Electronic Supplementary Information

Determination of Ligand Field Splitting in Lanthanide(III) Monoporphyrinato Complexes

Anas Santria, *a Akira Fuyuhiro, a Takamitsu Fukuda a and Naoto Ishikawa*

^a Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Keywords : ligand field, energy splitting, electronic structure and monoporphyrinato

*Email: <u>anass15@chem.sci.osaka-u.ac.jp</u> (A.S.) <u>iskw@chem.sci.osaka-u.ac.jp</u> (N.I.).

Contents:

Figure S1. ¹H NMR spectrum of [Y(TPP)(cyclen)]Cl in deuterated chloroform, CDCl₃, measured at 298 K

Figure S2. The peak integration of porphyrin moiety of [Y(TPP)(cyclen)]Cl

Figure S3. The theoretical calculation for ¹H NMR spectrum of [Y(TPP)(cyclen)]Cl

Figure S4. ¹H NMR spectrum of [Ln(TPP)(cyclen)]Cl in deuterated chloroform, CDCl₃, measured at 298

Figure S5. Magnetic susceptibility, $\chi_m T$, values against temperature for [Ln(TPP)(cyclen)]Cl

Figure S6. Plots of the principal magnetic susceptibilities for [Ln(TPP)(cyclen)]Cl (Produced by LF terms with C_4 symmetry)

Figure S7. The molecular structure of terbium(III) monoporphyrinato cyclen complex: (a) obtained by single crystal x-ray diffraction, and (b) simplified by replacing phenyl rings to the hydrogen atoms

Table S1. Assignments of the ¹H NMR signal of the proton chemical shift δ , paramagnetic shifts $\Delta\delta$, and components of geometrical factor for [Ln(TPP)(cyclen)]Cl (Ln = Tb, Dy, Ho, Er, Tm, and Yb)

Table S2. Magnetic susceptibility χT (cm³ K mol⁻¹) and calculated paramagnetic shift $\Delta\delta$ (ppm) using equation 1.

Table S3. Electronic structures of [Ln(TPP)(cyclen)]Cl generated by LF parameters with C_4 symmetry

Table S4. Electronic structures of [Ln(TPP)(cyclen)]Cl generated by LF parameters with D_{4d} symmetry Table S5. The employed basis sets for theoretical calculations

 Table S5. The employed basis sets for theoretical calculations.

Table S6. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Tb(TPP)(cyclen)]⁺

Table S7. CASSCF/RASSI calculated energies and wave functions of the [Tb(TPP)(cyclen)]⁺

Table S8. Composition of wave functions for [Tb(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 1.

Table S9. Composition of wave functions for [Tb(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_ Aniso calculations with basis set 2.

Table S10. Composition of wave functions for [Tb(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S11. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Dy(TPP)(cyclen)]⁺

Table S12. CASSCF/RASSI calculated energies and wave functions of the $[Dy(Por)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S13. Composition of wave functions for [Dy(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S14. CASSCF/RASSI calculated energies and wave functions of the $[Dy(TPP)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S15. Composition of wave functions for [Dy(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/ Single_Aniso calculations with basis set 2. **Table S16.** Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Ho(TPP)(cyclen)]⁺

Table S17. CASSCF/RASSI calculated energies and wave functions of the $[Ho(TPP)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S18. Composition of wave functions for [Ho(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/ Single_Aniso calculations with basis set 2.

Table S19. CASSCF/RASSI calculated energies and wave functions of the $[Ho(Por)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S20. Composition of wave functions for [Ho(Por)(cyclen)]⁺ as extracted from CASSCF/ RASSI/Single _Aniso calculations with basis set 2.

Table S21. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Er(TPP)(cyclen)]⁺

Table S22. CASSCF/RASSI calculated energies and wave functions of the [Er(TPP)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

Table S23. Composition of wavefunctions for [Er(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S24. CASSCF/RASSI calculated energies and wave functions of the $[Er(Por)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S25. Composition of wavefunctions for [Er(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S26. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Tm(TPP)(cyclen)]⁺

Table S27. CASSCF/RASSI calculated energies and wave functions of the [Tm(TPP)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

Table S28. Composition of wave functions for [Tm(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S29. CASSCF/RASSI calculated energies and wave functions of the $[Tm(Por)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S30. Composition of wave functions for $[Tm(Por)(cyclen)]^+$ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S31. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Yb(TPP)(cyclen)]⁺

Table S32. CASSCF/RASSI calculated energies and wave functions of the $[Yb(TPP)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S33. Composition of wave functions for [Yb(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Table S34. CASSCF/RASSI calculated energies and wave functions of the $[Yb(Por)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S35. Composition of wave functions for [Yb(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single _Aniso calculations with basis set 2.

Figure S1. ¹H NMR spectrum of [Y(TPP)(cyclen)]Cl in deuterated chloroform, CDCl₃, measured at 298 K

Figure S2. The peak integration for porphyrin moiety of [Y(TPP)(cyclen)]Cl

Figure S3. The theoretical calculation for ¹H NMR spectrum of [Y(TPP)(cyclen)]Cl. Ref shielding: 31.8821 ppm (TMS B3LYP/6-311+G(2d,p))

Figure S4. ¹H NMR spectrum of [Ln(TPP)(cyclen)]Cl in deuterated chloroform, CDCl₃, measured at 298

Figure S5. Magnetic susceptibility, $\chi_m T$, values against temperature for [Ln(TPP)(cyclen)]Cl (Ln = Tb, Dy, Ho, Er, Tm, and Yb). Red cross and black circles indicate theoretical and experimental for fitting, repectively.

Figure S6. Plots of the principal magnetic susceptibilities $\chi_{zz}T$ (solid lines) and $\chi_{xx}T = \chi_{yy}T$ (dash lines) vs temperature (*T*) for [Ln(TPP)(cyclen)]Cl (Produced by LF terms with C_4 symmetry).

Тр

(b)

Figure S7. The molecular structure of terbium(III) monoporphyrinato cyclen complex: (a) obtained by single crystal x-ray diffraction, and (b) simplified by replacing phenyl rings to the hydrogen atoms.

		Y	Tb	Dy	Но	Er	Tm	Yb
	δ	8.36	-43.21	-23.38	7.45	17.40	11.50	7.96
	Δδ	0.00	-51.57	-31.74	-0.91	9.04	3.14	-0.40
119	R	5.34	5.34	5.37	5.35	5.35	5.36	5.37
H"	§θ	N.A	65.50	66.30	65.50	62.20	65.60	62.50
	С	N.A	-1.59×10-3	-1.66×10-3	-1.58×10-3	-1.14×10-3	-1.58×10-3	-1.16×10-3
	$\Delta\delta/C$	N.A	3.25×10 ⁴	1.91×10 ⁴	5.75×10 ²	-7.96×10 ³	-1.98×10 ³	3.45×10 ²
	δ	7.69	9.52	8.76	7.72	7.95	8.48	7.54
	Δδ	0.00	1.83	1.07	0.03	0.26	0.79	-0.15
119*	R	6.16	6.16	6.17	6.16	6.16	6.18	6.15
H"	§θ	N.A	54.20	54.21	54.22	55.04	58.50	59.00
	С	N.A	5.67×10-5	5.54×10-5	-5.47×10-5	-3.21×10-5	-3.84×10-4	-4.40×10-3
	$\Delta\delta/C$	N.A	3.23×10 ⁴	1.93×10 ⁴	5.84×10 ²	-8.06×10 ³	-2.06×10^{3}	3.43×10 ²
	δ	7.82	-4.24	0.78		11.00	8.88	7.65
	Δδ	0.00	-12.06	-7.04		3.18	1.06	-0.17
TTP	R	7.66	7.65	7.66		7.65	7.62	7.66
H	§θ	N.A	61.80	61.70		62.45	65.50	64.80
	С	N.A	-3.68×10-4	-3.63×10-4		-3.99×10-4	-5.46×10-4	-5.07×10-4
	$\Delta\delta/C$	N.A	3.27×10 ⁴	1.94×10 ⁴		-7.97×10 ³	-1.94×10 ³	3.45×10 ²
	δ	7.82	0.96	3.66	7.69	9.39	8.75	
	Δδ	0.00	-6.86	-4.16	-0.13	1.57	0.93	
T Th*	R	8.23	8.23	8.22	8.22	8.22	8.22	
П	§θ	N.A	59.70	59.80	59.60	59.30	65.00	
	С	N.A	-2.12×10 ⁻⁴	-2.17×10-4	-2.09×10-4	-1.96×10-5	-4.19×10-4	
	$\Delta\delta/C$	N.A	3.24×10 ⁴	1.92×10^{4}	5.99×10 ²	-7.98×10^{3}	-2.22×10 ³	
	δ	7.88	-14.25	-5.09	7.48	13.26	9.35	7.62
	Δδ	0.00	-22.13	-12.97	-0.40	5.38	1.47	-0.26
LIC	R	8.76	8.76	8.78	8.78	8.77	8.79	8.77
H	θ	79.90	79.71	79.06	79.87	79.69	79.49	79.40
	С	-6.44×10-4	-6.73×10-4	-6.58×10-4	-6.70×10-4	-6.70×10-4	-6.62×10-4	-6.67×10-4
	$\Delta \delta / C$	N.A	3.29×10 ⁴	1.97×10^{4}	5.97×10 ²	-8.03×10 ³	-2.20×10^{3}	3.86×10 ²
	δ	8.86	-57.14	-29.80	7.69	24.95	12.84	8.12
	Δδ	0.00	-66.00	-38.66	-1.17	16.09	3.98	-0.74
LId	R	5.45	5.44	5.44	5.45	5.44	5.44	5.41
П"	θ	71.47	70.45	70.27	70.30	70.01	70.59	71.00
	С	-2.20×10-3	-2.06×10-3	-2.04×10-3	-2.04×10-3	-2.02×10-3	-2.08×10-3	-2.16×10 ⁻³
	$\Delta \delta / C$	N.A	3.21×10 ⁴	1.90×10 ⁴	5.74×10 ²	-7.97×10 ³	-1.92×10 ³	3.45×10 ²

Table S1. Assignments of the ¹H NMR signal of the proton chemical shift δ , paramagnetic shifts $\Delta\delta$, and components of geometrical factor (R = Ln-H distance; θ = the angle of proton to the z-axis) for [Ln(TPP)(cyclen)]Cl (Ln = Tb, Dy, Ho, Er, Tm, and Yb)

Table S2. Magnetic susceptibility χT (cm³ K mol⁻¹) and calculated paramagnetic shift $\Delta\delta$ (ppm) using equation 1. Simulation 1 and 2 are produced by LF terms with the C_4 and D_{4d} symmetry, respectively. Ab Initio 1 and 2 are produced by CASSCF calculation with experimental and symmetrized- C_4 geometry, respectively. $\chi_{AV}T$ = Average of principal magnetic susceptibility

Mathad	T	b(TPP)(cyclen)]Cl	Mathad	[Dy(TPP)(cyclen)]Cl					
Method	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ	Method	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ			
Simulation 1	16.3620	11.4227	-60.0201	Simulation 1	17.235	13.8137	-38.6129			
Simulation 2	16.3840	11.5460	-58.7887	Simulation 2	17.5640	13.9287	-41.0281			
Ab Initio 1	15.0831	11.7809	-40.1269	Ab Initio 1	16.5731	14.0984	-27.9293			
Ab Initio 2	14.9941	11.78457	-35.4289	Ab Initio 2	16.5349	14.0937	-27.0594			
Mathad	[Ho(TPP)(cyclen)]Cl			Mathad	[E	r(TPP)(cyclen)]	Cl			
Method	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ	Wiethou	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ			
Simulation 1	13.8390	13.7430	-1.1736	Simulation 1	9.9440	11.2553	15.9927			
Simulation 2	14.0010	13.9050	-1.1736	Simulation 2	10.1360	11.3553	14.8707			
Ab Initio 1	14.3258	14.0083	-3.8820	Ab Initio 1	10.6319	11.4081	9.4660			
Ab Initio 2	14.1498	13.9905	-2.0564	Ab Initio 2	10.3527	11.4103	11.7227			
Method	[Ti	m(TPP)(cyclen)]Cl	Method	[Yb(TPP)(cyclen)]Cl					
wiethou	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ	Wiethou	$\chi_{ZZ}T$	$\chi_{AV}T$	Δδ			
Simulation 1	6.6640	6.9820	3.8956	Simulation 1	2.3950	2.3343	-0.7376			
Simulation 2	6.7150	7.0443	4.0344	Simulation 2	2.4870	2.4257	-0.7457			
Ab Initio 1	6.6486	7.0938	5.4534	Ab Initio 1	2.4334	2.5093	0.9232			
Ab Initio 2	7.0090	7.1007	1.1601	Ab Initio 2	2.6136	2.5309	-0.9919			

Table S3. Electronic structures of [Ln(TPP)(cyclen)]Cl generated by LF parameters with C_4 symmetry (Energies and wave functions).

	[Tb(TPP)(cyclen)]Cl										
Energy (cm ⁻¹)			-	Wave Function	on						
0.00	+ 0.71 + 6>	+ 0.71 - 6>	- 0.05 + 2>	- 0.05 - 2>							
0.39	+ 0.71 + 6>	- 0.71 - 6>	- 0.03 + 2>	+ 0.03 - 2>							
150.73	+ 0.99 0>	$+0.09 +4\rangle$	+ 0.09 - 4>								
184.07	- 0.69 + 1>	– 0.69 – 1)	- 0.16 + 3>	– 0.16 – 3>							
184.07	+ 0.69 + 1>	- 0.69 - 1>	- 0.16 + 3>	+ 0.16 - 3>							
238.74	+ 0.71 + 2>	+ 0.71 - 2>	+ 0.05 + 6>	+ 0.05 - 6>							
399.80	- 0.71 + 2>	+ 0.71 - 2>	- 0.03 + 6>	+ 0.03 - 6>							
490.84	- 0.69 + 3>	+ 0.69 - 3>	- 0.16 + 1>	+ 0.16 - 1>	- 0.03 + 5>	+ 0.03 - 5>					
490.84	- 0.69 + 3>	– 0.69 – 3>	$+0.16 +1\rangle$	– 0.16 – 1>	+ 0.03 + 5>	+ 0.03 - 5>					
515.74	+ 0.71 + 5>	+ 0.71 - 5>	$+0.03 +3\rangle$	+ 0.03 - 3>							
515.74	- 0.71 + 5>	+ 0.71 - 5>	$+0.03 +3\rangle$	– 0.03 – 3>							
589.38	- 0.71 + 4>	+ 0.71 - 4>									
596.29	- 0.70 + 4>	– 0.70 – 4>	+ 0.12 0>								
			[Dy	(TPP)(cyclen)]Cl							
Energy (cm ⁻¹)				Wave Function	on						
0.00	+ 0.99 + 11/2>	+ 0.15 - 11/2>	+ 0.05 + 3/2>								
0.00	– 0.99 – 11/2>	$+0.15 +11/2\rangle$	- 0.05 - 3/2>								
67.18	+ 0.98 + 13/2>	$+0.21 +5/2\rangle$	- 0.07 - 3/2>	+ 0.04 - 13/2>							
67.18	+ 0.98 - 13/2>	$+0.21 -5/2\rangle$	$-0.07 +3/2\rangle$	- 0.04 + 13/2>							
106.59	+ 0.79 - 9/2>	+ 0.59 + 9/2>	- 0.09 - 1/2>	$-0.07 +1/2\rangle$	+ 0.05 - 7/2>						
106.59	+ 0.79 + 9/2	– 0.59 – 9/2>	- 0.09 + 1/2>	$+0.07 -1/2 \rangle$	- 0.05 + 7/2>						
222.22	- 0.91 + 7/2>	+ 0.29 - 1/2>	+ 0.23 - 7/2>	$-0.14 +15/2\rangle$	+ 0.10 - 9/2>	$-0.07 +1/2\rangle$	+ 0.04 - 15/2>				

222.22	- 0.91 - 7/2>	$+0.29 +1/2\rangle$	$-0.23 +7/2\rangle$	- 0.14 - 15/2>	$+0.10 +9/2\rangle$	$+0.07 -1/2\rangle$	$-0.04 +15/2\rangle$
304.19	$+0.73 +5/2\rangle$	- 0.57 - 3/2	$+0.25 -5/2\rangle$	$-0.20 +13/2\rangle$	$-0.19 +3/2\rangle$	- 0.07 - 13/2>	$+0.04 -11/2\rangle$
304.19	- 0.73 - 5/2)	+0.571 + 3/2	$+0.25 +5/2\rangle$	$+0.20 -13/2\rangle$	- 0.19 - 3/2)	$-0.07 +13/2\rangle$	$-0.04 + 11/2\rangle$
541.19	- 0.80 - 1/2)	$+0.49 +1/2\rangle$	-0.241 + 7/2	-0.181 + 15/2	$+0.14 -7/2\rangle$	$+0.11 -15/2\rangle$	-0.07 -9/2
541 19	-0.801 + 1/2	-0.49 - 1/2	-0.24 - 7/2	-0.181 - 15/2	-0.141 + 7/2	-0.111 + 15/2	-0.071 + 9/2
569.63	+ 0.80 - 3/2	+ 0.601 + 5/2	-0.071 + 13/2	-0.03 - 11/2	0.11 + 7/2/	0.11 + 10/2/	0.07 1 7/2/
569.63	+ 0.801 + 3/2)	$\pm 0.601 - 5/2)$	- 0.07[- 13/2]	$-0.03 \pm 11/2$			
636.16	$-0.971 \pm 15/2$	$\pm 0.201 \pm 7/2$	$\pm 0.16l - 1/2$	0.05 11/2/			
636.16	$\pm 0.97 - 15/2\rangle$	-0.20 - 7/2	$-0.16 \pm 1/2\rangle$				
030.10	+ 0.97 - 13/2/	- 0.20 - 7/2/	- 0.10 + 1/2/				
			[Ho(TPP)(cyclen)][[1			
Energy			[110(
(cm ⁻¹)				Wave Function	n		
0.00	0.691 + 4\	0.691 /\	+ 0.211 + 0\	L 0 21 0\	1.0.0410)		
0.00	-0.00 + 4)	- 0.00 - 4)	+ 0.21 + 0)	$+ 0.21 - 0 \rangle$	+ 0.04 07		
5.10	$+0.68 +4\rangle$	- 0.68 - 4)	$-0.21 +8\rangle$	$+0.21 -8\rangle$		0.041 2)	
5.10	$+0.70 +5\rangle$	- 0.70 - 5}	-0.11 +1	$+0.11 -1\rangle$	$+0.04 +3\rangle$	- 0.04 - 3)	
57.94	$-0.70 +5\rangle$	$-0.70 -5\rangle$	+0.11 +1	$+0.11 -1\rangle$	$+0.04 +3\rangle$	+ 0.04 - 3>	
57.84	$+0.61 +6\rangle$	+ 0.61 - 6	- 0.35 + 2)	- 0.35 - 2>			
/0.38	$-0.61 +3\rangle$	- 0.61 - 3>	+ 0.36 + 7)	+ 0.36 - 7)	$-0.05 +5\rangle$	- 0.05 - 5>	
/0.38	$+0.61 +3\rangle$	- 0.61 - 3>	- 0.36 + 7)	+ 0.36 - 7)	- 0.05 + 5>	+ 0.05 - 5>	
/6.21	$+0.65 +6\rangle$	- 0.65 - 6>	- 0.27 + 2	+ 0.27 - 2			
333.25	$+0.61 +2\rangle$	+ 0.61 - 2>	$+0.35 +6\rangle$	+ 0.35 - 6>			
373.22	$+0.67 +8\rangle$	+ 0.67 - 8	$+0.21 +4\rangle$	+ 0.21 - 4>	- 0.05 0>		
373.50	$-0.68 +8\rangle$	+ 0.68 - 8>	$-0.21 +4\rangle$	$+0.21 -4\rangle$			
378.11	+ 0.60 + 7>	+ 0.60 - 7>	+ 0.34 + 3>	+ 0.34 - 3>	$+0.14 +1\rangle$	+ 0.14 - 1>	
378.11	- 0.60 + 7>	+ 0.60 - 7>	- 0.34 + 3>	+ 0.34 - 3>	$+0.14 +1\rangle$	- 0.14 - 1>	
409.10	+ 0.65 + 2>	– 0.65 – 2>	+ 0.27 + 6>	– 0.27 – 6>			
458.28	$+0.68 +1\rangle$	+ 0.68 - 1>	- 0.11 + 3>	– 0.11 – 3>	$+0.11 +5\rangle$	+ 0.11 - 5>	
458.28	- 0.68 + 1>	+ 0.68 - 1>	- 0.11 + 3>	+ 0.11 - 3>	$-0.11 +5\rangle$	+ 0.11 - 5>	
492.54	– 1.00 0>	$-0.04 +4\rangle$	- 0.04 - 4>				
			[Er(]	[PP)(cyclen)]Cl			
Energy				Wave Functio	n		
(cm ⁻¹)				wave i unetio			
0.00	$+1.00 +1/2\rangle$	$+0.11 +9/2\rangle$	+ 0.04 - 7/2>				
0.00	– 1.00 – 1/2>	– 0.11 – 9/2>	- 0.04 + 7/2>				
77.91	+ 0.84 + 3/2>	+ 0.43 - 3/2>	+ 0.26 + 11/2>	+ 0.13 - 11/2>	- 0.10 - 5/2>	- 0.09 - 13/2>	
77.91	- 0.84 - 3/2>	+ 0.43 + 3/2>	- 0.26 - 11/2>	$+0.13 +11/2\rangle$	+ 0.10 + 5/2>	+ 0.09 + 13/2>	
113.04	+ 0.82 - 13/2>	+ 0.55 - 5/2>	+ 0.14 + 3/2>	$+0.05 +11/2\rangle$			
113.04	- 0.82 + 13/2>	- 0.55 + 5/2>	- 0.14 - 3/2>	– 0.05 – 11/2>			
121.84	+ 0.96 - 15/2>	+ 0.27 - 7/2>	$-0.03 +1/2\rangle$				
121.84	+ 0.96 + 15/2>	+ 0.27 + 7/2>	- 0.03 - 1/2>				
327.70	– 0.83 – 5/2>	+ 0.56 - 13/2>	- 0.06 + 11/2>				
327.70	- 0.83 + 5/2>	+ 0.56 + 13/2>	- 0.06 - 11/2>				
376.12	+ 0.95 + 11/2>	- 0.30 + 3/2>	- 0.04 - 5/2>	+ 0.04 - 11/2>			
376.12	+ 0.95 - 11/2>	- 0.30 - 3/2>	$-0.04 +5/2\rangle$	$-0.04 +11/2\rangle$			
420.86	- 0.96 + 7/2>	$+0.27 +15/2\rangle$	$+0.06 -9/2\rangle$				
420.86	- 0.96 - 7/2)	$+0.27 -15/2\rangle$	$+0.06 +9/2\rangle$				
446.02	+ 0.99 + 9/2>	$-0.11 +1/2\rangle$	- 0.09 - 9/2>	+ 0.06 - 7/2>			
446.02	$+0.99 -9/2\rangle$	- 0.11 - 1/2>	$+0.09 +9/2\rangle$	$+0.06 +7/2\rangle$			
		. , , ,		. , ,			
			[Tm(TPP)(cyclen)]Cl			
Energy			L(
(cm ⁻¹)				Wave Function	ns		
0.00	- 0.61 + 6>	- 0.61 - 6>	- 0.36 + 2>	- 0.36 - 2>			
2.87	- 0.711 + 6)	+ 0.71 - 6					
	0.0 1 1 0/						

