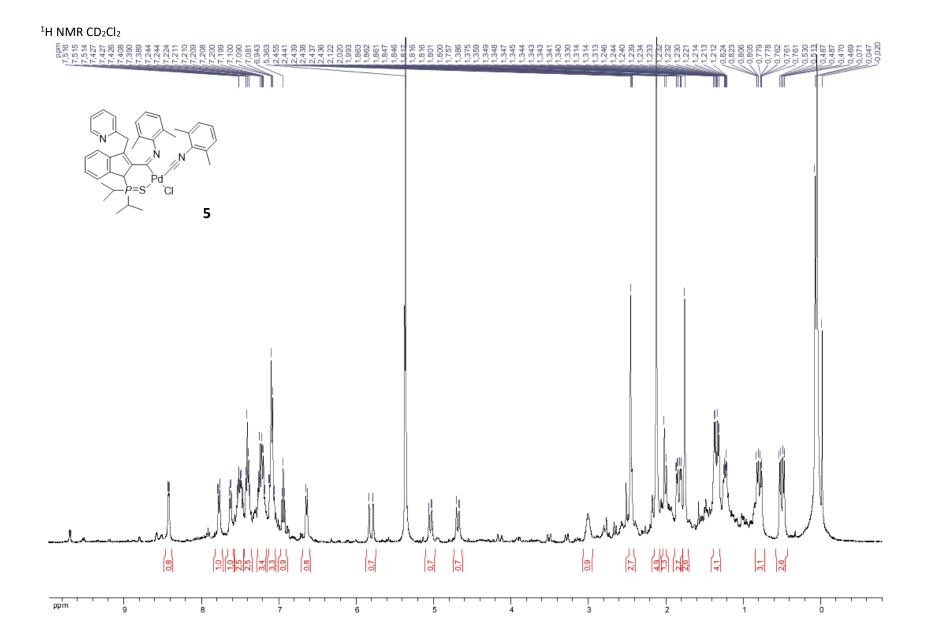


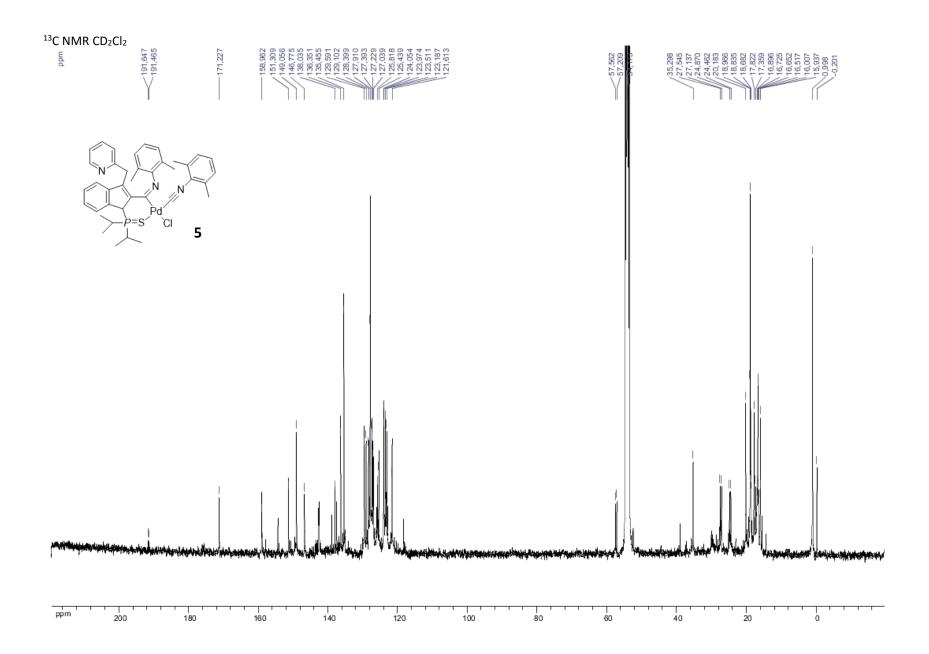


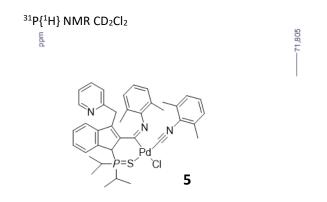

- mm																								$\tau \tau \tau \tau$
ppm	220	200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	- 120	- 140	-160	-180	-200	-220	-240

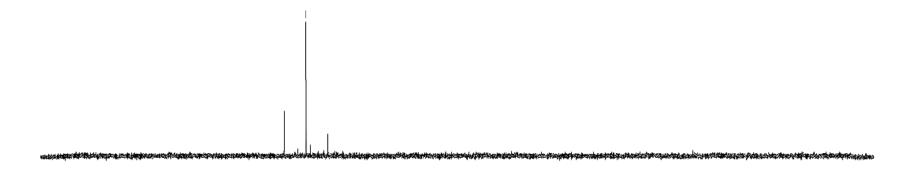


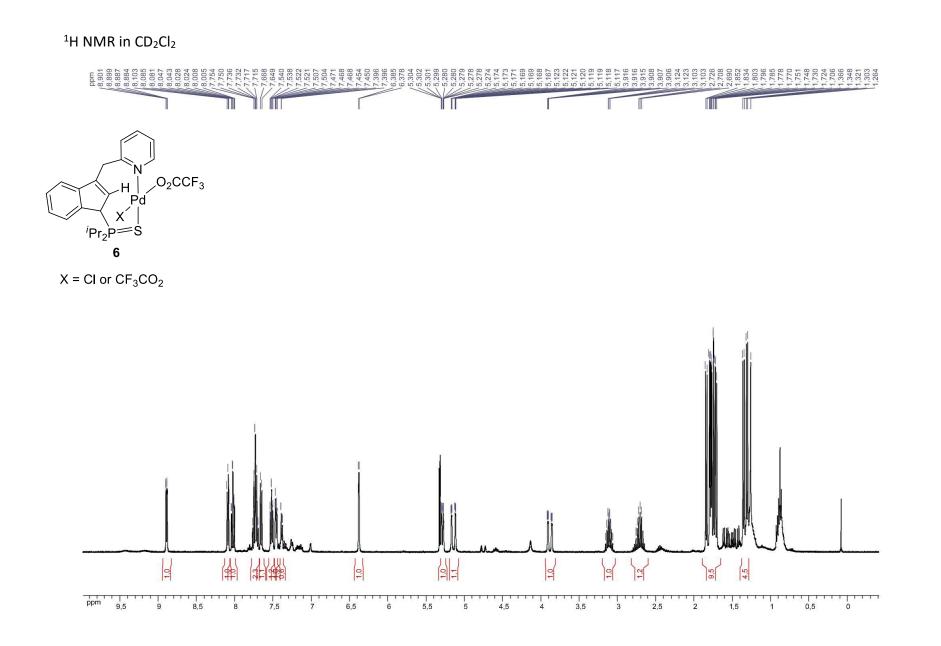


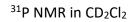


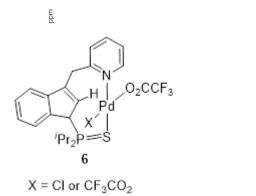

rom									60															
ppm	220	200	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	- 140	-160	-180	-200	-220	-240

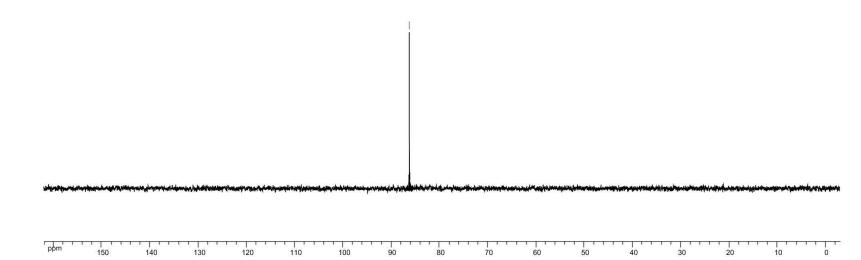




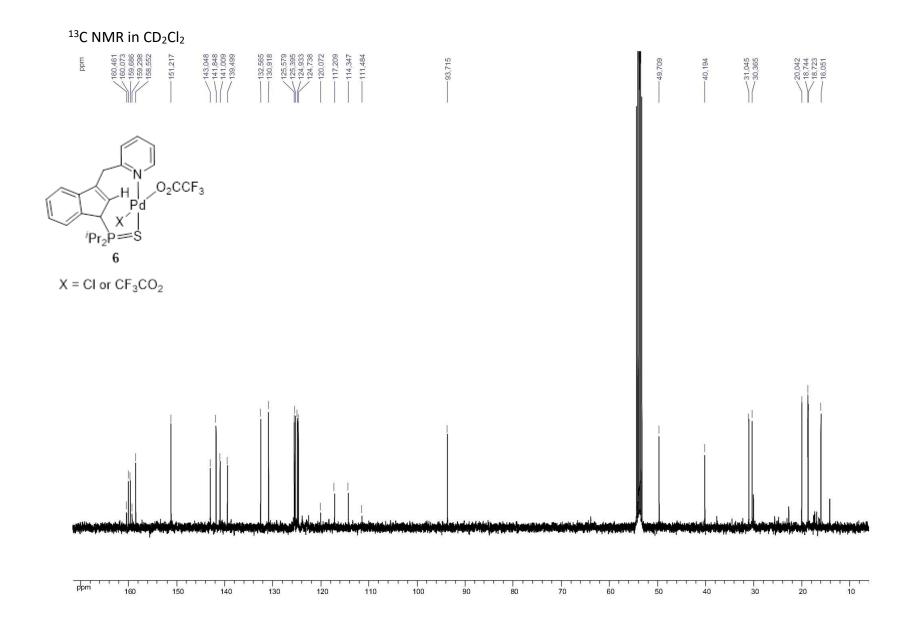








ppm	180	160	140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	- 140	-160	-180



86,266