7.52	- 0.97 - 0>	$-0.16 +4\rangle$	- 0.16 - 4>				
7.61	- 0.66 + 1>	+ 0.66 - 1>	+ 0.26 + 3>	- 0.26 - 3>	- 0.05 + 5>	+ 0.05 - 5>	
7.61	$+0.66 +1\rangle$	+ 0.66 - 1>	+ 0.26 + 3>	+ 0.26 - 3>	+ 0.05 + 5>	+ 0.05 - 5>	
11.37	- 0.61 + 2>	- 0.61 - 2>	+ 0.36 + 6>	+ 0.36 - 6>			
204.68	$-0.71 +2\rangle$	+ 0.71 - 2>					
264.52	- 0.66 + 3>	– 0.66 – 3>	$+0.26 +1\rangle$	+ 0.26 - 1>	$+0.04 +5\rangle$	+ 0.04 - 5>	
264.52	- 0.66 + 3>	+ 0.66 - 3>	$-0.26 +1\rangle$	+ 0.26 - 1>	- 0.04 + 5>	+ 0.04 - 5>	
390.21	$+0.71 +4\rangle$	- 0.71 - 4>					
410.39	$+0.69 +4\rangle$	+ 0.69 - 4>	- 0.22 0>				
443.39	- 0.70 + 5>	+ 0.70 - 5>	$+0.06 +1\rangle$	- 0.06 - 1>			
443.39	+ 0.70 + 5>	+ 0.70 - 5>	$-0.06 +1\rangle$	- 0.06 - 1>			
			[Yt	o(TPP)(cyclen)]C	21		
Energy				Warra Eurot	iona		
(cm ⁻¹)				wave Funct	ions		
0.00	+ 0.93 + 5/2>	- 0.35 - 3/2>					
0.00	- 0.93 - 5/2>	+ 0.35 + 3/2>					
306.87	- 0.93 + 3/2>	- 0.35 - 5/2>					
306.87	+ 0.93 - 3/2>	+ 0.35 + 5/2>					
353.66	- 0.87 - 1/2>	+ 0.50 + 7/2>					
353.66	$+0.87 +1/2\rangle$	- 0.50 - 7/2>					
551.81	- 0.87 + 7/2	- 0.50 - 1/2>					
551 01	10071 7/2)	$\pm 0.501 \pm 1/2$					

Table S4.	Electronic	structures	of [Ln(TPI	P)(cyclen)]Cl	generated	by LF	parameters	with I	D _{4d} symm	netry	(Energies	and
wave funct	tions).											

[]	Tb(TPP)(cyclen)]Cl	[]	Dy(TPP)(cyclen)]Cl	[Ho(TPP)(cyclen)]Cl		
Energy (cm ⁻¹)	Wave function	Energy (cm ⁻¹)	Wave function	Energy (cm ⁻¹)	Wave function	
0.00	+0.85 +6>+0.52 -6>	0.00	+0.28 +5.5>+0.96 -5.5>	0.00	+1.00 +5>-0.03 -5>	
0.00	+0.85 -6>+0.52 +6>	0.00	-0.96 +5.5>+0.28 -5.5>	0.00	-0.03 +5>-1.00 -5>	
166.45	-1.00 0>	48.12	+0.98 +6.5>+0.18 -6.5>	9.63	-0.74 +4>-0.67 -4>	
197.44	-0.71 +1>-0.71 -1>	48.12	+0.18 +6.5>-0.98 -6.5>	9.63	+0.67 +4>-0.74 -4>	
197.44	+0.71 +1>-0.71 -1>	106.91	+0.02 +4.5>-1.00 -4.5>	99.91	+0.71 +6>+0.70 -6>	
284.01	-0.71 +2>+0.71 -2>	106.91	+1.00 +4.5>+0.02 -4.5>	99.91	+0.70 +6>-0.71 -6>	
284.01	+0.71 +2>+0.71 -2>	237.16	+1.00 +3.5>-0.04 -3.5>	111.51	+0.71 +3>+0.71 -3>	
401.44	+0.71 +3>+0.71 -3>	237.16	+0.04 +3.5>+1.00 -3.5>	111.51	+0.71 +3>-0.71 -3>	
401.44	+0.71 +3>-0.71 -3>	336.89	-1.00 -2.5>	248.55	-0.08 +7> -1.00 -7>	
430.21	-1.00 -5>	336.89	-1.00 +2.5>	248.55	+1.00 +7>-0.08 -7>	
430.21	+1.00 +5>	395.78	+1.00 +1.5>+0.03 -1.5>	250.50	-0.66 +2>+0.75 -2>	
490.49	-0.71 +4>+0.70 -4>	395.78	+0.03 +1.5>-1.00 -1.5>	250.50	-0.75 +2>-0.66 -2>	
490.49	-0.70 +4>-0.71 -4>	421.22	+0.85 +0.5>-0.53 -0.5>	257.84	+1.00 -8>	
		421.22	+0.53 +0.5>+0.85 -0.5>	257.84	-1.00 +8>	
		503.70	+1.00 +7.5>	364.85	-0.71 +1>+0.71 -1>	
		503.70	+1.00 -7.5>	364.85	-0.71 +1>-0.71 -1>	
				408.57	+1.00 0>	
[]	Er(TPP)(cyclen)]Cl	[]	[m(TPP)(cyclen)]Cl	[Yl	p(TPP)(cyclen)]Cl	
Energy	Wave function	Energy	Wave function	Energy	Wave function	
(cm ⁻¹)	wave function	(cm ⁻¹)	wave function	(cm ⁻¹)	wave function	
0.00	-0.73 +0.5>-0.69 -0.5>	0.00	-1.00 0>	0.00	-0.90 +2.5>	
					+0.44 -2.5>	
0.00	+0.69 +0.5>-0.73 -0.5>	0.13	+0.71 +6>-0.71 -6>	0.00	+0.44 +2.5>	
					+0.90 -2.5>	

83.66	+0.29 +1.5>+0.96 -1.5>	0.13	+0.71 +6>+0.71 -6>	180.95	+1.00 -1.5>
83.66	-0.96 +1.5>+0.29 -1.5>	18.72	+0.71 +1>-0.71 -1>	180.95	+1.00 +1.5>
122.37	+1.00 -7.5>	18.72	+0.71 +1>+0.71 -1>	325.18	-0.52 +0.5>
					+0.86 -0.5>
122.37	+1.00 +7.5>	80.85	-0.70 +2>+0.71 -2>	325.18	+0.86 +0.5>
					+0.52 -0.5>
149.90	-0.03 +6.5>+1.00 -6.5>	80.85	+0.71 +2>+0.70 -2>	405.22	-1.00 +3.5>
149.90	-1.00 +6.5>-0.03 -6.5>	192.66	+0.71 +3>+0.71 -3>	405.22	+1.00 -3.5>
214.31	-0.16 +2.5>+0.99 -2.5>	192.66	-0.71 +3>+0.71 -3>		
214.31	-0.99 +2.5>	325.94	+0.71 +4>+0.71 -4>		
	-0.16 -2.5>				
291.33	-1.00 +5.5>	325.94	-0.71 +4>+0.71 -4>		
291.33	-1.00 -5.5>	359.93	-1.00 -5.0>		
330.01	+1.00 -3.5>	359.93	-1.00 +5>		
330.01	-1.00 +3.5>				
366.47	-1.00 +4.5>+0.02 -4.5>				
366.47	-0.02 +4.5>-1.00 -4.5>				

Ab initio Calculation details

Apart from geometry optimization, all calculations were employed on MOLCAS 8.0 such as SCF, CASSCF, RASSI and SINGLE_ANISO type. Four basis set approximations have been used for calculations. The details of basis sets are summarized in Table S5.

Table S5. The employed basis sets for theoretical calculations.

Basis set 1	Basis set 2
Ln.ANO-RCC7s6p4d2f1g	Ln.ANO-RCC8s7p5d3f2g1h
N.ANO-RCC3s2p1d	N.ANO-RCC3s2p1d
C.ANO-RCC2s1p	C.ANO-RCC2s1p
H.ANO-RCC1s	H.ANO-RCC1s

Table S6. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Tb(TPP)(cyclen)]⁺

		Experiment	al Geometry	Symmetrized	$-C_4$ Geometry
n	m	Real part	Imaginary part	Real part	Imaginary part
	0	124.80	0.00	124.00	0
2	1	-15.17	-15.17	0.00	0
	2	-13.73	16.44	-0.01	0
	0	-126.58	0.00	-121.20	0
1	1	-6.69	1.78	0.00	0
4	2	-4.11	-4.11	-0.02	0
	3	9.58	0.85	0.00	0
	4	57.71	54.74	-85.94	20
	0	8.06	0.00	7.61	0
	1	1.88	-0.97	0.00	0
	2	-0.38	-1.70	0.00	0
6	3	3.52	3.52	0.00	0
	4	-0.55	-12.31	11.90	5
	5	1.34	-2.28	0.00	0
	6	-0.62	1.95	0.00	0

Table S7. CASSCF/RASSI calculated energies and wave functions of the [Tb(TPP)(cyclen)]⁺ with an absolute coefficient larger than 0.04.

	Symmetrized- C_4								
	Basis Set 1		Basis Set 2						
Energy (cm ⁻¹)	Wave Function	Energy (cm ⁻¹)	Wave Function						
0.00	$ \pm 6\rangle, \pm 2\rangle$	0.00	$ \pm 6\rangle, \pm 2\rangle$						
0.26	$ \pm 6\rangle, \pm 2\rangle$	0.25	$ \pm 6\rangle, \pm 2\rangle$						
126	0>, ±4>	138	$ 0\rangle, \pm 4\rangle$						
130	±1>, ±5>, ±3>	142	$ \pm1\rangle, \pm5\rangle, \pm3\rangle$						
130	<u> </u> ±1>, ±5>, ±3>	142	$ \pm1\rangle, \pm5\rangle, \pm3\rangle$						
148	$ \pm 2\rangle, \pm 6\rangle$	162	$ \pm 2\rangle$, $ \pm 6\rangle$						
190	$ \pm 5\rangle, \pm 3\rangle, \pm 1\rangle$	200	$ \pm 5\rangle, \pm 3\rangle, \pm 1\rangle$						
190	$ \pm 5\rangle, \pm 3\rangle, \pm 1\rangle$	200	$ \pm 5\rangle, \pm 3\rangle, \pm 1\rangle$						
216	$ \pm 2\rangle, \pm 6\rangle$	233	$ \pm 2\rangle, \pm 6\rangle$						
235	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$	252	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$						
235	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$	252	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$						
239	±4>	254	<u> ±4></u>						
257	$ \pm 4\rangle, 0\rangle$	273	$ \pm 4\rangle, 0\rangle$						
		1							
	Experimen	ital geometry							
	Basi	s Set 2							
Energy (cm ⁻¹)		Wave Function							
0.00	$ \pm 6\rangle, \pm 2\rangle$								
0.17	±6>, ±2>								
140	$ 0\rangle, \pm1\rangle, \pm5\rangle, \pm3\rangle, \pm4\rangle, \pm2\rangle$								
142	$ 0\rangle, \pm1\rangle, \pm4\rangle, \pm2\rangle, \pm5\rangle, \pm3\rangle$								
155	±1>, ±5>, ±3>								
171	$ \pm 2\rangle$, $ 0\rangle$, $ \pm 5\rangle$, $ \pm 4\rangle$, $ \pm 3\rangle$, $ \pm 6\rangle$								
204	$ \pm 5\rangle, \pm 1\rangle, \pm 3\rangle, \pm 2\rangle, \pm 4\rangle$								
206	$ \pm 5\rangle, \pm 1\rangle, \pm 3\rangle, \pm 2\rangle$								
232	$ \pm 2\rangle$, $ \pm 5\rangle$, $ \pm 4\rangle$, $ \pm 1\rangle$, $ \pm 3\rangle$								
250	$ \pm 3\rangle, \pm 4\rangle, \pm 1\rangle, \pm 5\rangle$								
255	$ \pm 3\rangle, \pm 1\rangle, \pm 4\rangle, \pm 2\rangle, \pm 5\rangle$								
267	$ \pm 4\rangle, \pm 3\rangle, \pm 1\rangle, \pm 2\rangle, \pm 5\rangle$								
279	$ \pm4\rangle$, $ 0\rangle$, $\pm3\rangle$								

Table S8. Composition of wave functions for [Tb(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 1.

			Wave Functions and	Energies			
M_J	1		2		3		
	0.00 cm ⁻¹		0.26 cm ⁻¹		126 cm ⁻¹		
	с	c	с	c	С	c	
-6	0.702568-0.054416i	0.704672	-0.703732+0.054503i	0.705839	-0.000027+0.000006i	0.000028	
-5	0	0.000000	0	0.000000	0	0.000000	
-4	0.000021-0.000001i	0.000021	-0.000021+0.000001i	0.000021	-0.24786+0.012483i	0.248174	
-3	0	0.000000	0	0.000000	0	0.000000	
-2	0.058611+0.001527i	0.058631	-0.042306-0.001082i	0.042320	0.000403-0.000031i	0.000404	
-1	0	0.000000	0	0.000000	0	0.000000	
0	-0.000002	0.000002	0.000001i	0.000001	-0.930349+0.106157i	0.936386	
1	0	0.000000	0	0.000000	0	0.000000	
2	0.058318-0.006049i	0.058631	0.042096-0.004345i	0.042320	0.0004-0.000061i	0.000405	
3	0	0.000000	0	0.000000	0	0.000000	

4	0.000021-0.000001i	0.000021	0.000021-0.000001i	0.000021	-0.2443+0.043675i	0.248173
5	0	0.000000	0	0.000000	0	0.000000
6	0.704672	0.704672	0.705839	0.705839	-0.000028	0.000028

14	4		5		6		
M_J	130 cm ⁻¹		130 cm ⁻¹	130 cm ⁻¹		148 cm ⁻¹	
	с	c	с	c	с	c	
-6	0	0.000000	0	0.000000	-0.058469+0.004356i	0.058631	
-5	-0.261199+0.069708i	0.270341	-0.145483-0.228011i	0.270471	0	0.000000	
-4	0	0.000000	0	0.000000	0.000175+0.000005i	0.000175	
-3	0.22338-0.02647i	0.224943	-0.092763-0.204925i	0.224943	0	0.000000	
-2	0	0.000000	0	0.000000	0.704374+0.020475i	0.704672	
-1	-0.595294+0.148125i	0.613446	-0.321152-0.522597i	0.613389	0	0.000000	
0	0	0.000000	0	0.000000	0.000518-0.000019i	0.000518	
1	0.596866-0.14166i	0.613446	-0.315465-0.52605i	0.613390	0	0.000000	
2	0	0.000000	0	0.000000	0.700906-0.072749i	0.704671	
3	-0.210606+0.079022i	0.224943	-0.139007-0.176851i	0.224943	0	0.000000	
4	0	0.000000	0	0.000000	0.000174-0.000018i	0.000175	
5	0.264052-0.057968i	0.270340	-0.135164-0.234276i	0.270471	0	0.000000	
6	0	0.000000	0	0.000000	-0.058631	0.058631	

14	7		8		9	
M_J	190 cm ⁻¹		190 cm ⁻¹		216cm ⁻¹	
	с	c	с	c	с	c
-6	0	0.000000	0	0.000000	0.042207-0.003088i	0.042320
-5	0.621901-0.147189i	0.639082	0.534861+0.349751i	0.639063	0	0.000000
-4	0	0.000000	0	0.000000	-0.000063-0.000009i	0.000064
-3	0.225101-0.043119i	0.229194	-0.186145-0.133534i	0.229088	0	0.000000
-2	0	0.000000	0	0.000000	-0.705528-0.020975i	0.705840
-1	-0.193041+0.042179i	0.197595	-0.163637-0.111085i	0.197780	0	0.000000
0	0	0.000000	0	0.000000	-0.000013i	0.000013
1	0.188441-0.059447i	0.197595	-0.173003-0.095849i	0.197780	0	0.000000
2	0	0.000000	0	0.000000	0.702116-0.072401i	0.705839
3	-0.21672+0.074581i	0.229194	-0.203196-0.105797i	0.229089	0	0.000000
4	0	0.000000	0	0.000000	0.000062-0.000014i	0.000064
5	-0.612706+0.181707i	0.639082	0.55357+0.319315i	0.639063	0	0.000000
6	0	0.000000	0	0.000000	-0.04232	0.042320

м	10		11		12	
M_J	235 cm ⁻¹		235 cm ⁻¹		239 cm ⁻¹	
	с	c	С	c	С	c
-6	0	0.000000	0	0	-0.000017-0.000001i	1.7E-05
-5	-0.097405+0.094638i	0.135809	-0.008382-0.135719i	0.135978	0	0
-4	0	0.000000	0	0	0.703315+0.073133i	0.707107
-3	-0.443058+0.447905i	0.630015	0.051263+0.627887i	0.629976	0	0
-2	0	0.000000	0	0	-0.000064-0.000006i	6.43E-05
-1	0.211809-0.199432i	0.290923	0.013351+0.290623i	0.29093	0	0
0	0	0.000000	0	0	0.000012-0.000315i	0.000315
1	0.179419-0.229009i	0.290923	-0.056912-0.285308i	0.290929	0	0
2	0	0.000000	0	0	0.000064-0.000001i	6.4E-05
3	-0.405915+0.481822i	0.630015	-0.101195-0.621796i	0.629977	0	0
4	0	0.000000	0	0	-0.706892+0.017435i	0.707107
5	-0.085422+0.10558i	0.135809	0.024493+0.133753i	0.135977	0	0
6	0	0.000000	0	0	0.000017	0.000017

14	13	
M_J	257 cm ⁻¹	
	с	c
-6	-0.000017-0.000001i	0.000017
-5	0	0.000000
-4	0.658564+0.068581i	0.662125
-3	0	0.000000
-2	-0.000037	0.000037
-1	0	0.000000
0	-0.350697-0.013863i	0.350971
1	0	0.000000
2	-0.000037-0.000003i	0.000037
3	0	0.000000
4	0.661923-0.016382i	0.662126
5	0	0.000000
6	-0.000017	0.000017

Table S9. Composition of wave functions for $[Tb(Por)(cyclen)]^+$ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

			Energies			
M_J	1		2		3	
	0.00 cm ⁻¹		0.25 cm ⁻¹		138 cm ⁻¹	
	с	c	с	c	с	c
-6	0.579254+0.401511i	0.704802	-0.580129-0.402122i	0.70587	-0.000013-0.000006i	1.43E-05
-5	0	0	0	0	0	0
-4	0.000012+0.000007i	1.39E-05	-0.000012-0.000007i	1.39E-05	-0.224453-0.121722i	0.255334
-3	0	0	0	0	0	0
-2	0.050614+0.02631i	0.057044	-0.037118-0.019272i	0.041823	0.000225+0.000084i	0.00024
-1	0	0	0	0	0	0
0	0	0	0.000001i	0.000001	-0.912106-0.194091i	0.932528
1	0	0	0	0	0	0
2	0.056586+0.00721i	0.057043	0.041484+0.005307i	0.041822	0.00024+0.000015i	0.00024
3	0	0	0	0	0	0
4	0.000014+0.000001i	1.4E-05	0.000014+0.000001i	1.4E-05	-0.254566+0.019789i	0.255334
5	0	0	0	0	0	0
6	0.704802	0.704802	0.705869	0.705869	-0.000015	0.000015

14	4		5		6	
M_J	142 cm ⁻¹		142 cm ⁻¹		162 cm ⁻¹	
	с	c	с		с	c
-6	0	0	0	0	-0.046781-0.032641i	0.057043
-5	-0.008953-0.297412i	0.297547	0.092031-0.283048i	0.297634	0	0
-4	0	0	0	0	0.000089+0.000061i	0.000108
-3	-0.001416+0.220643i	0.220648	0.075842-0.207203i	0.220647	0	0
-2	0	0	0	0	0.624324+0.327055i	0.704802
-1	-0.142684-0.585168i	0.602312	0.063283-0.598936i	0.60227	0	0
0	0	0	0	0	0.000291+0.000092i	0.000305
1	0.196376+0.569401i	0.602313	0.007426-0.602224i	0.60227	0	0
2	0	0	0	0	0.699156+0.089033i	0.704802
3	-0.120494-0.184842i	0.220648	-0.051007-0.21467i	0.220647	0	0
4	0	0	0	0	0.000108+0.000001i	0.000108

5	0.15328+0.255027i	0.297546	-0.058186-0.291891i	0.297634	0	0
6	0	0	0	0	-0.057043	0.057043

14	7		8		9	
M_J	200 cm ⁻¹		200 cm ⁻¹		233cm ⁻¹	
	с	c	с	c	с	c
-6	0	0	0	0	-0.034267-0.023978i	0.041823
-5	0.38641-0.496096i	0.628827	0.182662+0.601691i	0.628806	0	0
-4	0	0	0	0	0.000026+0.000028i	3.82E-05
-3	0.127494-0.193149i	0.231433	-0.084322-0.215465i	0.231377	0	0
-2	0	0	0	0	0.62505+0.327968i	0.705869
-1	-0.098848+0.203084i	0.225863	-0.109037-0.197935i	0.225981	0	0
0	0	0	0	0	-0.000002+0.000006i	6.32E-06
1	0.054512-0.219186i	0.225863	-0.147769-0.170973i	0.225981	0	0
2	0	0	0	0	-0.700154-0.08964i	0.705869
3	-0.026166+0.229949i	0.231433	-0.172788-0.153882i	0.231377	0	0
4	0	0	0	0	-0.000037+0.000008i	3.79E-05
5	-0.021999+0.628443i	0.628828	0.50085+0.380193i	0.628806	0	0
6	0	0	0	0	0.041823	0.041823

м	10		11		12	
M_J	252 cm ⁻¹		252 cm ⁻¹		254 cm ⁻¹	
	с	c	с	c	с	c
-6	0	0	0	0	-0.000008-0.000008i	1.13E-05
-5	-0.124225-0.024186i	0.126558	-0.096283+0.082288i	0.126656	0	0
-4	0	0	0	0	0.551135+0.443001i	0.707107
-3	-0.63069-0.003165i	0.630698	0.394801-0.491818i	0.630676	0	0
-2	0	0	0	0	-0.000032-0.00002i	3.77E-05
-1	0.293556-0.005295i	0.293604	0.178476-0.233135i	0.293608	0	0
0	0	0	0	0	0.000123-0.0003i	0.000324
1	0.277395-0.096203i	0.293603	-0.097231+0.277041i	0.293608	0	0
2	0	0	0	0	0.000037+0.000009i	3.81E-05
3	-0.590958+0.220338i	0.630698	-0.195095+0.599742i	0.630676	0	0
4	0	0	0	0	-0.703512-0.071214i	0.707107
5	-0.108278+0.065518i	0.126557	0.016079-0.125631i	0.126656	0	0
6	0	0	0	0	0.000012	0.000012

14	13	
M_J	273 cm ⁻¹	
	c	c
-6	-0.000008-0.000008i	1.13E-05
-5	0	0
-4	0.50753+0.420972i	0.659397
-3	0	0
-2	-0.000023-0.000008i	2.44E-05
-1	0	0
0	-0.331994-0.142024i	0.361097
1	0	0
2	-0.000022-0.000011i	2.46E-05
3	0	0
4	0.654964+0.076334i	0.659397
5	0	0
6	-0.000011	0.000011

		Wave Functions and	Wave Functions and Energies			
M_J	M_J 1		2		3	
	0.00 cm ⁻¹		0.17 cm ⁻¹		140 cm ⁻¹	
	с	c	с	c	С	c
-6	0.585074+0.393945i	0.705300	0.585676+0.39435i	0.706065	0.010495-0.001964i	0.010677
-5	0.000306-0.00068i	0.000700	0.000272-0.000649i	0.000704	-0.181665+0.074244i	0.196251
-4	-0.003416+0.00538i	0.006400	-0.003055+0.004905i	0.005777	0.078112-0.112122i	0.136649
-3	-0.004844-0.001474i	0.005100	-0.005193-0.001645i	0.005447	0.040453-0.16723i	0.172053
-2	-0.003103-0.049067i	0.049200	-0.002383-0.037329i	0.037405	0.062479+0.083615i	0.104380
-1	0.001097+0.000555i	0.001200	0.002773-0.00084i	0.002897	0.429255+0.175515i	0.463751
0	0.004185+0.001278i	0.004400	-0.000495+0.001621i	0.001695	-0.609162+0.05652i	0.611778
1	-0.00122-0.000152i	0.001200	0.001831+0.002246i	0.002898	-0.389636+0.251494i	0.463752
2	-0.029979+0.038968i	0.049200	0.022826-0.029633i	0.037405	0.046029-0.093683i	0.104800
3	0.004841+0.001483i	0.005100	-0.005226-0.001536i	0.005447	-0.070529-0.156933i	0.172053
4	0.000172-0.00637i	0.006400	-0.000206+0.005775i	0.005779	0.097407+0.095837i	0.136649
5	0.000126-0.000735i	0.000700	-0.000137+0.00069i	0.000703	0.192223+0.039554i	0.196250
6	0.70534	0.705300	-0.706065	0.706065	0.010677	0.010677

 Table S10. Composition of wave functions for [Tb(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

14	4		5		6	
M_J	142 cm ⁻¹		155 cm ⁻¹		171 cm ⁻¹	
	с	c	с		с	c
-6	0.011321+0.010842i	0.015675	-0.003057+0.000832i	0.003168	0.036921+0.026594i	0.045502
-5	0.157263-0.010297i	0.157600	-0.269128+0.143488i	0.304990	-0.015016-0.058011i	0.059923
-4	0.162942-0.056455i	0.172445	-0.006734-0.015082i	0.016517	-0.051308+0.02472i	0.056953
-3	-0.07446+0.121586i	0.142574	-0.061502+0.169826i	0.180619	0.016393-0.048722i	0.051406
-2	0.016971+0.169962i	0.170807	-0.01584-0.020821i	0.026161	0.013212+0.672239i	0.672369
-1	-0.265266-0.316808i	0.413199	0.568584+0.223755i	0.611027	0.034405-0.00883i	0.03552
0	-0.622419-0.249961i	0.670735	-0.001129-0.008446i	0.008521	0.252195+0.081371i	0.264997
1	0.410704-0.045342i	0.413199	0.48983-0.365268i	0.611027	-0.022756-0.027273i	0.035520
2	0.129811-0.111015i	0.170808	0.009813-0.024251i	0.026161	0.403615-0.537749i	0.672368
3	-0.030316+0.139314i	0.142574	-0.103957-0.147704i	0.180620	0.015175-0.049115i	0.051406
4	0.078636+0.153472i	0.172445	0.002535-0.016321i	0.016517	-0.027185-0.050046i	0.056953
5	-0.10646-0.116207i	0.157600	-0.297371-0.067745i	0.304990	0.046089-0.038295i	0.059923
6	0.015675	0.015675	0.003168	0.003168	0.045502	0.045502

14	7		8		9	
M_J	204 cm ⁻¹		206 cm ⁻¹		232 cm ⁻¹	
	с	c	с	c	с	c
-6	0.000128+0.0051i	0.005102	-0.002598+0.002508i	0.003611	-0.030667-0.020385i	0.036824
-5	-0.102342-0.622856i	0.631208	-0.620716-0.12265i	0.632718	-0.06519-0.093795i	0.114225
-4	0.001685+0.04632i	0.046351	0.026669+0.013975i	0.030109	-0.074285+0.079092i	0.108507
-3	0.077652-0.187989i	0.203395	0.190036+0.082241i	0.207068	0.011033+0.054301i	0.055411
-2	-0.078841+0.089938i	0.119603	-0.027248-0.041942i	0.050016	-0.039921-0.67989i	0.681061
-1	0.120653-0.168812i	0.207496	-0.094586-0.210446i	0.230725	-0.011577-0.080221i	0.081052
0	-0.025625+0.026279i	0.036705	0.015333-0.006193i	0.016537	0.007536-0.02495i	0.026063
1	-0.165719+0.124867i	0.207496	-0.078109-0.217101i	0.230725	-0.054051+0.060398i	0.081052
2	-0.087924+0.081081i	0.119603	0.009526+0.0491i	0.050016	0.409626-0.544105i	0.681061
3	-0.185974+0.082363i	0.203396	-0.079606+0.191155i	0.207069	0.039249-0.039114i	0.055411
4	-0.046348-0.000518i	0.046351	0.009481-0.028576i	0.030108	0.018079+0.10699i	0.108507
5	-0.625236-0.08662i	0.631208	0.361401-0.519346i	0.632717	-0.106213+0.042023i	0.114224
6	-0.005101	0.005101	-0.003611	0.003611	0.036824	0.036824

м	10		11		12	
M_J	250 cm ⁻¹		255 cm ⁻¹		267 cm ⁻¹	
	с	c	с	c	с	c
-6	-0.007687+0.00081i	0.007730	-0.007618-0.001165i	0.007707	-0.000344-0.000733i	0.000810
-5	-0.018794-0.121823i	0.123264	0.049026+0.057201i	0.075336	-0.015109-0.080042i	0.081456
-4	0.25347+0.197617i	0.321402	0.222922-0.015202i	0.223440	-0.142765-0.577127i	0.594523
-3	-0.556645-0.132682i	0.572240	-0.538705-0.28892i	0.611292	-0.042225-0.322042i	0.324798
-2	-0.029412-0.016168i	0.033563	-0.056338-0.077504i	0.095817	-0.093103-0.048279i	0.104876
-1	0.109615-0.201724i	0.229582	-0.133804+0.204839i	0.244668	0.052386-0.142295i	0.151632
0	-0.017515+0.00092i	0.017539	-0.004311+0.056731i	0.056895	-0.024519-0.015581i	0.029051
1	-0.130145-0.189131i	0.229583	-0.101313-0.222706i	0.244668	0.106576-0.10786i	0.151632
2	-0.027556+0.01916i	0.033563	0.067402-0.0681i	0.095816	-0.083249-0.063785i	0.104876
3	0.539682-0.190267i	0.572240	-0.576179+0.204196i	0.611292	0.309488-0.098545i	0.324798
4	0.231373-0.223084i	0.321403	-0.218065-0.048714i	0.223440	-0.583124+0.115859i	0.594522
5	0.005928-0.123122i	0.123265	0.057107-0.049135i	0.075336	0.078881-0.020315i	0.081455
6	-0.007729	0.007729	0.007706	0.007706	-0.00081	0.000810

14	13					
M_J	279 cm ⁻¹					
	с	c				
-6	-0.002292-0.002713i	0.003552				
-5	-0.024821+0.010765i	0.027055				
-4	-0.615552+0.218139i	0.653061				
-3	-0.119831+0.080263i	0.144228				
-2	-0.034616+0.013976i	0.037331				
-1	-0.003674+0.033775i	0.033974				
0	-0.285146-0.132389i	0.314380				
1	-0.02343+0.024603i	0.033975				
2	-0.011663-0.035463i	0.037332				
3	0.016017+0.143335i	0.144227				
4	-0.230597-0.610994i	0.653061				
5	0.007794+0.025907i	0.027054				
6	-0.003551	0.003551				

Table S11. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Dy(TPP)(cyclen)]⁺

n m		Experimenta	al Geometry	Symmetrized- C_4 Geometry		
		Real part	Imaginary part	Real part	Imaginary part	
	0	87.71	0.00	37.31	0.00	
2	1	82.37	82.37	0.00	0.00	
	2	11.66	19.99	0.00	0.00	
	0	-18.25	0.00	-129.00	0.00	
1	1	-160.13	-49.59	0.00	0.00	
4	2	-64.36	-64.36	0.00	0.00	
	3	-31.53	-70.20	0.00	0.00	
	4	-15.52	55.44	85.08	-38.64	
	0	-5.19	0.00	28.36	0.00	
	1	13.87	8.97	0.00	0.00	
	2	24.86	12.85	0.00	0.00	
6	3	5.32	5.32	0.00	0.00	
	4	1.61	7.33	-3.79	-17.19	
	5	0.48	2.78	0.00	0.00	
	6	2.35	-0.71	0.00	0.00	

	Basis Set 2
Energy (cm-	Wave Function
1)	
0.00	+11/2>, +3/2>, -5/2>, -11/2>, -13/2>
0.00	-11/2>, -3/2>, +5/2>, +11/2>, +13/2>
15.6	-13/2>, -5/2>, +11/2>
15.6	+13/2>, +5/2>, -11/2>
47.0	+9/2>, -9/2>, +1/2>, -7/2>, -1/2>, +7/2>
47.0	$ -9/2\rangle, +9/2\rangle, -1/2\rangle, +7/2\rangle, +1/2\rangle, -7/2\rangle$
102.6	$ -7/2\rangle, +1/2\rangle, +9/2\rangle, +7/2\rangle, -15/2\rangle$
102.6	+7/2>, -1/2>, -9/2>, -7/2>, +15/2>
131.3	$ -5/2\rangle, +3/2\rangle, +5/2\rangle, -3/2\rangle, +11/2\rangle, +13/2\rangle$
131.3	+5/2>, -3/2>, -5/2>, +3/2>, -11/2>, -13/2>
222.5	$ +1/2\rangle, -7/2\rangle, -1/2\rangle, +9/2\rangle, +7/2\rangle, -9/2\rangle$
222.5	$ -1/2\rangle, +7/2\rangle, +1/2\rangle, -9/2\rangle, -7/2\rangle, +9/2\rangle$
229.3	$ -3/2\rangle, +5/2\rangle, -11/2\rangle, +3/2\rangle, +13/2\rangle, -5/2\rangle$
229.3	$ +3/2\rangle, -5/2\rangle, +11/2\rangle, -3/2\rangle, -13/2\rangle, +5/2\rangle$
254.7	$ -15/2\rangle, -7/2\rangle, +1/2\rangle$
254.7	+15/2>, +7/2>, -1/2>

Table S12. CASSCF/RASSI calculated energies and wave functions of the [Dy(Por)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

Table S13. Composition of wave functions for [Dy(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

			Wave Functions and Energies			
M_J	1		2		3	
	0.00 cm ⁻¹		0.00 cm ⁻¹		15.6 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0	0.000000	0	0.000000	0.000005i	0.000005
-13/2	-0.063054+0.002577i	0.063107	0.004332-0.002668i	0.005088	0.680989-0.71187i	0.985142
-11/2	-0.076729-0.018286i	0.078878	-0.942482+0.267401i	0.979681	-0.000285+0.000091i	0.000299
-9/2	0	0.000000	-0.000006-0.000003i	0.000007	0	0.000000
-7/2	0	0.000000	0	0.000000	0.000001i	0.000001
-5/2	-0.054931-0.011972i	0.056220	0.004331-0.001321i	0.004528	0.128377-0.078729i	0.150595
-3/2	-0.012974-0.002092i	0.013142	-0.153288+0.056056i	0.163216	0.000112-0.000041i	0.000119
-1/2	0	0.000000	-0.000001-0.000001i	0.000001	0	0.000000
1/2	0.000001-0.000001i	0.000001	0	0.000000	0	0.000000
3/2	-0.148543+0.067635i	0.163216	0.007775-0.010595i	0.013142	0.010197-0.027661i	0.029481
5/2	-0.004012+0.002098i	0.004527	-0.030733+0.047077i	0.056221	0.000313-0.000513i	0.000601
7/2	0	0.000000	0	0.000000	0	0.000000
9/2	0.000002-0.000006i	0.000006	0	0.000000	0	0.000000
11/2	-0.859095+0.470885i	0.979682	0.041831-0.066872i	0.078878	-0.022862+0.07354i	0.077012
13/2	-0.004959+0.00114i	0.005088	-0.04673+0.042412i	0.063107	0.002833-0.002725i	0.003931
15/2	0	0.000000	0	0.000000	0	0.000000

14	$M_J = \frac{4}{15.6 \text{ cm}^{-1}}$		5		6	
M_J			47.0 cm ⁻¹		47.0 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0	0.000000	0.000481-0.002169i	0.002222	0.002537-0.011441i	0.011719
-13/2	-0.002793+0.002766i	0.003931	0	0.000000	0	0.000000
-11/2	-0.074074+0.021068i	0.077012	0.000006-0.000003i	0.000007	-0.000001	0.000001

-9/2	0	0.000000	-0.880318-0.293192i	0.927858	0.16686+0.055578i	0.175873
-7/2	0	0.000000	0.022855-0.022336i	0.031957	0.120596-0.117803i	0.168585
-5/2	-0.000521+0.000301i	0.000602	0	0.000000	0.000001	0.000001
-3/2	0.027901-0.009522i	0.029481	0.000002-0.000002i	0.000003	0	0.000000
-1/2	0	0.000000	-0.275194+0.010326i	0.275388	0.052163-0.001954i	0.052200
1/2	0	0.000000	0.013202-0.050503i	0.052200	0.069667-0.26643i	0.275388
3/2	-0.000043+0.000111i	0.000119	0.000001	0.000001	0.000002-0.000001i	0.000002
5/2	0.081826-0.126425i	0.150595	-0.000001i	0.000001	0	0.000000
7/2	0.000001	0.000001	-0.141121+0.092228i	0.168586	0.026755-0.017476i	0.031957
9/2	0	0.000000	-0.01813-0.174936i	0.175873	-0.095626-0.922917i	0.927858
11/2	0.000098-0.000283i	0.000299	0.000001-0.000001i	0.000001	0.000004-0.000005i	0.000006
13/2	0.728215-0.663482i	0.985142	0	0.000000	0	0.000000
15/2	0.000005	0.000005	-0.011719	0.011719	0.002221	0.002221

м	7		8		9	
M_J	102.6 cm ⁻¹		102.6cm ⁻¹		131.3 cm ⁻¹	
	с	c	С	c	с	c
-15/2	0.001028+0.000958i	0.001405	-0.063449-0.059114i	0.086719	0	0.000000
-13/2	0	0.000000	-0.000001i	0.000001	0.010354-0.001105i	0.010413
-11/2	0.000002-0.000001i	0.000002	0	0.000000	0.128168-0.039547i	0.134131
-9/2	-0.247562-0.082779i	0.261035	-0.004005-0.001337i	0.004222	0.000001	0.000001
-7/2	0.0034+0.014277i	0.014676	-0.209959-0.881369i	0.906032	0	0.000000
-5/2	0	0.000000	0.000004-0.000007i	0.000008	-0.054376-0.008266i	0.055001
-3/2	-0.000002+0.000002i	0.000003	0	0.000000	-0.554749+0.214311i	0.594706
-1/2	0.321156-0.00654i	0.321223	0.005206-0.000106i	0.005207	-0.000005-0.000002i	0.000005
1/2	0.003737+0.003626i	0.005207	-0.230517-0.22371i	0.321223	0	0.000000
3/2	0	0.000000	-0.000003i	0.000003	-0.036827+0.020535i	0.042165
5/2	-0.000002+0.000007i	0.000007	0	0.000000	-0.400536+0.664329i	0.775733
7/2	0.754425-0.501734i	0.906032	0.01222-0.008128i	0.014676	-0.000006+0.000002i	0.000006
9/2	-0.003842-0.001752i	0.004223	0.237558+0.108191i	0.261035	0	0.000000
11/2	0	0.000000	0.000001+0.000002i	0.000002	0.007964-0.005197i	0.009510
13/2	0	0.000000	0	0.000000	0.105328-0.102348i	0.146864
15/2	0.086719	0.086719	0.001405	0.001405	0.000001	0.000001

14	10		11		12	
M_J	131.3 cm ⁻¹		222.5 cm ⁻¹		222.5 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.000001i	0.000001	-0.161681-0.05805i	0.171786	-0.014625-0.005251i	0.015539
-13/2	-0.138746+0.048154i	0.146865	-0.000001i	0.000001	0	0.000000
-11/2	0.00822-0.004783i	0.009510	0	0.000000	-0.000001+0.000001i	0.000001
-9/2	0	0.000000	-0.016951-0.005719i	0.017890	0.187426+0.063231i	0.197805
-7/2	-0.000005+0.000005i	0.000007	-0.20774-0.290129i	0.356834	-0.01879-0.026242i	0.032275
-5/2	0.773442-0.059575i	0.775733	-0.000004i	0.000004	0.000001-0.000003i	0.000003
-3/2	-0.034884+0.023684i	0.042164	-0.000003+0.000003i	0.000004	0.000006-0.000006i	0.000008
-1/2	0	0.000000	0.080623-0.003299i	0.080690	-0.891395+0.036509i	0.892142
1/2	0.000005i	0.000005	0.826622+0.33558i	0.892142	0.074765+0.030349i	0.080690
3/2	0.440593-0.399442i	0.594707	0.000004+0.000008i	0.000009	0.000002+0.000004i	0.000004
5/2	-0.017031+0.052297i	0.055000	-0.000003i	0.000003	-0.000001+0.000003i	0.000003
7/2	0	0.000000	-0.026553+0.018349i	0.032276	0.29356-0.202863i	0.356835
9/2	-0.000001i	0.000001	-0.197768-0.003823i	0.197805	-0.017886-0.000345i	0.017889
11/2	-0.092888+0.096762i	0.134131	-0.000001-0.000001i	0.000001	-0.000001i	0.000001
13/2	0.005637-0.008755i	0.010413	0	0.000000	-0.000001+0.000001i	0.000001
15/2	0	0.000000	-0.015539	0.015539	0.171786	0.171786

M_I	13	14	15
-------	----	----	----

	229.3 cm ⁻¹		229.3 cm ⁻¹		254.7 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0.000001	0.000001	0	0.000000	0	0.000000
-13/2	-0.010526-0.008055i	0.013254	0.004388-0.059985i	0.060145	0	0.000000
-11/2	0.066189-0.071735i	0.097606	-0.021218-0.003533i	0.021510	0	0.000000
-9/2	0.000001	0.000001	0.000001	0.000001	-0.022091-0.007471i	0.023320
-7/2	0.000001i	0.000001	-0.000002-0.000005i	0.000005	0	0.000000
-5/2	0.080138+0.103365i	0.130792	-0.192945+0.561265i	0.593503	0	0.000000
-3/2	-0.473635+0.603294i	0.767003	0.168414+0.014413i	0.169030	-0.000001+0.000001i	0.000001
-1/2	-0.000009+0.000002i	0.000009	-0.000003+0.000001i	0.000003	0.125555-0.005739i	0.125686
1/2	-0.000002-0.000002i	0.000003	0.000007+0.000005i	0.000009	0.000001+0.000001i	0.000001
3/2	-0.16369-0.042148i	0.169029	-0.247231-0.726065i	0.767003	0	0.000000
5/2	0.003722-0.593492i	0.593504	-0.109836+0.071011i	0.130792	-0.000001i	0.000001
7/2	0.000004-0.000004i	0.000006	-0.000001i	0.000001	-0.120267+0.081311i	0.145174
9/2	0.000001	0.000001	-0.000001	0.000001	-0.000001	0.000001
11/2	0.021191+0.00369i	0.021510	0.038711+0.0896i	0.097605	0	0.000000
13/2	-0.015715+0.058056i	0.060145	0.012599-0.004117i	0.013255	-0.000004+0.000003i	0.000005
15/2	0	0.000000	0.000001	0.000001	0.981113	0.981113

м	16	
M_J	254.7 cm ⁻¹	
	c	c
-15/2	-0.934265-0.299554i	0.981113
-13/2	-0.000002-0.000004i	0.000004
-11/2	0	0.000000
-9/2	-0.000001	0.000001
-7/2	0.089698+0.114148i	0.145174
-5/2	0.000001i	0.000001
-3/2	0	0.000000
-1/2	0.000001	0.000001
1/2	-0.117808-0.043799i	0.125686
3/2	-0.000001-0.000001i	0.000001
5/2	0	0.000000
7/2	0	0.000000
9/2	0.023317-0.00037i	0.023320
11/2	0	0.000000
13/2	0	0.000000
15/2	0	0.000000

Table S14.	CASSCF/RASSI	calculated	energies	and	wave	functions	of	the	$[Dy(TPP)(cyclen)]^+$	with	an	absolute
coefficient la	rger than 0.05.											

	Basis set 2
Energy (cm ⁻¹)	Wave Function
0.00	+15/2>, +13/2>, +7/2>, +11/2>, +5/2>, +9/2>, +3/2>
0.00	-15/2>, -13/2>, -7/2>, -11/2>, -5/2>, -9/2>, -3/2>
16.1	+9/2>, +7/2>, +11/2>, +15/2>, +5/2>, +13/2>, +3/2>, +1/2>
16.1	$ -9/2\rangle$, $ -7/2\rangle$, $ -11/2\rangle$, $ -15/2\rangle$, $ -5/2\rangle$, $ -13/2\rangle$, $ -5/2\rangle$, $ -1/2\rangle$
63.4	+5/2>, +11/2>, +13/2>, +3/2>, +7/2>, +9/2>, +15/2>, +1/2>
63.4	$ -5/2\rangle$, $ -11/2\rangle$, $ -13/2\rangle$, $ -3/2\rangle$, $ -7/2\rangle$, $ -9/2\rangle$, $ -15/2\rangle$, $ -1/2\rangle$
131.4	+3/2>, -11/2>, +1/2>, -3/2>, +7/2>, +9/2>, +13/2>, -9/2>, -1/2>, -11/2>, -7/2>, +5/2>, -5/
	2>, +15/2>

131.4	-3/2>, -11/2>, -1/2>, +3/2>, -7/2>, -9/2>, -13/2>, +9/2>, +1/2>, +1/2>, +7/2>, -5/2>, +5/
	$ 2\rangle, -15/2\rangle$
176.7	$ -1/2\rangle, -9/2\rangle, -11/2\rangle, -7/2\rangle, +5/2\rangle, +7/2\rangle, -5/2\rangle, -3/2\rangle, +3/2\rangle, +1/2\rangle, -13/2\rangle, +13/2\rangle, -15\rangle, -15\rangle, -15\rangle, -15\rangle, -11/2\rangle, -15\rangle, -11/2\rangle, -15\rangle, -15\rangle, -11/2\rangle, -15\rangle, -15\rangle, $
	/2>, +11/2>
176.7	$ +1/2\rangle, +9/2\rangle, +11/2\rangle, +7/2\rangle, -5/2\rangle, -7/2\rangle, +5/2\rangle, +3/2\rangle, -3/2\rangle, -1/2\rangle, +13/2\rangle, -13/2\rangle, +1/2\rangle, $
	5/2>, -11/2>
229.2	+13/2>, +15/2>, +11/2>, +9/2>, -15/2>, -13/2>, +7/2>, -11/2>, -9/2>, +3/2>
229.2	-13/2>, -15/2>, -11/2>, -9/2>, +15/2>, +13/2>, -7/2>, +11/2>, +9/2>, -3/2>
261.6	$ +3/2\rangle, +1/2\rangle, +5/2\rangle, +9/2\rangle, +7/2\rangle, -3/2\rangle, -7/2\rangle, -5/2\rangle, +11/2\rangle, -1/2\rangle, -9/2\rangle$
261.6	$ -3/2\rangle, -1/2\rangle, -5/2\rangle, -9/2\rangle, -7/2\rangle, +3/2\rangle, +7/2\rangle, +5/2\rangle, -11/2\rangle, +1/2\rangle, +9/2\rangle$
271.6	$ -5/2\rangle, -7/2\rangle, -1/2\rangle, +7/2\rangle, -3/2\rangle, +3/2\rangle, +5/2\rangle, -9/2\rangle, +1/2\rangle, +9/2\rangle, -11/2\rangle, +11/2\rangle, -13/2\rangle, -$
	>, +13/2>
271.6	+5/2>, +7/2>, +1/2>, -7/2>, +3/2>, -3/2>, -5/2>, +9/2>, -1/2>, -9/2>, +11/2>, -11/2>, +13/2
	>, -13/2>

Table S15. Composition of wave functions for [Dy(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

	Wave Functions and Energies						
M_J	1		2		3		
	0.00 cm ⁻¹		0.00 cm ⁻¹	0.00 cm ⁻¹			
	с	c	с	c	с	c	
-15/2	-0.008843-0.00411i	0.009751	-0.604298-0.280873i	0.666383	-0.003067-0.005734i	0.006503	
-13/2	-0.001308+0.004927i	0.005098	0.423875+0.392457i	0.577661	-0.019448-0.006548i	0.020521	
-11/2	0.004299+0.000183i	0.004303	0.157483+0.237367i	0.284858	0.005574+0.005454i	0.007798	
-9/2	0.006761+0.01618i	0.017536	-0.052949-0.063805i	0.082914	0.015097+0.047188i	0.049544	
-7/2	0.010383+0.004205i	0.011202	0.04707-0.290656i	0.294443	0.011263+0.020706i	0.023571	
-5/2	-0.008761+0.010446i	0.013634	0.060033-0.185999i	0.195447	-0.014866+0.029691i	0.033205	
-3/2	0.027823+0.000961i	0.027840	0.037028-0.067051i	0.076596	0.03735+0.000241i	0.037351	
-1/2	-0.036988-0.001438i	0.037016	0.008267-0.022103i	0.023598	-0.074532-0.003148i	0.074598	
1/2	-0.00182+0.023528i	0.023598	0.034148+0.014286i	0.037016	0.050544+0.026058i	0.056866	
3/2	-0.005317-0.076411i	0.076596	0.025636+0.010856i	0.027840	-0.017707-0.082438i	0.084318	
5/2	-0.023956+0.193973i	0.195447	0.003541+0.013166i	0.013634	-0.040927+0.228802i	0.232434	
7/2	0.079824-0.283416i	0.294443	0.011188+0.000564i	0.011202	0.180485-0.458482i	0.492728	
9/2	-0.074909+0.035543i	0.082914	-0.012951+0.011823i	0.017536	-0.378844+0.483642i	0.614355	
11/2	-0.242859+0.148875i	0.284858	0.003975+0.001646i	0.004302	0.342004-0.201874i	0.397140	
13/2	0.5498-0.177234i	0.577661	-0.00089+0.00502i	0.005098	0.161796-0.034861i	0.165509	
15/2	0.666382	0.666382	-0.009752	0.009752	-0.344539	0.344539	

14	4		5		6	
M_J	16.1 cm ⁻¹		63.4 cm ⁻¹		63.4 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0.162497+0.303812i	0.344539	-0.000003-0.000001i	0.000003	-0.145727-0.047053i	0.153135
-13/2	0.045569+0.159112i	0.165509	0.000906+0.011503i	0.011539	0.330733+0.245661i	0.411987
-11/2	0.016709-0.396788i	0.397140	-0.011857-0.042514i	0.044136	-0.289385-0.361689i	0.463209
-9/2	0.247795-0.562166i	0.614356	-0.006916+0.047826i	0.048323	-0.076682-0.153918i	0.171962
-7/2	0.319163-0.375388i	0.492728	0.023203-0.007662i	0.024435	0.032305+0.255887i	0.257918
-5/2	0.182454-0.144i	0.232434	-0.056935+0.019526i	0.060190	-0.174423+0.539798i	0.567279
-3/2	0.081044-0.023267i	0.084318	0.142255-0.02978i	0.145339	-0.153963+0.315188i	0.350782
-1/2	0.046816+0.032279i	0.056865	-0.035668-0.037305i	0.051613	-0.094217+0.100037i	0.137420
1/2	0.037928+0.064237i	0.074598	0.058922+0.124147i	0.137420	-0.045405+0.024541i	0.051613
3/2	0.017828+0.032821i	0.037350	-0.049668-0.347248i	0.350782	-0.126223-0.07205i	0.145339

5/2	-0.01917+0.027112i	0.033205	0.000124+0.567279i	0.567279	-0.048181-0.036076i	0.060190
7/2	0.02357+0.000166i	0.023571	0.109367-0.233582i	0.257918	-0.019726-0.014421i	0.024435
9/2	-0.048731+0.008943i	0.049545	0.120266-0.122911i	0.171962	0.008114-0.047638i	0.048324
11/2	0.007438+0.002342i	0.007798	-0.38652+0.255273i	0.463208	0.024347-0.036814i	0.044137
13/2	0.014946+0.014061i	0.020521	-0.390217+0.132154i	0.411988	0.004396-0.010669i	0.011539
15/2	-0.006502	0.006502	-0.153135	0.153135	0.000003	0.000003

14	7		8		9	
M_J	131.4 cm ⁻¹		131.4 cm ⁻¹		176.7 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.005614-0.01279i	0.013968	-0.032834-0.074808i	0.081696	0.062113-0.006262i	0.062428
-13/2	-0.01016-0.004452i	0.011093	-0.133896+0.162956i	0.210909	0.026734+0.070673i	0.075560
-11/2	0.097981+0.0533i	0.111540	0.31214-0.374287i	0.487362	-0.078056-0.287573i	0.297978
-9/2	-0.063262-0.163382i	0.175202	-0.234182+0.130135i	0.267911	-0.052319+0.466623i	0.469547
-7/2	-0.064188+0.085119i	0.106608	-0.267746+0.053945i	0.273126	0.07543-0.282062i	0.291974
-5/2	0.09275-0.007696i	0.093069	0.101618-0.007439i	0.101890	0.056637-0.128355i	0.140295
-3/2	-0.154755+0.233358i	0.280009	0.462587+0.189451i	0.499878	0.118713+0.044071i	0.126629
-1/2	0.042423+0.151441i	0.157271	0.303517+0.214342i	0.371571	-0.664412+0.093067i	0.670898
1/2	-0.318253-0.191781i	0.371571	0.155722-0.022018i	0.157271	-0.056649+0.102383i	0.117010
3/2	0.359391+0.347443i	0.499879	-0.151486+0.235493i	0.280009	0.040531+0.117443i	0.124240
5/2	-0.034029-0.09604i	0.101890	0.030229+0.088023i	0.093069	-0.08184-0.204322i	0.220103
7/2	-0.058211-0.266851i	0.273126	-0.052145+0.092986i	0.106609	-0.077754-0.129007i	0.150627
9/2	-0.025045+0.266738i	0.267911	-0.175031+0.007736i	0.175202	-0.007329-0.044282i	0.044884
11/2	-0.217279+0.436247i	0.487362	-0.088184-0.068299i	0.111540	-0.044583+0.038262i	0.058751
13/2	-0.095403+0.188098i	0.210909	-0.00816-0.007515i	0.011093	-0.054812+0.036141i	0.065655
15/2	-0.081697	0.081697	0.013968	0.013968	0.004339	0.004339

м	10		11		12	
M_J	176.7 cm ⁻¹		229.2 cm ⁻¹		229.2 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0.004317-0.000435i	0.004339	-0.164758-0.008483i	0.164976	-0.610432-0.03143i	0.611241
-13/2	0.058161+0.030461i	0.065655	-0.143993-0.063586i	0.157408	-0.565845-0.234104i	0.612360
-11/2	-0.048196-0.033597i	0.058750	-0.078334-0.040528i	0.088197	-0.299513-0.198078i	0.359086
-9/2	0.00285-0.044794i	0.044885	-0.030588-0.081384i	0.086942	-0.101594-0.160812i	0.190215
-7/2	-0.064421+0.136155i	0.150626	-0.012171+0.022336i	0.025437	-0.022738-0.093832i	0.096548
-5/2	0.060933-0.211501i	0.220103	0.013864-0.030854i	0.033826	0.027389-0.027187i	0.038591
-3/2	0.028547-0.120916i	0.124240	0.006162+0.000148i	0.006164	-0.052851-0.023689i	0.057917
-1/2	0.066632+0.096185i	0.117010	-0.027517+0.026093i	0.037921	-0.038799+0.002314i	0.038868
1/2	-0.670396-0.025954i	0.670898	-0.038629-0.004306i	0.038868	0.026139+0.027473i	0.037921
3/2	-0.113694+0.055757i	0.126630	0.053999-0.02094i	0.057917	0.006161+0.000169i	0.006163
5/2	0.069226+0.122027i	0.140296	0.025955+0.02856i	0.038592	-0.012259-0.031526i	0.033826
7/2	-0.103342-0.273073i	0.291973	0.027533-0.092539i	0.096548	-0.011006-0.022932i	0.025436
9/2	-0.09886-0.459022i	0.469547	-0.109729+0.155375i	0.190215	0.034732-0.079703i	0.086942
11/2	0.048817-0.293952i	0.297978	0.309302-0.182415i	0.359086	-0.080314+0.036446i	0.088197
13/2	0.01951-0.072998i	0.075560	-0.577134+0.204699i	0.612360	0.147072-0.056098i	0.157408
15/2	-0.062428	0.062428	0.611241	0.611241	-0.164976	0.164976

14	13		14		15	
M_J	261.6 cm ⁻¹		261.6 cm ⁻¹		271.6 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.010881-0.009202i	0.014250	0.008802+0.007444i	0.011528	0.036002+0.019742i	0.041060
-13/2	-0.043646-0.004096i	0.043838	-0.000968+0.046853i	0.046863	-0.061756+0.04371i	0.075660
-11/2	-0.000635+0.042748i	0.042753	0.193792+0.039836i	0.197844	0.123269-0.054295i	0.134697
-9/2	0.121375-0.037549i	0.127050	-0.16722-0.296101i	0.340056	-0.103312+0.199887i	0.225007
-7/2	-0.15047-0.177241i	0.232499	-0.158771+0.297182i	0.336935	0.001707-0.350998i	0.351002

-5/2	0.047168+0.204117i	0.209496	0.285678+0.234088i	0.369336	0.092399+0.477593i	0.486449
-3/2	0.220556+0.105965i	0.244691	0.053045-0.475887i	0.478834	-0.157586-0.276569i	0.318314
-1/2	-0.176242-0.062674i	0.187054	-0.386595+0.036299i	0.388295	0.300569+0.174515i	0.347559
1/2	-0.27175-0.277355i	0.388296	0.175042+0.065951i	0.187054	-0.012837+0.177362i	0.177826
3/2	0.266794-0.397621i	0.478833	0.236833+0.06151i	0.244690	0.293729-0.027909i	0.295052
5/2	0.369291+0.005732i	0.369335	-0.167821+0.125397i	0.209495	0.210273-0.17352i	0.272624
7/2	-0.07067+0.32944i	0.336935	-0.229344+0.03817i	0.232499	0.22029-0.244013i	0.328740
9/2	-0.318886+0.118111i	0.340057	-0.068431-0.107047i	0.127051	0.087232-0.149346i	0.172956
11/2	-0.173696-0.094721i	0.197844	0.027119-0.03305i	0.042752	0.013536-0.079518i	0.080662
13/2	0.029515-0.036401i	0.046863	0.035972+0.025057i	0.043839	-0.044076-0.04927i	0.066108
15/2	-0.011528	0.011528	-0.01425	0.014250	0	0.000000

14	16					
M_J	271.6 cm ⁻¹					
	с	c				
-15/2	0	0.000000				
-13/2	0.062336-0.022009i	0.066107				
-11/2	-0.026365+0.076232i	0.080662				
-9/2	-0.00468-0.172892i	0.172955				
-7/2	0.075832+0.319875i	0.328741				
-5/2	-0.100943-0.253248i	0.272624				
-3/2	0.24413+0.165699i	0.295052				
-1/2	-0.074021+0.161688i	0.177826				
1/2	0.347455-0.008503i	0.347559				
3/2	0.271153-0.166734i	0.318315				
5/2	0.310648-0.374339i	0.486448				
7/2	0.167266-0.308585i	0.351002				
9/2	0.005521-0.224939i	0.225007				
11/2	-0.08198-0.106876i	0.134697				
13/2	-0.033133-0.068019i	0.075660				
15/2	-0.041059	0.041059				

Table S16. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Ho(TPP)(cyclen)]⁺

		Experimenta	al Geometry	Symmetrized	-C ₄ Geometry
n m –		Real part	Imaginary part	Real part	Imaginary part
	0	30.71	0.00	53.87	0.00
2	1	-52.22	-52.22	0.00	0.00
	2	31.89	-25.01	0.00	0.00
	0	38.05	0.00	-111.81	0.00
4	1	17.14	9.37	0.00	0.00
4	2	-13.16	-13.16	0.00	0.00
	3	18.54	-74.94	0.00	0.00
	4	51.12	2.28	43.31	-46.09
	0	-0.53	0.00	26.06	0.00
	1	14.04	-10.45	0.00	0.00
	2	1.04	2.04	0.00	0.00
6	3	4.03	4.03	0.00	0.00
	4	-12.71	-9.29	1.32	6.72
	5	11.90	0.84	0.00	0.00
	6	-6.30	0.72	0.00	0.00

	Basis set 2
Energy (cm ⁻¹)	Wave Function
0.00	$ \pm 8\rangle, \pm 2\rangle, \pm 7\rangle, \pm 6\rangle, \pm 5\rangle, \pm 4\rangle, \pm 3\rangle, \pm 1\rangle, 0\rangle$
1.90	$ \pm 8\rangle$, $ \pm 6\rangle$, $ \pm 7\rangle$, $ \pm 4\rangle$, $ 0\rangle$, $ \pm 1\rangle$, $ \pm 5\rangle$, $ \pm 2\rangle$, $ \pm 3\rangle$
5.24	$ \pm 1\rangle, \pm 2\rangle, \pm 6\rangle, \pm 5\rangle, \pm 4\rangle, 0\rangle, \pm 8\rangle, \pm 3\rangle, \pm 7\rangle$
7.71	$ 0\rangle, \pm3\rangle, \pm1\rangle, \pm5\rangle, \pm7\rangle, \pm2\rangle, \pm8\rangle, \pm6\rangle, \pm4\rangle$
45.2	$ \pm 4\rangle, \pm 7\rangle, \pm 5\rangle, \pm 1\rangle, \pm 2\rangle, \pm 6\rangle, 0\rangle, \pm 8\rangle$
50.5	$ \pm 3\rangle, \pm 7\rangle, \pm 2\rangle, \pm 5\rangle, 0\rangle, \pm 6\rangle, \pm 1\rangle, \pm 8\rangle$
55.5	$ 0\rangle, \pm 8\rangle, \pm 2\rangle, \pm 4\rangle, \pm 5\rangle, \pm 1\rangle, \pm 7\rangle, \pm 6\rangle, \pm 3\rangle$
57.7	$ \pm1\rangle$, $ \pm8\rangle$, $ \pm2\rangle$, $ \pm5\rangle$, $ \pm6\rangle$, $ \pm4\rangle$, $ 0\rangle$, $ \pm7\rangle$
102	$ \pm 4\rangle$, $ \pm 3\rangle$, $ \pm 7\rangle$, $ \pm 2\rangle$, $ \pm 1\rangle$, $ \pm 6\rangle$, $ \pm 5\rangle$, $ \pm 8\rangle$, $ 0\rangle$
107	$ \pm 6\rangle, \pm 7\rangle, \pm 5\rangle, \pm 4\rangle, \pm 8\rangle, \pm 3\rangle, \pm 2\rangle, \pm 1\rangle$
107	$ \pm 6\rangle, \pm 5\rangle, \pm 7\rangle, \pm 4\rangle, \pm 8\rangle, \pm 3\rangle, \pm 2\rangle$
130	$ \pm 3\rangle, \pm 7\rangle, \pm 8\rangle, \pm 2\rangle, \pm 4\rangle, \pm 1\rangle, 0\rangle, \pm 5\rangle, \pm 6\rangle$
130	$ \pm 2\rangle$, $ \pm 4\rangle$, $ \pm 7\rangle$, $ \pm 8\rangle$, $ \pm 3\rangle$, $ \pm 1\rangle$, $ \pm 6\rangle$, $ 0\rangle$, $ \pm 5\rangle$
146	$ 0\rangle$, $ \pm6\rangle$, $ \pm3\rangle$, $ \pm2\rangle$, $ \pm7\rangle$, $ \pm4\rangle$, $ \pm5\rangle$, $ \pm8\rangle$
182	$ \pm1\rangle, \pm5\rangle, \pm4\rangle, \pm6\rangle, \pm3\rangle, \pm7\rangle, \pm2\rangle, \pm8\rangle$
185	$ \pm 6\rangle, \pm 5\rangle, \pm 1\rangle, \pm 4\rangle, \pm 3\rangle, \pm 7\rangle, \pm 8\rangle$
204	$ \pm 5\rangle, 0\rangle, \pm 2\rangle, \pm 6\rangle, \pm 4\rangle, \pm 7\rangle, \pm 3\rangle, \pm 8\rangle$

Table S17. CASSCF/RASSI calculated energies and wave functions of the $[Ho(TPP)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

Table S18. Composition of wave functions for [Ho(TPP)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

	Wave Functions and Energies					
M_J	1		2		3	
	0.00 cm ⁻¹		1.90 cm ⁻¹		5.24 cm ⁻¹	
	с	c	с	c	с	c
-8	0.403427-0.053455i	0.406953	0.453274-0.059311i	0.457138	-0.146653+0.049116i	0.154659
-7	0.213395-0.178748i	0.278367	0.205133-0.145943i	0.251752	0.067851-0.021742i	0.071249
-6	-0.014076+0.236542i	0.236960	0.003611+0.291761i	0.291783	-0.011873-0.203637i	0.203983
-5	0.145251+0.173471i	0.226252	0.069253+0.119019i	0.137701	0.124482+0.145095i	0.191176
-4	-0.169483-0.042815i	0.174807	-0.196579-0.119616i	0.230111	0.185551+0.04429i	0.190764
-3	0.048481+0.125665i	0.134693	0.069789-0.010979i	0.070647	-0.092158+0.026652i	0.095934
-2	0.281873-0.070541i	0.290566	0.110107-0.042415i	0.117994	0.32735-0.092667i	0.340213
-1	0.054725+0.090396i	0.105671	0.013999+0.160333i	0.160943	0.211401-0.414083i	0.464925
0	0.102405-0.006755i	0.102628	-0.014761-0.226582i	0.227062	0.172942-0.028191i	0.175225
1	-0.042377+0.096801i	0.105670	-0.006921-0.160794i	0.160943	-0.33196-0.325511i	0.464925
2	0.288697+0.032905i	0.290566	-0.11468-0.027771i	0.117995	0.339833-0.016089i	0.340214
3	-0.031555+0.130944i	0.134692	0.070624+0.001832i	0.070648	0.095851-0.003995i	0.095934
4	-0.162391+0.064707i	0.174808	0.179398-0.14411i	0.230112	0.16188-0.100925i	0.190764
5	-0.121206+0.191047i	0.226252	0.053226-0.126998i	0.137701	-0.071959+0.177117i	0.191177
6	-0.045025-0.232643i	0.236960	0.034274+0.289764i	0.291784	0.053412+0.196866i	0.203983
7	-0.235025-0.149169i	0.278367	0.222335+0.118094i	0.251752	-0.071243+0.000932i	0.071249
8	0.406953	0.406953	-0.457138	0.457138	-0.15466	0.154660

М	4 7.71 cm ⁻¹		5		6	
M_J			45.2 cm ⁻¹		50.5 cm ⁻¹	
	c	c	с	c	с	c

0	0.102024:0.054202	0.1171(7	0.007050.0.00(774)	0.100565	0.007465+0.000601	0.000046
-8	0.103834+0.0542821	0.11/16/	0.02/353-0.096//41	0.100565	-0.00/465+0.0806011	0.080946
-7	0.118745+0.1321i	0.177625	-0.228925-0.218452i	0.316430	0.251952+0.118563i	0.278455
-6	0.076465+0.057468i	0.095653	-0.182753+0.027748i	0.184848	0.133804-0.094729i	0.163942
-5	-0.180947+0.062136i	0.191318	0.169237-0.248834i	0.300931	-0.139592+0.156355i	0.209602
-4	0.035486-0.080153i	0.087657	-0.020893-0.339419i	0.340061	0.001188-0.027034i	0.027060
-3	0.205049-0.313901i	0.374939	-0.005653-0.037888i	0.038307	-0.259227-0.411287i	0.486164
-2	0.114449-0.115416i	0.162541	-0.249671-0.058806i	0.256503	-0.210216-0.166476i	0.268151
-1	-0.094933-0.269629i	0.285853	-0.275999-0.029709i	0.277593	-0.018196+0.143392i	0.144542
0	-0.536459-0.131765i	0.552404	0.080296-0.060747i	0.100686	-0.117526-0.128914i	0.174445
1	0.209047-0.194965i	0.285853	0.04648-0.273675i	0.277594	-0.144459+0.004894i	0.144542
2	0.047954+0.155305i	0.162540	-0.011319+0.256253i	0.256503	-0.14638-0.224674i	0.268152
3	-0.036289-0.373178i	0.374938	-0.034922-0.015745i	0.038307	0.385627+0.296053i	0.486164
4	-0.005686+0.087473i	0.087658	0.320941+0.112424i	0.340062	-0.027028-0.00131i	0.027060
5	0.131569+0.138896i	0.191318	-0.285484+0.095177i	0.300932	-0.168562+0.124578i	0.209602
6	0.094388-0.015503i	0.095653	-0.076409+0.168316i	0.184848	-0.106665+0.124498i	0.163943
7	-0.166434+0.062054i	0.177626	-0.147951-0.279711i	0.316430	-0.094822-0.261812i	0.278454
8	0.117167	0.117167	0.100565	0.100565	0.080946	0.080946

14	7		8		9	
M_J	55.5 cm ⁻¹		57.7 cm ⁻¹		102 cm ⁻¹	
	с	c	с	c	с	c
-8	0.012776+0.363407i	0.363632	-0.066527-0.366012i	0.372009	0.153318+0.064558i	0.166355
-7	-0.151218+0.038815i	0.156120	0.126574+0.008545i	0.126862	0.017257-0.260336i	0.260907
-6	-0.136244+0.07596i	0.155988	0.136255-0.054314i	0.146681	-0.060222-0.178568i	0.188450
-5	0.129539-0.117189i	0.174681	-0.187981+0.120164i	0.223106	0.103824-0.14496i	0.178305
-4	-0.182696+0.152559i	0.238017	0.099924-0.104358i	0.144483	0.364277-0.158311i	0.397190
-3	0.048596+0.081485i	0.094876	0.010588-0.034369i	0.035963	0.055262-0.291249i	0.296445
-2	-0.084612-0.307874i	0.319289	0.142684+0.199995i	0.245676	-0.2094+0.094308i	0.229657
-1	0.140839+0.083731i	0.163849	-0.421908-0.05953i	0.426087	0.169502+0.085215i	0.189717
0	-0.301332+0.312112i	0.433837	0.109376+0.091288i	0.142466	0.014199-0.070311i	0.071730
1	0.088627+0.13781i	0.163849	0.134022+0.404461i	0.426088	0.189287-0.012758i	0.189716
2	0.310657+0.073743i	0.319290	0.222288+0.104618i	0.245676	0.156391+0.168179i	0.229657
3	0.083142+0.045703i	0.094875	0.031921-0.016564i	0.035963	-0.062095+0.289869i	0.296445
4	-0.146045+0.187943i	0.238016	-0.084806+0.116976i	0.144483	-0.274292-0.28727i	0.397190
5	-0.112565+0.133576i	0.174681	-0.08461+0.20644i	0.223106	0.039432+0.173891i	0.178306
6	-0.071126+0.138828i	0.155988	-0.029072+0.143771i	0.146681	0.124799-0.141203i	0.188449
7	0.033478-0.152488i	0.156120	-0.031043-0.123005i	0.126862	-0.085125+0.246631i	0.260908
8	-0.363631	0.363631	-0.372009	0.372009	-0.166356	0.166356

14	10		11		12		
M_J	107 cm ⁻¹		107 cm ⁻¹	107 cm ⁻¹		130 cm ⁻¹	
	с	c	С	c	с	c	
-8	0.142519+0.14418i	0.202730	0.118096+0.163798i	0.201932	0.105488-0.261305i	0.281794	
-7	-0.324292-0.05935i	0.329678	-0.298382-0.07728i	0.308227	-0.028385+0.326094i	0.327327	
-6	0.323203-0.17152i	0.365895	0.350658-0.141721i	0.378214	-0.096706-0.022759i	0.099348	
-5	-0.136547+0.293684i	0.323876	-0.154676+0.306082i	0.342944	-0.100878-0.025142i	0.103964	
-4	-0.020371-0.259792i	0.260589	-0.010855-0.218199i	0.218469	0.216187-0.131934i	0.253265	
-3	0.11764+0.130827i	0.175940	0.104811+0.168404i	0.198356	-0.178596+0.280491i	0.332523	
-2	-0.076387-0.058645i	0.096303	-0.105326-0.048424i	0.115924	0.061145-0.264741i	0.271710	
-1	0.02941-0.043512i	0.052519	0.036323+0.021073i	0.041993	0.139479+0.138726i	0.196721	
0	-0.012707+0.030427i	0.032974	0.045159+0.023114i	0.050731	-0.058817-0.087174i	0.105161	
1	-0.01027+0.051505i	0.052519	-0.038337-0.01714i	0.041994	-0.076425-0.181269i	0.196721	
2	0.095408+0.013099i	0.096303	-0.100877-0.057116i	0.115924	-0.268381-0.042405i	0.271710	
3	0.175744-0.008306i	0.175940	-0.197899+0.01347i	0.198357	-0.326953+0.06061i	0.332523	
4	0.199083-0.168145i	0.260589	-0.183342+0.118804i	0.218469	-0.203269+0.151079i	0.253265	

5	0.112873-0.30357i	0.323875	-0.157821+0.304472i	0.342944	-0.014449+0.102955i	0.103964
6	-0.105227-0.350438i	0.365895	0.090118+0.367321i	0.378214	0.015097-0.098194i	0.099348
7	-0.270186-0.188911i	0.329678	0.237189+0.196839i	0.308228	-0.31301-0.09575i	0.327328
8	-0.20273	0.202730	0.201932	0.201932	-0.281794	0.281794

14	13 130 cm ⁻¹		14		15	
M_J			146 cm ⁻¹		182 cm ⁻¹	
	с	c	с	c	с	c
-8	-0.167379+0.223507i	0.279233	0.010693-0.1238i	0.124261	-0.051637-0.041103i	0.065999
-7	0.015696-0.28833i	0.288757	-0.148449-0.176172i	0.230377	-0.145818+0.029538i	0.148780
-6	0.064851+0.115855i	0.132771	-0.319362+0.005842i	0.319415	-0.125665+0.235322i	0.266774
-5	0.088046+0.068361i	0.111469	-0.081656+0.120913i	0.145903	-0.034602+0.310887i	0.312807
-4	-0.28872+0.080631i	0.299768	0.191616+0.024516i	0.193178	-0.108805+0.245252i	0.268304
-3	0.146464-0.221728i	0.265735	0.28559+0.081383i	0.296959	-0.203523+0.153231i	0.254757
-2	-0.02567+0.32153i	0.322553	0.207173+0.189829i	0.280991	-0.105266-0.09048i	0.138808
-1	-0.006308-0.193112i	0.193215	-0.03045-0.007718i	0.031413	-0.1984-0.32965i	0.384749
0	0.10388-0.051987i	0.116162	-0.334015+0.306409i	0.453269	-0.023318-0.008148i	0.024701
1	-0.150792-0.120805i	0.193215	-0.005069-0.031001i	0.031413	0.360528-0.134357i	0.384750
2	-0.272749-0.172187i	0.322553	-0.171298-0.22274i	0.280991	-0.138709+0.005233i	0.138808
3	-0.265272-0.015675i	0.265735	0.056505+0.291533i	0.296958	0.063806+0.246638i	0.254758
4	-0.237605+0.182768i	0.299767	-0.007936-0.193015i	0.193178	0.06761-0.259646i	0.268304
5	0.001941+0.111452i	0.111469	0.127491-0.070948i	0.145903	-0.166542+0.264786i	0.312806
6	-0.053861-0.121355i	0.132771	-0.033302+0.317675i	0.319416	0.048234-0.262377i	0.266774
7	-0.240197-0.160269i	0.288757	-0.162744-0.163058i	0.230377	0.095692+0.113923i	0.148780
8	-0.279233	0.279233	0.124261	0.124261	-0.065998	0.065998

14	16		17		
M_J	185 cm ⁻¹		204 cm ⁻¹		
	с	c	c	c	
-8	0.051444-0.081543i	0.096414	0.004516+0.066637i	0.066790	
-7	-0.094967-0.187107i	0.209828	0.124718+0.085401i	0.151155	
-6	-0.312209-0.109576i	0.330880	0.26772-0.082303i	0.280085	
-5	-0.245623+0.178979i	0.303915	0.215316-0.326377i	0.391002	
-4	0.157585+0.225078i	0.274760	0.006672-0.257435i	0.257521	
-3	0.266888-0.06218i	0.274036	0.05514+0.091528i	0.106854	
-2	-0.041213-0.012317i	0.043014	0.275112+0.174358i	0.325710	
-1	-0.070602+0.294765i	0.303102	0.004697+0.035494i	0.035803	
0	-0.015584-0.028257i	0.032269	-0.229026+0.245072i	0.335430	
1	-0.28697-0.097566i	0.303102	0.035731+0.002286i	0.035804	
2	0.011573-0.041428i	0.043014	-0.19256-0.262694i	0.325711	
3	0.194992-0.192545i	0.274036	0.095047+0.048826i	0.106855	
4	0.106279+0.253374i	0.274761	0.256395-0.024062i	0.257522	
5	-0.28243+0.112239i	0.303915	-0.311073+0.23689i	0.391003	
6	0.073911-0.322519i	0.330880	0.064014-0.272672i	0.280085	
7	0.107575+0.180154i	0.209828	0.093638+0.118658i	0.151155	
8	-0.096414	0.096414	-0.06679	0.066790	

 Table S19. CASSCF/RASSI calculated energies and wave functions of the [Ho(Por)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

Basis set 2						
Energy (cm ⁻¹)	Wave Function					
0.00	$ \pm 4\rangle$, $ 0\rangle$, $ \pm 8\rangle$					
4.66	$ \pm 4\rangle$, $ \pm 8\rangle$					
5.73	$ \pm 5\rangle, \pm 1\rangle, \pm 3\rangle$					

5.73	±5>, ±1>, ±3>
50.4	$ \pm 3\rangle, \pm 7\rangle, \pm 1\rangle, \pm 5\rangle$
50.4	$ \pm 3\rangle, \pm 7\rangle, \pm 1\rangle, \pm 5\rangle$
66.5	$ \pm 6\rangle, \pm 2\rangle$
68.5	$ \pm 6\rangle, \pm 2\rangle$
106	$ \pm 2\rangle$, $ \pm 6\rangle$
117	$ \pm 8\rangle, \pm 4\rangle, 0\rangle$
117	$ \pm 8\rangle$, $ \pm 4\rangle$
149	$ \pm 7\rangle, \pm 1\rangle, \pm 3\rangle$
149	$ \pm 7\rangle$, $ \pm 1\rangle$, $ \pm 3\rangle$
160	$ \pm 2\rangle$, $ \pm 6\rangle$
201	$ \pm1\rangle, \pm3\rangle, \pm7\rangle, \pm5\rangle$
201	$ \pm1\rangle, \pm3\rangle, \pm7\rangle, \pm5\rangle$
224	$ 0\rangle, \pm 4\rangle$

Table S20. Composition of wave functions for [Ho(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

			Wave Functions and Energies			
M_J	1		2		3	
	0.00 cm ⁻¹		4.66 cm ⁻¹		5.73 cm ⁻¹	
	С	c	с	c	с	c
-8	-0.039958-0.009062i	0.040973	-0.042115-0.009106i	0.043088	0	0.000000
-7	0	0.000000	0	0.000000	0.001895+0.001334i	0.002317
-6	0	0.000000	0	0.000000	0	0.000000
-5	0	0.000000	-0.000001	0.000001	0.21366+0.670302i	0.703531
-4	-0.368729-0.594484i	0.699552	-0.374996-0.597931i	0.705793	0	0.000000
-3	0	0.000000	0	0.000000	0.020016+0.030874i	0.036795
-2	0	0.000000	0	0.000000	0	0.000000
-1	0	0.000000	0	0.000000	0.049529+0.035093i	0.060701
0	-0.132945-0.014886i	0.133776	-0.000038+0.000354i	0.000356	0	0.000000
1	0	0.000000	0	0.000000	0.060632-0.002896i	0.060701
2	0	0.000000	0	0.000000	0	0.000000
3	0	0.000000	0	0.000000	0.033493-0.015234i	0.036795
4	-0.49108+0.498211i	0.699553	0.492888-0.505178i	0.705793	0	0.000000
5	0	0.000000	0	0.000000	0.541018-0.449728i	0.703531
6	0	0.000000	0	0.000000	0	0.000000
7	0	0.000000	0	0.000000	0.002315-0.000103i	0.002317
8	-0.040973	0.040973	0.043088	0.043088	0	0.000000

14	4		5		6	
M_J	5.73 cm ⁻¹		50.4 cm ⁻¹		50.4 cm ⁻¹	
	С	c	с	c	с	c
-8	0	0.000000	0	0.000000	0	0.000000
-7	-0.000908-0.002132i	0.002317	0.035565-0.051324i	0.062442	-0.029265+0.055159i	0.062442
-6	0	0.000000	0	0.000000	0	0.000000
-5	-0.171781+0.682237i	0.703531	-0.045706+0.009944i	0.046775	-0.044214+0.015263i	0.046774
-4	0.000001	0.000001	0	0.000000	0	0.000000
-3	-0.000734-0.036787i	0.036794	0.594375-0.355288i	0.692468	-0.548334+0.422896i	0.692467
-2	0	0.000000	0	0.000000	0	0.000000
-1	0.02359+0.05593i	0.060701	0.077142-0.09193i	0.120008	0.065764-0.100385i	0.120009

0	0	0.000000	0	0.000000	0	0.000000
1	-0.05305-0.029501i	0.060701	0.000562-0.120007i	0.120008	0.013592+0.119236i	0.120008
2	0	0.000000	-0.000001	0.000001	0	0.000000
3	0.036491+0.004709i	0.036794	-0.223858-0.655285i	0.692467	-0.299564-0.624318i	0.692468
4	0.000001i	0.000001	0	0.000000	0	0.000000
5	-0.696816+0.096975i	0.703532	0.028447+0.037131i	0.046776	-0.032626-0.033517i	0.046774
6	0	0.000000	0	0.000000	0	0.000000
7	0.002022+0.001133i	0.002318	0.006039-0.062149i	0.062442	-0.001332-0.062428i	0.062442
8	0	0.000000	0	0.000000	0	0.000000

14	7		8		9	
M_J	66.5 cm ⁻¹		68.5 cm ⁻¹		106 cm ⁻¹	
	с	c	с	c	с	c
-8	0	0.000000	0	0.000000	0	0.000000
-7	0	0.000000	0	0.000000	0	0.000000
-6	-0.433148+0.521527i	0.677944	0.383462-0.588788i	0.702648	-0.074445-0.186675i	0.200972
-5	0	0.000000	0	0.000000	0	0.000000
-4	0	0.000000	0	0.000000	0	0.000000
-3	0	0.000000	0	0.000000	0	0.000000
-2	-0.100436+0.174085i	0.200980	0.033673-0.071779i	0.079285	0.355091+0.577513i	0.677946
-1	0	0.000000	0	0.000000	0	0.000000
0	0	0.000000	0	0.000000	0	0.000000
1	0	0.000000	0	0.000000	-0.000001i	0.000001
2	0.110405+0.167939i	0.200980	0.052667+0.059264i	0.079285	0.677442-0.026126i	0.677946
3	0	0.000000	0	0.000000	-0.000001i	0.000001
4	0	0.000000	0	0.000000	0	0.000000
5	0	0.000000	0	0.000000	0	0.000000
6	0.462789+0.495413i	0.677944	0.534856+0.455679i	0.702648	-0.196541+0.041964i	0.200971
7	0	0.000000	0	0.000000	0	0.000000
8	0	0.000000	0	0.000000	0	0.000000

14	10		11		12	
M_J	117 cm ⁻¹		117 cm ⁻¹		149 cm ⁻¹	
	с	c	с	c	с	c
-8	0.704764-0.03982i	0.705888	-0.704665+0.039876i	0.705792	0	0.000000
-7	0	0.000000	0	0.000000	0.495178-0.500493i	0.704056
-6	0	0.000000	0	0.000000	0	0.000000
-5	0	0.000000	0	0.000000	0.003144-0.001138i	0.003344
-4	-0.029631-0.026506i	0.039756	0.031784+0.029092i	0.043088	0	0.000000
-3	0	0.000000	0	0.000000	-0.053963+0.021376i	0.058043
-2	0	0.000000	0	0.000000	0	0.000000
-1	0	0.000000	0	0.000000	-0.016279+0.02569i	0.030414
0	-0.016817+0.000475i	0.016824	0.000007+0.000263i	0.000263	0	0.000000
1	0	0.000000	0	0.000000	-0.009302+0.028956i	0.030413
2	0	0.000000	0	0.000000	0	0.000000
3	0	0.000000	0	0.000000	0.018148+0.055132i	0.058042
4	-0.028089+0.028135i	0.039756	-0.03009+0.030841i	0.043088	0	0.000000
5	0	0.000000	0	0.000000	-0.00114-0.003144i	0.003344
6	0	0.000000	0	0.000000	0	0.000000
7	0	0.000000	0	0.000000	0.067186-0.700843i	0.704056
8	0.705888	0.705888	0.705793	0.705793	0	0.000000

м	13		14		15	
M_J	149 cm ⁻¹		160 cm ⁻¹		201 cm ⁻¹	
	с	c	с	c	с	c

-8	0	0.000000	0	0.000000	0	0.000000
-7	-0.494166+0.501493i	0.704056	0	0.000000	-0.004072+0.0196i	0.020019
-6	0	0.000000	-0.038801-0.069166i	0.079306	0	0.000000
-5	0.003142-0.001144i	0.003344	0	0.000000	0.035242-0.040035i	0.053337
-4	0	0.000000	0	0.000000	0	0.000000
-3	0.05392-0.021485i	0.058043	0	0.000000	0.092954-0.084414i	0.125563
-2	0	0.000000	0.422407+0.561501i	0.702646	0	0.000000
-1	-0.016227+0.025723i	0.030414	0	0.000000	-0.054021+0.691426i	0.693533
0	0	0.000000	0	0.000000	0.000001	0.000001
1	0.009243-0.028974i	0.030413	0.000001i	0.000001	0.131881+0.680879i	0.693534
2	0	0.000000	-0.696281+0.094357i	0.702645	0	0.000000
3	0.01826+0.055095i	0.058042	0.000001i	0.000001	-0.101905-0.073358i	0.125563
4	0	0.000000	0	0.000000	0	0.000000
5	0.001146+0.003141i	0.003344	0	0.000000	-0.039544-0.035792i	0.053337
6	0	0.000000	0.076466-0.021033i	0.079306	0	0.000000
7	0.065769-0.700977i	0.704056	0	0.000000	0.006262+0.019013i	0.020018
8	0	0.000000	0	0.000000	0	0.000000

14	16		17		
M_J	201 cm ⁻¹		224 cm^{-1}		
	с	c	с	c	
-8	0	0.000000	0.006176-0.002277i	0.006582	
-7	0.014781-0.013499i	0.020018	0	0.000000	
-6	0	0.000000	0	0.000000	
-5	0.052015-0.011801i	0.053337	0	0.000000	
-4	0	0.000000	-0.070936-0.06336i	0.095113	
-3	-0.124784+0.01396i	0.125562	0	0.000000	
-2	0	0.000000	0	0.000000	
-1	-0.448823+0.528721i	0.693533	-0.000001i	0.000001	
0	0	0.000000	0.97546-0.174064i	0.990869	
1	0.291979-0.629076i	0.693533	-0.000001i	0.000001	
2	-0.000001	0.000001	0	0.000000	
3	-0.039616-0.11915i	0.125563	0	0.000000	
4	0	0.000000	-0.044643+0.083984i	0.095112	
5	0.011082+0.052173i	0.053337	0	0.000000	
6	0	0.000000	0	0.000000	
7	-0.006063+0.019078i	0.020018	0	0.000000	
8	0	0.000000	0.006582	0.006582	

Table S21. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Er(TPP)(cyclen)]⁺

		Experimenta	al Geometry	Symmetrized	-C ₄ Geometry
n	m	Real part	Imaginary part	Real part	Imaginary part
	0	71.89	0.00	110.05	0.00
2	1	7.84	7.84	0.18	0.18
	2	-17.38	-0.67	-0.32	0.11
	0	-113.16	0.00	-115.15	0.00
	1	-0.21	0.79	0.00	0.03
4	2	1.59	1.59	-0.02	-0.02
	3	6.02	0.70	-0.01	0.00
	4	-1.60	-67.79	-32.38	-67.85
	0	20.71	0.00	18.18	0.00
	1	-0.71	-0.75	0.00	0.00
	2	0.00	-0.23	0.00	0.00
6	3	2.24	2.24	0.00	0.00

4	-5.55	-0.67	-6.27	0.97
5	-0.38	1.50	-0.01	0.01
6	0.49	1.16	0.00	0.00

Table S22. CASSCF/RASSI calculated energies and wave functions of the [Er(TPP)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

	Basis set 2
Energy (cm-	Wave Function
1)	
0.00	+1/2>, -1/2>, -7/2>, +9/2>
0.00	$ -1/2\rangle, +1/2\rangle, +7/2\rangle, -9/2\rangle$
43.0	-3/2>, +3/2>, +5/2>, -5/2>, +13/2>, -11/2>, +11/2>, -13/2>
43.0	+3/2>, -3/2>, -5/2>, +5/2>, -13/2>, +11/2>, -11/2>, +13/2>
83.2	+13/2>, +5/2>, -3/2>, +15/2>, -13/2>
83.2	-13/2>, -5/2>, +3/2>, -15/2>, +13/2>
91.9	-15/2>, -13/2>, -7/2>
91.9	+15/2>, +13/2>, +7/2>
139	$ -5/2\rangle$, $ +5/2\rangle$, $ -13/2\rangle$, $ +3/2\rangle$, $ +11/2\rangle$, $ +13/2\rangle$, $ -3/2\rangle$
139	+5/2>, -5/2>, +13/2>, -3/2>, -11/2>, -13/2>, +3/2>
169	$ -11/2\rangle, -3/2\rangle, +11/2\rangle, +5/2\rangle, -9/2\rangle$
169	+11/2>, +3/2>, -11/2>, -5/2>, +9/2>
199	+7/2>, -9/2>, -1/2>, +9/2>, +15/2>, -7/2>
199	$ -7/2\rangle, +9/2\rangle, +1/2\rangle, -9/2\rangle, -15/2\rangle, +7/2\rangle$
216	$ -9/2\rangle, +9/2\rangle, +7/2\rangle, -1/2\rangle, -7/2\rangle, -11/2\rangle$
216	$ +9/2\rangle, -9/2\rangle, -7/2\rangle, +1/2\rangle, +7/2\rangle, +11/2\rangle$

Table S23.	Composition	of	wavefunctions	for	[Er(TPP)(cyclen)] ⁺	as	extracted	from	CASSCF/RASSI/Single_Anisc
calculations	with basis set 2	2.							

	Wave Functions and Energies					
M_J	1		2		3	
	0.00 cm ⁻¹		0.00 cm ⁻¹		43.0 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0.005677-0.014404i	0.015482	0	0.000000	0.000388-0.000113i	0.000404
-13/2	-0.001174+0.002634i	0.002884	-0.011147+0.004822i	0.012145	0.027938-0.058361i	0.064703
-11/2	-0.003526-0.006563i	0.007450	-0.005384+0.013914i	0.014919	0.018123+0.098085i	0.099745
-9/2	-0.027447+0.028966i	0.039904	0.052702-0.066975i	0.085224	-0.003262-0.008331i	0.008947
-7/2	0.100608-0.041417i	0.108800	0.040104-0.010595i	0.041480	-0.011742+0.001336i	0.011818
-5/2	-0.002517+0.007309i	0.007730	0.010926+0.00479i	0.011930	0.171533+0.078176i	0.188507
-3/2	0.004215+0.030623i	0.030912	0.008348+0.014986i	0.017154	-0.576555+0.392956i	0.697732
-1/2	-0.260842-0.179866i	0.316844	0.770837+0.529983i	0.935453	0.016743-0.022411i	0.027975
1/2	0.210413+0.911481i	0.935452	0.071691+0.308627i	0.316844	0.015317-0.008848i	0.017689
3/2	-0.010881-0.013262i	0.017154	0.026945+0.015151i	0.030913	-0.414139+0.473369i	0.628959
5/2	0.00045+0.011922i	0.011930	-0.007722-0.000338i	0.007729	-0.075412-0.20354i	0.217061
7/2	0.024562-0.033426i	0.041480	-0.075424+0.078413i	0.108800	-0.00155-0.002565i	0.002997
9/2	-0.081635+0.024472i	0.085224	-0.037013+0.014913i	0.039904	0.007166+0.004811i	0.008631
11/2	-0.014919-0.000093i	0.014919	-0.004813-0.005687i	0.007450	-0.088474-0.035066i	0.095170
13/2	0.008574-0.008602i	0.012145	-0.002881+0.000127i	0.002884	0.023403-0.097849i	0.100609
15/2	0	0.000000	-0.015483	0.015483	0.01473	0.014730

	43.0 cm ⁻¹		83.2 cm ⁻¹	83.2 cm ⁻¹		
	с	c	с	c	с	c
-15/2	0.014144-0.004114i	0.014730	0.003971-0.005601i	0.006866	-0.06114+0.08624i	0.105714
-13/2	-0.049802-0.087418i	0.100609	-0.068027+0.05601i	0.088118	0.819673+0.470032i	0.944878
-11/2	-0.075159+0.058382i	0.095170	-0.019683-0.025634i	0.032319	0.001587-0.030226i	0.030268
-9/2	-0.005537+0.006621i	0.008631	-0.001796-0.000724i	0.001936	0.000336+0.010982i	0.010987
-7/2	-0.000772+0.002896i	0.002997	0.009329-0.004251i	0.010252	-0.038625-0.017535i	0.042419
-5/2	0.015559-0.216502i	0.217060	-0.032936-0.030491i	0.044883	0.036749+0.219672i	0.222725
-3/2	-0.529874-0.338854i	0.628958	0.078648-0.155084i	0.173887	-0.028093+0.038274i	0.047478
-1/2	-0.017178-0.004217i	0.017688	0.007791-0.001175i	0.007879	-0.001353+0.007324i	0.007448
1/2	0.022337+0.016843i	0.027975	-0.006757-0.003133i	0.007448	-0.005465+0.005676i	0.007879
3/2	0.663366+0.216276i	0.697732	0.047471-0.000782i	0.047477	0.172002+0.025532i	0.173887
5/2	0.14287-0.122976i	0.188507	-0.157952-0.157027i	0.222725	-0.005826-0.044503i	0.044883
7/2	0.011648-0.001997i	0.011818	0.008034-0.041652i	0.042420	0.008863-0.005152i	0.010252
9/2	-0.000805+0.008911i	0.008947	-0.008765-0.006625i	0.010987	0.000448-0.001884i	0.001937
11/2	0.009995+0.099243i	0.099745	-0.025576-0.016187i	0.030268	0.009528+0.030883i	0.032319
13/2	0.043127+0.048235i	0.064704	0.090612-0.940523i	0.944878	0.085036-0.023102i	0.088118
15/2	-0.000404	0.000404	0.105714	0.105714	0.006865	0.006865

14	7		8		9		
M_J	91.9 cm ⁻¹		91.9 cm ⁻¹	91.9 cm ⁻¹ 139 cm ⁻¹			
	с	c	с	c	с	c	
-15/2	-0.157142+0.975388i	0.987965	0.001071-0.00665i	0.006736	-0.016302+0.018993i	0.025030	
-13/2	-0.110261+0.001765i	0.110275	0.000488-0.008991i	0.009004	0.250086-0.022428i	0.251090	
-11/2	-0.018372+0.004675i	0.018957	0.001603+0.000225i	0.001619	0.033327-0.017069i	0.037444	
-9/2	0.011487-0.041852i	0.043400	0.002696-0.00233i	0.003563	-0.007793-0.015466i	0.017318	
-7/2	-0.065778+0.062838i	0.090969	0.00246-0.000198i	0.002468	-0.006236-0.007289i	0.009593	
-5/2	0.00473-0.014444i	0.015199	0.001507+0.003446i	0.003761	-0.596611-0.653251i	0.884693	
-3/2	-0.005249+0.002093i	0.005651	0.006641+0.008199i	0.010551	0.056989-0.029553i	0.064196	
-1/2	-0.008349-0.003897i	0.009214	0.019061+0.016139i	0.024976	0.003062+0.005594i	0.006377	
1/2	0.012902+0.021386i	0.024976	0.002519+0.008863i	0.009214	0.004138+0.009908i	0.010737	
3/2	-0.007038-0.00786i	0.010550	0.002902-0.00485i	0.005652	-0.198033+0.101383i	0.222476	
5/2	0.003163+0.002036i	0.003762	0.015013-0.002373i	0.015199	-0.065606-0.249981i	0.258447	
7/2	0.000586-0.002397i	0.002468	0.0725-0.054946i	0.090969	-0.026258+0.043799i	0.051067	
9/2	-0.002729+0.002291i	0.003563	0.043147-0.004684i	0.043401	-0.010415-0.001617i	0.010540	
11/2	0.000033-0.001619i	0.001619	0.007537-0.017394i	0.018957	-0.106997-0.100376i	0.146710	
13/2	-0.008954-0.000948i	0.009004	-0.01928+0.108577i	0.110275	-0.041408+0.072987i	0.083915	
15/2	0.006736	0.006736	0.987966	0.987966	-0.000927	0.000927	

M	10		11		12	
M_J	139 cm ⁻¹		169 cm ⁻¹		169 cm ⁻¹	
	с	c	С	c	С	c
-15/2	-0.000604+0.000703i	0.000927	0.013906+0.012668i	0.018811	-0.000484-0.000441i	0.000655
-13/2	0.082353+0.016116i	0.083915	-0.016747-0.016524i	0.023527	0.003314+0.016951i	0.017272
-11/2	0.006479+0.146566i	0.146709	0.315012-0.91138i	0.964285	-0.004833-0.143643i	0.143724
-9/2	0.005556-0.008956i	0.010539	-0.061758+0.009914i	0.062549	0.004112-0.002054i	0.004596
-7/2	-0.050337-0.008602i	0.051067	0.01506-0.020058i	0.025082	0.012647+0.006177i	0.014075
-5/2	-0.14696-0.212597i	0.258447	0.014654-0.034208i	0.037215	0.057692-0.094704i	0.110893
-3/2	-0.205911+0.084239i	0.222476	-0.170347+0.008816i	0.170575	-0.01205+0.009367i	0.015262
-1/2	0.004823+0.009593i	0.010737	0.01402+0.013707i	0.019607	0.004971+0.010505i	0.011622
1/2	-0.002251-0.005967i	0.006377	0.010749-0.004418i	0.011622	-0.019595+0.000692i	0.019607
3/2	-0.059543+0.023996i	0.064196	0.0026+0.01504i	0.015263	-0.119992-0.121235i	0.170576
5/2	0.107121+0.878183i	0.884692	-0.021128+0.108862i	0.110893	0.012204-0.035157i	0.037215
7/2	-0.00147-0.009479i	0.009592	-0.013509-0.003951i	0.014075	-0.002375+0.02497i	0.025083
9/2	0.006661+0.015987i	0.017319	0.001657+0.004287i	0.004596	0.038978+0.048918i	0.062548

11/2	-0.034659+0.014172i	0.037445	0.100307-0.102933i	0.143724	-0.380881+0.885876i	0.964286
13/2	0.179901-0.175162i	0.251090	0.013865-0.0103i	0.017272	0.023508-0.000937i	0.023527
15/2	0.025029	0.025029	0.000655	0.000655	0.018811	0.018811

M	13		14		15	
M_J	199 cm ⁻¹		199 cm ⁻¹		216 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.003263+0.001737i	0.003697	-0.086988+0.046305i	0.098545	-0.019474+0.033226i	0.038512
-13/2	0.010165+0.001215i	0.010237	0.039588+0.00222i	0.039650	-0.00453-0.008678i	0.009789
-11/2	-0.005988-0.016217i	0.017287	-0.021313+0.018001i	0.027898	0.015749+0.058039i	0.060138
-9/2	0.084055-0.076766i	0.113834	-0.046498+0.087622i	0.099195	-0.689897+0.680022i	0.968704
-7/2	0.091522-0.003703i	0.091597	0.947572+0.213913i	0.971417	-0.062263-0.05263i	0.081527
-5/2	-0.017063-0.0371i	0.040836	-0.008158+0.000591i	0.008179	0.007944-0.016924i	0.018696
-3/2	0.005156+0.007194i	0.008851	-0.015651+0.00304i	0.015944	0.008977-0.001392i	0.009084
-1/2	0.077274+0.06777i	0.102782	-0.003312-0.006304i	0.007121	0.079187+0.067331i	0.103943
1/2	-0.000038-0.007121i	0.007121	0.036368-0.096132i	0.102781	-0.015486-0.016831i	0.022871
3/2	-0.015244+0.004671i	0.015944	-0.001171+0.008773i	0.008851	-0.01699-0.006933i	0.018350
5/2	0.007479-0.003311i	0.008179	0.002371+0.040767i	0.040836	0.004284-0.004663i	0.006332
7/2	0.735934-0.634076i	0.971417	-0.082529+0.039736i	0.091597	0.081578-0.085072i	0.117865
9/2	0.082217+0.055498i	0.099195	0.110269+0.028267i	0.113834	-0.145113+0.048799i	0.153098
11/2	-0.027272-0.005875i	0.027898	-0.002334-0.017129i	0.017287	0.002943+0.016184i	0.016449
13/2	-0.033902+0.020561i	0.039650	0.008402-0.005849i	0.010237	-0.002955+0.003712i	0.004745
15/2	-0.098545	0.098545	0.003697	0.003697	-0.003091	0.003091

M	16					
IVI J	216 cm ⁻¹					
	с	c				
-15/2	-0.001563+0.002667i	0.003091				
-13/2	0.004697-0.000672i	0.004745				
-11/2	-0.012475-0.010723i	0.016450				
-9/2	0.115478-0.100518i	0.153098				
-7/2	0.114645-0.027363i	0.117865				
-5/2	-0.006189+0.001338i	0.006332				
-3/2	-0.00261+0.018164i	0.018351				
-1/2	-0.00669-0.021871i	0.022871				
1/2	-0.018047-0.102364i	0.103943				
3/2	-0.00574+0.00704i	0.009083				
5/2	0.018618+0.001704i	0.018696				
7/2	-0.013922-0.080329i	0.081527				
9/2	-0.93553+0.25134i	0.968704				
11/2	0.042109+0.042936i	0.060139				
13/2	0.005196+0.008296i	0.009789				
15/2	0.038512	0.038512				

 Table S24. CASSCF/RASSI calculated energies and wave functions of the [Er(Por)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

	Basis set 2							
Energy (cm ⁻	Wave Function							
1)								
0.00	$ -1/2\rangle, +7/2\rangle, -9/2\rangle$							
0.00	+1/2>, -7/2>, +9/2>							
39.6	$ -3/2\rangle$, $ +13/2\rangle$, $ +5/2\rangle$, $ -11/2\rangle$							
39.6	+3/2>, -13/2>, -5/2>, +11/2>							

96.8	-13/2>, +3/2>, +13/2>, -3/2>, +11/2>, -11/2>
96.8	+13/2>, -3/2>, -13/2>, +3/2>, -11/2>, +11/2>
98.1	$ -15/2\rangle, -7/2\rangle, +1/2\rangle$
98.1	$ +15/2\rangle, +7/2\rangle, -1/2\rangle$
140	$ -5/2\rangle$, $ +11/2\rangle$, $ +3/2\rangle$, $ -13/2\rangle$
140	+5/2>, -11/2>, -3/2>, +13/2>
179	$ -11/2\rangle$, $ +5/2\rangle$, $ +13/2\rangle$
179	+11/2>, -5/2>, -13/2>
194	$ -7/2\rangle, +9/2\rangle, -15/2\rangle, +7/2\rangle, -9/2\rangle, +1/2\rangle$
194	+7/2>, -9/2>, +15/2>, -7/2>, +9/2>, -1/2>
214	+9/2>, -7/2>, +1/2>, -9/2>, -15/2>
214	$ -9/2\rangle, +7/2\rangle, -1/2\rangle, +9/2\rangle, +15/2\rangle$

 Table S25. Composition of wavefunctions for [Er(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

	Wave Functions and Energies					
M_J	1		2		3	
	0.00 cm ⁻¹		0.00 cm ⁻¹		39.6 cm ⁻¹	
	с	c	с	c	с	c
-15/2	0.014448+0.009611i	0.017353	-0.000043-0.000029i	0.000052	0.000086-0.000068i	0.000110
-13/2	0.000003+0.000001i	0.000003	-0.000083-0.000023i	0.000086	-0.045268-0.049346i	0.066964
-11/2	0.000022+0.00011i	0.000112	0.00005-0.000078i	0.000093	0.055353-0.074964i	0.093186
-9/2	-0.000336-0.000075i	0.000344	-0.099585-0.032382i	0.104718	-0.000023+0.000024i	0.000033
-7/2	0.065603+0.111495i	0.129363	-0.000158-0.000299i	0.000338	0.000126+0.000104i	0.000163
-5/2	0.000005-0.000018i	0.000019	-0.000129-0.000241i	0.000273	-0.041159-0.230735i	0.234377
-3/2	-0.000504+0.000485i	0.000699	-0.000068-0.00001i	0.000069	0.604975-0.08757i	0.611280
-1/2	-0.000563-0.002557i	0.002618	-0.179568-0.969405i	0.985896	-0.000507+0.000199i	0.000545
1/2	-0.68642+0.707685i	0.985896	0.001885-0.001817i	0.002618	-0.00046-0.00004i	0.000462
3/2	0.000063+0.000029i	0.000069	-0.000151-0.000683i	0.000699	0.671309-0.227344i	0.708760
5/2	-0.000242+0.000129i	0.000274	0.000006-0.000017i	0.000018	0.058531+0.193448i	0.202109
7/2	0.000297-0.000161i	0.000338	0.116374-0.056498i	0.129364	0.000048-0.000117i	0.000126
9/2	-0.100851-0.028194i	0.104718	0.000322+0.000123i	0.000345	-0.000003-0.000009i	0.000009
11/2	0.000002-0.000093i	0.000093	0.000079-0.000079i	0.000112	0.096603+0.048411i	0.108054
13/2	-0.000082-0.000026i	0.000086	-0.000003-0.000001i	0.000003	-0.015631+0.05592i	0.058064
15/2	0.000052	0.000052	0.017352	0.017352	0.000016	0.000016

м	4		5		6	
M_J	39.6 cm ⁻¹		96.8 cm ⁻¹		96.8 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.000013+0.00001i	0.000016	-0.000483+0.000426i	0.000644	-0.010411+0.009175i	0.013877
-13/2	-0.046867-0.034276i	0.058063	-0.051164-0.047898i	0.070085	0.780312+0.432393i	0.892105
-11/2	-0.045974+0.097786i	0.108054	-0.035338+0.038864i	0.052528	-0.002105+0.003442i	0.004035
-9/2	0.000003+0.000008i	0.000009	-0.000079-0.000051i	0.000094	0.00015+0.000161i	0.000220
-7/2	-0.00011-0.000062i	0.000126	-0.000162-0.000006i	0.000162	-0.001541+0.000623i	0.001662
-5/2	-0.073643-0.188215i	0.202109	-0.008661-0.029246i	0.030501	0.198589+0.336648i	0.390857
-3/2	-0.668132+0.236518i	0.708760	-0.205376+0.010968i	0.205669	-0.015578+0.004856i	0.016317
-1/2	-0.000337+0.000316i	0.000462	-0.000047-0.000436i	0.000439	-0.000122-0.000085i	0.000149
1/2	0.000522-0.000157i	0.000545	0.000035-0.000144i	0.000148	0.000253+0.000358i	0.000438
3/2	0.529562-0.305332i	0.611280	-0.014898+0.006657i	0.016318	0.16133-0.127563i	0.205669
5/2	-0.110354-0.206771i	0.234376	0.073598+0.383865i	0.390857	0.012839+0.027667i	0.030501
7/2	0.000035-0.00016i	0.000164	-0.001568+0.000552i	0.001662	0.000118-0.000112i	0.000163
9/2	0.000033+0.000004i	0.000033	-0.000006+0.00022i	0.000220	-0.000026+0.00009i	0.000094

11/2	0.089859+0.024675i	0.093185	-0.003855-0.001191i	0.004035	0.052208+0.005793i	0.052528
13/2	0.005055-0.066774i	0.066965	-0.29952+0.84032i	0.892104	-0.006715+0.069763i	0.070085
15/2	0.00011	0.000110	-0.013877	0.013877	0.000644	0.000644

14	7		8		9	
M_J	98.1 cm ⁻¹		98.1 cm ⁻¹		140 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.000194-0.000168i	0.000257	0.749825+0.648718i	0.991500	0.000002+0.000003i	0.000004
-13/2	-0.001244-0.000975i	0.001581	-0.004545+0.01155i	0.012412	-0.211127-0.170257i	0.271223
-11/2	-0.000505+0.000536i	0.000736	0.000128+0.000192i	0.000231	-0.094067-0.020841i	0.096348
-9/2	0.005797+0.002259i	0.006222	0.000035+0.000021i	0.000041	-0.000098+0.000139i	0.000170
-7/2	-0.000019-0.000031i	0.000036	0.061135+0.108895i	0.124882	0.000021-0.00023i	0.000231
-5/2	-0.000222-0.000544i	0.000588	-0.004264+0.003507i	0.005521	0.187231+0.501502i	0.535313
-3/2	-0.002806+0.0001i	0.002808	-0.000151-0.000469i	0.000493	-0.097298-0.147095i	0.176363
-1/2	0.004359+0.032841i	0.033129	0.000003-0.000002i	0.000004	-0.000094-0.000089i	0.000129
1/2	-0.000001-0.000004i	0.000004	0.024784-0.021984i	0.033129	0.00011-0.000014i	0.000111
3/2	-0.000421+0.000256i	0.000493	0.002057+0.001911i	0.002808	0.121937-0.068179i	0.139703
5/2	0.00093+0.005442i	0.005521	-0.000524+0.000266i	0.000588	-0.499811+0.454989i	0.675889
7/2	0.117481-0.042352i	0.124882	0.000035-0.000011i	0.000037	-0.000032+0.000072i	0.000079
9/2	-0.000041-0.000007i	0.000042	0.005862+0.002084i	0.006221	0.000074+0.000207i	0.000220
11/2	0.000222-0.000061i	0.000230	0.000031+0.000736i	0.000737	0.074196+0.019171i	0.076633
13/2	-0.00412+0.011709i	0.012413	-0.001579-0.000076i	0.001581	0.335328-0.069505i	0.342456
15/2	0.9915	0.991500	0.000256	0.000256	-0.000162	0.000162

M	10		11		12	
M_J	140 cm ⁻¹		179 cm ⁻¹		179 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.000076-0.000143i	0.000162	-0.000009+0.000028i	0.000029	0.000139-0.000429i	0.000451
-13/2	-0.095135-0.328976i	0.342456	-0.0195-0.000934i	0.019522	-0.00222+0.000737i	0.002339
-11/2	0.051601+0.056656i	0.076633	0.085972-0.062819i	0.106477	-0.642569+0.733126i	0.974869
-9/2	-0.000218+0.000031i	0.000220	-0.000131+0.000013i	0.000132	0.000513-0.000425i	0.000666
-7/2	0.000048-0.000062i	0.000078	-0.000112-0.000129i	0.000171	-0.000106+0.001281i	0.001285
-5/2	-0.168921+0.65444i	0.675889	0.071006+0.044447i	0.083770	0.008802+0.002915i	0.009272
-3/2	-0.003345+0.139663i	0.139703	-0.01884-0.00299i	0.019076	0.174095-0.011307i	0.174462
-1/2	-0.000039-0.000104i	0.000111	0.000046-0.000129i	0.000137	-0.000055-0.000134i	0.000145
1/2	-0.000122-0.000042i	0.000129	-0.000111-0.000094i	0.000145	0.000137-0.000004i	0.000137
3/2	0.175508+0.017344i	0.176363	0.064377-0.162149i	0.174461	0.002958-0.018845i	0.019076
5/2	0.530894-0.068636i	0.535312	0.000062+0.009272i	0.009272	-0.020417-0.081244i	0.083770
7/2	0.000194-0.000126i	0.000231	-0.001252-0.000293i	0.001286	-0.000088-0.000146i	0.000170
9/2	0.000078-0.000151i	0.000170	-0.000563+0.000358i	0.000667	-0.000053+0.000121i	0.000132
11/2	0.062357+0.073447i	0.096348	-0.895394+0.385537i	0.974869	-0.086244+0.062445i	0.106477
13/2	-0.249146-0.107183i	0.271223	0.001385-0.001885i	0.002339	-0.005117+0.01884i	0.019523
15/2	-0.000004	0.000004	0.000451	0.000451	0.000029	0.000029

14	13		14		15	
M_J	194 cm ⁻¹		194 cm ⁻¹		214 cm ⁻¹	
	с	c	с	c	с	c
-15/2	-0.000178+0.000218i	0.000281	-0.080704+0.098935i	0.127676	0.007302-0.006062i	0.009490
-13/2	0.000046-0.000004i	0.000046	-0.000083+0.000072i	0.000110	0.00009+0.000081i	0.000121
-11/2	-0.000217-0.000007i	0.000217	-0.001294-0.000064i	0.001296	-0.000302-0.000067i	0.000309
-9/2	-0.110983-0.052829i	0.122915	-0.000497+0.000424i	0.000653	-0.507108-0.244936i	0.563163
-7/2	0.001898-0.001061i	0.002174	0.8393-0.501388i	0.977658	-0.083856+0.031924i	0.089727
-5/2	-0.000116+0.000058i	0.000130	0.000088-0.000167i	0.000189	0.000171-0.000031i	0.000174
-3/2	-0.00004+0.000041i	0.000057	0.00004+0.000336i	0.000338	0.000042-0.000021i	0.000047
-1/2	-0.009049-0.112634i	0.112997	0.000109+0.000302i	0.000321	0.003438+0.067678i	0.067765

1/2	-0.000165-0.000275i	0.000321	-0.081559-0.078207i	0.112996	0.059996+0.077099i	0.097692
3/2	0.000235+0.000243i	0.000338	-0.000057+0.000005i	0.000057	-0.000049-0.00011i	0.000120
5/2	0.000185+0.000037i	0.000189	0.000118-0.000054i	0.000130	-0.000206+0.000089i	0.000224
7/2	-0.919039+0.333439i	0.977658	0.002022-0.0008i	0.002175	0.058104-0.020445i	0.061596
9/2	-0.000643+0.000117i	0.000654	0.029216-0.119393i	0.122916	0.322105-0.743628i	0.810391
11/2	0.000768-0.001044i	0.001296	-0.000132+0.000173i	0.000218	-0.000311+0.000494i	0.000584
13/2	-0.000108+0.000019i	0.000110	-0.000032+0.000033i	0.000046	-0.000014+0.00017i	0.000171
15/2	0.127677	0.127677	-0.000281	0.000281	-0.006486	0.006486

14	16					
M_J	214 cm ⁻¹					
	с	c				
-15/2	-0.00499+0.004143i	0.006486				
-13/2	0.000119+0.000122i	0.000170				
-11/2	-0.000555-0.000181i	0.000584				
-9/2	-0.722827-0.36641i	0.810392				
-7/2	0.057765-0.021383i	0.061596				
-5/2	0.000215-0.000063i	0.000224				
-3/2	0.000032+0.000116i	0.000120				
-1/2	0.003085+0.097644i	0.097693				
1/2	-0.040584-0.054268i	0.067765				
3/2	-0.000046+0.000011i	0.000047				
5/2	0.000152-0.000085i	0.000174				
7/2	0.084912-0.029001i	0.089728				
9/2	-0.23372+0.512374i	0.563163				
11/2	0.000189-0.000244i	0.000309				
13/2	0.000017-0.000119i	0.000120				
15/2	-0.009491	0.009491				

Table S26. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Tm(TPP)(cyclen)]⁺

		Experimenta	al Geometry	Symmetrized	- C_4 Geometry
n	m	Real part	Imaginary part	Real part	Imaginary part
	0	-37.35	0.00	26.86	0.00
2	1	10.86	10.86	-0.01	-0.01
	2	-51.85	14.76	0.00	0.00
	0	3.54	0.00	-84.59	0.00
4	1	28.10	71.41	0.01	-0.01
4	2	38.72	38.72	-0.02	-0.02
	3	51.57	31.23	0.00	0.00
	4	-0.34	76.47	-4.74	41.19
	0	6.12	0.00	18.72	0.00
	1	1.57	0.94	0.00	0.00
	2	10.81	-7.27	0.00	0.00
6	3	5.01	5.01	0.00	0.00
	4	0.46	-11.46	-4.80	-3.80
	5	15.71	-7.06	0.00	0.00
	6	3.68	8.93	0.00	0.00

 Table S27. CASSCF/RASSI calculated energies and wave functions of the [Tm(TPP)(cyclen)]+ with an absolute coefficient larger than 0.05.

Basis set 2								
Energy (cm ⁻¹)	Wave Function							
0.00	$ \pm 6\rangle, \pm 2\rangle, \pm 4\rangle, \pm 5\rangle, \pm 3\rangle, \pm 1\rangle$							

7.40	$ \pm 6\rangle, \pm 4\rangle, \pm 5\rangle, \pm 3\rangle, \pm 1\rangle, \pm 2\rangle$
11.2	$ \pm5\rangle, \pm3\rangle, \pm1\rangle, \pm2\rangle, \pm4\rangle, 0\rangle, \pm6\rangle$
16.7	$ \pm5\rangle, \pm2\rangle, \pm1\rangle, \pm6\rangle, \pm3\rangle, 0\rangle$
24.7	$ \pm1\rangle$, $ \pm3\rangle$, $ 0\rangle$, $ \pm2\rangle$, $ \pm4\rangle$, $ \pm5\rangle$, $ \pm6\rangle$
28.0	$ 0\rangle, \pm4\rangle, \pm3\rangle, \pm2\rangle, \pm1\rangle, \pm5\rangle, \pm6\rangle$
76.9	$ \pm 4\rangle$, $ \pm 6\rangle$, $ \pm 3\rangle$, $ \pm 1\rangle$, $ \pm 2\rangle$, $ \pm 5\rangle$
99.1	$ \pm 4\rangle$, $ \pm 6\rangle$, $ \pm 3\rangle$, $ 0\rangle$, $ \pm 5\rangle$, $ \pm 2\rangle$, $ \pm 1\rangle$
105	$ \pm 3\rangle, \pm 2\rangle, \pm 5\rangle, \pm 6\rangle, \pm 1\rangle, \pm 4\rangle$
167	$ \pm 2\rangle$, $ \pm 5\rangle$, $ \pm 6\rangle$, $ \pm 1\rangle$, $ 0\rangle$, $ \pm 3\rangle$
173	$ \pm 3\rangle, \pm 5\rangle, \pm 1\rangle, \pm 6\rangle, 0\rangle, \pm 4\rangle, \pm 2\rangle$
212	$ \pm1\rangle$, $ \pm5\rangle$, $ \pm4\rangle$, $ \pm6\rangle$, $ \pm2\rangle$, $ \pm3\rangle$
213	$ 0\rangle$, $ \pm2\rangle$, $ \pm4\rangle$, $ \pm5\rangle$, $ \pm3\rangle$, $ \pm6\rangle$, $ \pm1\rangle$

Table S28. Composition of wave functions for $[Tm(TPP)(cyclen)]^+$ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

M_J	1		2	2		3	
	0.00 cm ⁻¹		7.40 cm ⁻¹		11.2 cm ⁻¹		
	с	c	с	c	с	c	
-6	0.031671-0.456952i	0.458048	0.047655-0.521094i	0.523269	-0.093659+0.012863i	0.094538	
-5	-0.168763+0.003709i	0.168804	-0.274746+0.05922i	0.281056	0.381619+0.139798i	0.406419	
-4	0.240553+0.155707i	0.286549	0.227647+0.18372i	0.292534	0.07419+0.119315i	0.140500	
-3	-0.076736+0.141513i	0.160979	-0.117742+0.118918i	0.167346	-0.296222+0.268763i	0.399976	
-2	-0.374779+0.032526i	0.376188	-0.124524+0.03452i	0.129220	-0.171761-0.178005i	0.247361	
-1	-0.083914-0.071252i	0.110084	-0.090205-0.093221i	0.129719	0.121814-0.247546i	0.275894	
0	-0.006271+0.005851i	0.008577	0.009173+0.01005i	0.013607	-0.009077-0.132801i	0.133111	
1	-0.06528-0.08864i	0.110084	0.084618+0.09832i	0.129719	0.154364+0.22867i	0.275895	
2	-0.058362+0.371634i	0.376189	0.045717-0.120862i	0.129219	0.145944-0.19972i	0.247362	
3	0.14648-0.066767i	0.160979	-0.129146+0.106423i	0.167346	-0.330037-0.225958i	0.399977	
4	-0.138702-0.250743i	0.286549	0.162225+0.243432i	0.292534	-0.057266+0.1283i	0.140500	
5	0.015369-0.168103i	0.168804	-0.083995+0.268211i	0.281056	0.359048-0.190423i	0.406419	
6	0.458048	0.458048	-0.523268	0.523268	0.094538	0.094538	

14	4		5		6	
M_J	16.7 cm ⁻¹		24.7 cm ⁻¹		28.0 cm ⁻¹	
	с	c	с	c	с	c
-6	-0.093782+0.216502i	0.235941	-0.028474-0.045304i	0.053509	-0.066672-0.015147i	0.068371
-5	0.485746-0.049532i	0.488265	0.018443+0.053869i	0.056939	0.038506+0.114305i	0.120617
-4	0.032537+0.016333i	0.036406	0.196108+0.019972i	0.197122	-0.31574-0.032016i	0.317359
-3	-0.061739+0.135041i	0.148485	0.017074-0.331145i	0.331585	-0.183365-0.252059i	0.311699
-2	-0.340519-0.092003i	0.352729	0.191493-0.068443i	0.203357	-0.209259+0.122564i	0.242510
-1	-0.044512-0.233395i	0.237602	-0.340278-0.396383i	0.522407	-0.107081-0.110016i	0.153525
0	0.048512-0.031854i	0.058035	0.120096-0.217327i	0.248302	-0.07059+0.629334i	0.633281
1	-0.196473-0.133615i	0.237602	-0.516674-0.077173i	0.522406	-0.128794+0.083559i	0.153525
2	-0.050928+0.349033i	0.352729	-0.043951-0.198551i	0.203357	0.176906+0.165879i	0.242511
3	0.148455-0.002976i	0.148485	-0.271282+0.190668i	0.331584	-0.234651+0.205172i	0.311700
4	-0.002055-0.036348i	0.036406	-0.121264-0.15541i	0.197122	0.314987+0.03873i	0.317359
5	-0.238527+0.426037i	0.488265	0.055423-0.01305i	0.056939	0.062873-0.102934i	0.120617
6	-0.235941	0.235941	0.053509	0.053509	0.068371	0.068371

м	7		8		9	
M_J	76.9 cm ⁻¹		99.1 cm ⁻¹		105 cm ⁻¹	
	с	c	c	c	С	c

-6	0.06796+0.265467i	0.274028	-0.061278-0.378723i	0.383648	0.013145+0.196199i	0.196639
-5	0.018366+0.064907i	0.067455	0.134431-0.124438i	0.183184	-0.216918+0.063282i	0.225960
-4	0.516602+0.222381i	0.562433	-0.41273-0.170825i	0.446685	0.028442+0.124108i	0.127325
-3	-0.019638-0.235829i	0.236645	0.077889+0.202425i	0.216893	-0.094011+0.487525i	0.496506
-2	0.141573+0.044037i	0.148264	0.138848-0.10056i	0.171438	0.32508-0.073295i	0.333240
-1	-0.098496-0.126386i	0.160234	-0.041463-0.143024i	0.148913	0.016836+0.188717i	0.189467
0	0.021465+0.016662i	0.027173	0.133222-0.15651i	0.205532	-0.025253-0.023618i	0.034576
1	0.146865+0.064075i	0.160234	-0.14781-0.018086i	0.148912	-0.189421-0.004183i	0.189467
2	0.077772+0.126228i	0.148263	0.077092-0.153127i	0.171438	-0.0514+0.329253i	0.333241
3	0.233332-0.039462i	0.236645	0.212267+0.044557i	0.216893	-0.48015+0.126391i	0.496507
4	0.343552+0.445312i	0.562433	0.234555+0.380147i	0.446685	0.125731+0.020082i	0.127325
5	-0.067434-0.001695i	0.067455	-0.101368+0.152581i	0.183184	-0.04864+0.220663i	0.225960
6	0.274028	0.274028	0.383648	0.383648	0.196639	0.196639

14	10	10		11		12	
M_J	167 cm ⁻¹		173 cm ⁻¹		212 cm ⁻¹		
	с	c	с	c	с	c	
-6	0.104928+0.278417i	0.297533	-0.095896-0.234707i	0.253542	-0.103351-0.06415i	0.121641	
-5	-0.240958+0.230878i	0.333715	0.276218-0.243043i	0.367922	0.10087-0.264967i	0.283518	
-4	0.010364-0.015096i	0.018311	0.108201-0.001651i	0.108214	0.248304+0.017375i	0.248911	
-3	-0.089121+0.042362i	0.098677	0.022603-0.404101i	0.404733	-0.073478+0.00716i	0.073826	
-2	-0.489217+0.167012i	0.516939	-0.01112+0.080928i	0.081688	-0.093737+0.0385i	0.101335	
-1	0.102868+0.081305i	0.131120	0.261655+0.20596i	0.332991	0.489324+0.294579i	0.571152	
0	-0.08717-0.060303i	0.105996	0.067258-0.100136i	0.120627	0.041484+0.011828i	0.043137	
1	-0.112359-0.067586i	0.131120	0.289625+0.164317i	0.332991	-0.571099-0.007769i	0.571152	
2	-0.016245-0.516684i	0.516939	-0.07071+0.040903i	0.081688	-0.059338-0.082145i	0.101335	
3	-0.008211+0.098335i	0.098677	-0.365533+0.173766i	0.404733	0.058654+0.044834i	0.073827	
4	-0.010471+0.015022i	0.018311	-0.039396-0.100787i	0.108213	0.220131+0.116186i	0.248911	
5	-0.131068+0.306898i	0.333714	-0.120515+0.347624i	0.367922	0.054032-0.278321i	0.283517	
6	0.297533	0.297533	0.253542	0.253542	-0.121641	0.121641	

м	13				
M_J	213 cm ⁻¹				
	с	c			
-6	0.111273+0.057509i	0.125256			
-5	-0.067254+0.224372i	0.234235			
-4	-0.252016-0.04571i	0.256128			
-3	-0.035381-0.164733i	0.168490			
-2	-0.219169+0.247764i	0.330790			
-1	0.024684+0.057944i	0.062983			
0	0.157448-0.647566i	0.666432			
1	0.048532-0.040142i	0.062982			
2	0.080946+0.320734i	0.330791			
3	-0.107066+0.130098i	0.168489			
4	0.244869+0.075102i	0.256127			
5	0.043271-0.230203i	0.234234			
6	-0.125255	0.125255			

 Table S29. CASSCF/RASSI calculated energies and wave functions of the [Tm(Por)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

Basis set 2						
Energy (cm ⁻¹)	Wave Function					
0.00	$ \pm 6\rangle, \pm 2\rangle$					

3.31	$ \pm 6\rangle, \pm 2\rangle$
30.8	$ \pm 1\rangle$, $ \pm 3\rangle$, $ \pm 5\rangle$
30.8	$ \pm 1\rangle$, $ \pm 3\rangle$, $ \pm 5\rangle$
31.7	$ 0\rangle, \pm 4\rangle$
37.2	$ \pm 2\rangle$, $ \pm 6\rangle$
77.1	$ \pm 2\rangle$, $ \pm 6\rangle$
100	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$
100	$ \pm 3\rangle, \pm 1\rangle, \pm 5\rangle$
162	$ \pm 4\rangle$
168	$ \pm 4\rangle$, $ 0\rangle$,
197	$ \pm5\rangle, \pm1\rangle, \pm3\rangle$
197	$ \pm 5\rangle, \pm 1\rangle, \pm 3\rangle$

Table S30. Composition of wave functions for [Tm(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

	Wave Functions and Energies						
M_J	1		2	2		3	
	0.00 cm ⁻¹		3.31 cm ⁻¹		30.8 cm ⁻¹		
	с	c	с	c	С	c	
-6	-0.251907+0.600185i	0.650906	-0.269315+0.641441i	0.695685	-0.000037+0.000037i	0.000052	
-5	-0.000003-0.000009i	0.000009	-0.000003-0.00001i	0.000010	0.010692-0.071001i	0.071802	
-4	0.000013+0.000038i	0.000040	0.000015+0.00005i	0.000052	-0.000059-0.000105i	0.000120	
-3	0.000011+0.000009i	0.000014	0.000008+0.000005i	0.000009	0.189816+0.116022i	0.222466	
-2	0.276161+0.007517i	0.276263	0.126536+0.003352i	0.126580	-0.000111-0.000059i	0.000126	
-1	0.000005-0.000005i	0.000007	0.000006-0.000005i	0.000008	-0.667069+0.019283i	0.667348	
0	-0.000063+0.000042i	0.000076	0.000013+0.000019i	0.000023	-0.000828+0.00034i	0.000895	
1	-0.000006+0.000002i	0.000006	0.000007-0.000003i	0.000008	0.487915-0.455293i	0.667348	
2	0.099945-0.257551i	0.276263	-0.045894+0.117967i	0.126580	-0.000037+0.00012i	0.000126	
3	0.000004+0.000013i	0.000014	-0.000002-0.000009i	0.000009	-0.053407+0.215961i	0.222467	
4	-0.00003-0.000027i	0.000040	0.00004+0.000033i	0.000052	0.000032+0.000116i	0.000120	
5	-0.000007-0.000006i	0.000009	0.000008+0.000006i	0.000010	-0.057523-0.042972i	0.071802	
6	-0.650906	0.650906	0.695685	0.695685	-0.000052	0.000052	

14	4		5		6	
M_J	30.8 cm ⁻¹		31.7 cm ⁻¹		37.2 cm ⁻¹	
	с	c	с	c	с	c
-6	-0.000021	0.000021	0.000231-0.000432i	0.000490	0.107274-0.254585i	0.276263
-5	0.037086-0.061512i	0.071827	-0.000003+0.000063i	0.000063	-0.000002-0.000009i	0.000009
-4	-0.000009-0.000008i	0.000012	-0.083509-0.118755i	0.145177	0.00016+0.000182i	0.000242
-3	-0.130895-0.179925i	0.222501	-0.000204-0.000056i	0.000212	0.000072+0.000065i	0.000097
-2	-0.000026-0.000048i	0.000055	0.001036+0.00009i	0.001040	0.650639+0.018625i	0.650906
-1	-0.623529-0.237794i	0.667334	0.000603-0.000066i	0.000607	-0.000103+0.00004i	0.000110
0	0.000069i	0.000069	-0.839434+0.503184i	0.978695	0.001323-0.000878i	0.001588
1	-0.625122+0.233574i	0.667334	-0.000342+0.000501i	0.000607	0.000077-0.00008i	0.000111
2	0.000026-0.000048i	0.000055	0.000409-0.000956i	0.001040	0.235482-0.606816i	0.650905
3	-0.132108+0.179036i	0.222500	0.000047-0.000206i	0.000211	0.000032+0.000091i	0.000096
4	0.000009-0.000008i	0.000012	0.065377+0.129624i	0.145178	-0.000105-0.000218i	0.000242
5	0.036669+0.061761i	0.071826	0.000057+0.000026i	0.000063	-0.000007-0.000005i	0.000009
6	0.000021	0.000021	0.00049	0.000490	0.276263	0.276263

м	7		8		9	
M_J	77.1 cm ⁻¹		100 cm ⁻¹		100 cm ⁻¹	
	с	c	с	c	С	c

-6	0.049336-0.116569i	0.126580	-0.000011-0.000004i	0.000012	0.000006+0.000012i	0.000013
-5	-0.000009-0.000011i	0.000014	-0.032176-0.022129i	0.039051	-0.021468-0.032468i	0.038924
-4	0.000034+0.00001i	0.000035	-0.000055-0.000032i	0.000064	0.000048+0.000051i	0.000070
-3	0.000062+0.000071i	0.000094	-0.620623+0.255193i	0.671041	0.671016-0.004826i	0.671033
-2	0.695385+0.020414i	0.695685	0.000002-0.000073i	0.000073	-0.000089+0.000066i	0.000111
-1	-0.000067+0.000067i	0.000095	-0.09209+0.199244i	0.219497	-0.159902+0.150435i	0.219543
0	-0.00001-0.000014i	0.000017	0.000004-0.000026i	0.000026	-0.000022-0.000013i	0.000026
1	-0.000088+0.000036i	0.000095	-0.026038-0.217947i	0.219497	-0.057285+0.211938i	0.219543
2	-0.252235+0.648348i	0.695685	0.00002-0.00007i	0.000073	0.000016-0.000109i	0.000110
3	-0.000041-0.000084i	0.000093	-0.511437-0.434428i	0.671041	-0.312086-0.594044i	0.671033
4	-0.000004+0.000035i	0.000035	0.000062-0.000014i	0.000064	0.000067+0.000019i	0.000070
5	0.000007+0.000012i	0.000014	-0.037438+0.011107i	0.039051	0.038754+0.003626i	0.038923
6	-0.12658	0.126580	0.000012	0.000012	0.000014	0.000014

14	10	10		11		12	
M_J	162 cm ⁻¹		168 cm ⁻¹		197 cm ⁻¹		
	с	c	с	c	с	c	
-6	-0.00002-0.000042i	0.000047	0.000019+0.000041i	0.000045	0.000002-0.00001i	0.000010	
-5	0.000015+0.0001i	0.000101	-0.000016-0.000104i	0.000105	-0.292427-0.638602i	0.702372	
-4	0.626591+0.32769i	0.707105	-0.613939-0.319384i	0.692046	0.0001+0.000017i	0.000101	
-3	-0.000063+0.000027i	0.000069	0.000063-0.000027i	0.000069	-0.012249-0.007631i	0.014432	
-2	-0.000037+0.000006i	0.000037	0.000028+0.000004i	0.000028	-0.000003-0.000001i	0.000003	
-1	0.000001-0.000003i	0.000003	0.000021-0.000004i	0.000021	0.06607-0.04583i	0.080409	
0	0.002234+0.001424i	0.002649	0.110049-0.173307i	0.205295	0.00001+0.000013i	0.000016	
1	0.000003-0.000002i	0.000004	0.000005+0.000021i	0.000022	0.06028-0.053216i	0.080409	
2	-0.000011-0.000036i	0.000038	-0.000016-0.000024i	0.000029	-0.000003i	0.000003	
3	0.000002+0.000069i	0.000069	0.000002+0.000068i	0.000068	0.004486+0.013716i	0.014431	
4	0.561686+0.42954i	0.707104	0.550166+0.419815i	0.692046	-0.000008+0.000101i	0.000101	
5	-0.000097+0.000028i	0.000101	-0.000101+0.00003i	0.000105	0.550308+0.436449i	0.702372	
6	-0.000046	0.000046	-0.000045	0.000045	-0.00001	0.000010	

м	13				
M_J	197 cm ⁻¹				
	с	c			
-6	-0.000003+0.00001i	0.000010			
-5	0.2908+0.639339i	0.702367			
-4	-0.000101-0.000025i	0.000104			
-3	-0.012355-0.007728i	0.014573			
-2	0.000003+0.000001i	0.000003			
-1	-0.066198+0.045672i	0.080425			
0	0.000018-0.000014i	0.000023			
1	0.060428-0.053072i	0.080425			
2	-0.000003i	0.000003			
3	-0.004484-0.013865i	0.014572			
4	-0.000001+0.000104i	0.000104			
5	0.549192+0.437844i	0.702367			
6	-0.00001	0.000010			

Table S31. Ab initio ligand-field parameters B_n^m (in cm⁻¹) of the [Yb(TPP)(cyclen)]⁺

		Experimenta	al Geometry	Symmetrized	- C_4 Geometry
n	m	Real part	Imaginary part	Real part	Imaginary part
	0	32.44	0.00	46.11	0.00
2	1	21.19	21.19	-0.03	-0.03

	2	10.99	1.91	0.03	0.01
	0	-84.24	0.00	-88.89	0.00
4	1	-23.24	-3.95	0.05	-0.01
4	2	-3.85	-3.85	-0.01	-0.01
	3	2.69	0.73	-0.01	-0.01
	4	40.73	-34.38	-43.15	-24.47
	0	16.92	0.00	18.58	0.00
	1	7.72	0.54	-0.01	0.00
	2	0.74	0.63	0.00	0.00
6	3	1.96	1.96	0.00	0.00
	4	-2.08	-4.22	2.55	-2.91
	5	-1.98	-0.94	0.00	0.00
	6	0.77	-0.36	0.00	0.00

Table S32. CASSCF/RASSI calculated energies and wave functions of the $[Yb(TPP)(cyclen)]^+$ with an absolute coefficient larger than 0.05.

	Basis set 2
Energy (cm-	Wave Function
1)	
0.00	$ -5/2\rangle, +3/2\rangle, +5/2\rangle, -3/2\rangle, -7/2\rangle$
0.00	+5/2>, -3/2>, -5/2>, +3/2>, +7/2>
146.9	+3/2>, -3/2>, -5/2>, +5/2>, +7/2>, +1/2>
146.9	$ -3/2\rangle, +3/2\rangle, +5/2\rangle, -5/2\rangle, -7/2\rangle, -1/2\rangle$
176.5	$ +1/2\rangle, -7/2\rangle, -3/2\rangle, -1/2\rangle, +7/2\rangle$
176.5	$ -1/2\rangle, +7/2\rangle, +3/2\rangle, +1/2\rangle, -7/2\rangle$
244.2	$\left -7/2\right\rangle$, $\left +1/2\right\rangle$, $\left -5/2\right\rangle$, $\left +3/2\right\rangle$
244.2	$ +7/2\rangle, -1/2\rangle, +5/2\rangle, -3/2\rangle$

Table S33.	Composition	of wave	functions t	for	[Yb(TPP)(cyclen)] ⁺	as	extracted	from	CASSCF/RASSI/Single_	Aniso
calculations	with basis set	2.								

	Wave Functions and Energies							
M_J	1		2	2		3		
	0.00 cm ⁻¹		0.00 cm ⁻¹		146.9 cm ⁻¹			
	с	c	с	c	с	c		
-7/2	-0.078977-0.055558i	0.096561	0	0.000000	0.003073+0.042351i	0.042462		
-5/2	0.702978+0.627906i	0.942573	-0.09666-0.068744i	0.118612	-0.047363-0.239204i	0.243848		
-3/2	0.068527+0.077001i	0.103078	0.220475+0.168959i	0.277770	0.505816+0.077572i	0.511730		
-1/2	-0.013494-0.004644i	0.014271	0.000625+0.01335i	0.013365	-0.041499-0.00485i	0.041781		
1/2	-0.008192+0.010559i	0.013364	-0.013709-0.003966i	0.014271	-0.064021-0.046816i	0.079312		
3/2	0.277539-0.011337i	0.277770	-0.100351+0.02355i	0.103077	0.580203+0.547295i	0.797601		
5/2	0.11861-0.00061i	0.118612	0.936239-0.109091i	0.942573	-0.083488+0.133779i	0.157693		
7/2	0	0.000000	0.096562	0.096562	-0.088306	0.088306		

14	4		5		6		
M_J	146.9 cm ⁻¹		176.5 cm ⁻¹		176.5 cm ⁻¹		
	с	c	с	c	с	c	
-7/2	-0.006391-0.088075i	0.088307	0.319412+0.296713i	0.435962	-0.039239-0.036451i	0.053557	
-5/2	-0.127386+0.092951i	0.157693	0.014528+0.043169i	0.045548	-0.019293+0.009361i	0.021444	
-3/2	0.587849+0.539074i	0.797601	0.091804-0.011813i	0.092561	0.007196+0.004147i	0.008305	
-1/2	0.051327+0.060465i	0.079313	-0.078512-0.025536i	0.082560	-0.756493-0.465619i	0.888303	
1/2	-0.00784-0.041039i	0.041781	0.87115+0.173724i	0.888303	-0.074902-0.034726i	0.082560	
3/2	-0.113974-0.498876i	0.511730	0.008095+0.001859i	0.008306	-0.059222-0.071136i	0.092561	

5/2	-0.242004-0.029927i	0.243847	0.007765+0.019989i	0.021444	0.040025-0.021741i	0.045549
7/2	-0.042463	0.042463	-0.053557	0.053557	-0.435961	0.435961

-					
14	7		8		
M_J	244.2 cm ⁻¹		244.2 cm ⁻¹		
	с	c	с	c	
-7/2	-0.744514-0.483545i	0.887759	0.004318+0.002805i	0.005149	
-5/2	-0.077474-0.067327i	0.102641	-0.008439-0.004279i	0.009462	
-3/2	-0.024927-0.024447i	0.034914	0.063667+0.016589i	0.065793	
-1/2	-0.000321+0.015102i	0.015105	-0.377974-0.229327i	0.442103	
1/2	0.441895+0.013552i	0.442103	0.007957-0.01284i	0.015106	
3/2	0.06243+0.020766i	0.065793	0.034221-0.006926i	0.034915	
5/2	0.009408+0.001008i	0.009462	-0.101645+0.014265i	0.102641	
7/2	0.005149	0.005149	0.88776	0.887760	

Table S34. CASSCF/RASSI calculated energies and wave functions of the [Yb(Por)(cyclen)]⁺ with an absolute coefficient larger than 0.05.

	Basis set 2
Energy (cm ⁻	Wave Function
1)	
0.00	$\left -5/2\right\rangle$, $\left +3/2\right\rangle$, $\left +5/2\right\rangle$, $\left -3/2\right\rangle$
0.00	$ +5/2\rangle, -3/2\rangle, -5/2\rangle, +3/2\rangle$
143.7	$ -3/2\rangle, +3/2\rangle, +5/2\rangle, -5/2\rangle$
143.7	$ +3/2\rangle, -3/2\rangle, -5/2\rangle, +5/2\rangle$
176.4	$ -1/2\rangle, +7/2\rangle$
176.4	$ +1/2\rangle, -7/2\rangle$
252.7	$ -7/2\rangle, +1/2\rangle$
252.7	+7/2>, -1/2>

Table S35. Composition of wave functions for [Yb(Por)(cyclen)]⁺ as extracted from CASSCF/RASSI/Single_Aniso calculations with basis set 2.

	Wave Functions and Energies								
M_J	1		2		3				
	0.00 cm ⁻¹		0.00 cm ⁻¹		143.7 cm ⁻¹				
	с	c	с	c	с	c			
-7/2	0	0.000000	0.000166+0.000079i	0.000184	0.00001+0.000023i	0.000025			
-5/2	0.084038-0.012304i	0.084934	0.946456+0.160992i	0.960051	-0.17296+0.021727i	0.174319			
-3/2	0.253571-0.078947i	0.265577	-0.023637-0.000267i	0.023639	-0.728966+0.030391i	0.729599			
-1/2	-0.000056+0.000033i	0.000065	-0.000028-0.000024i	0.000037	0.00022-0.000091i	0.000238			
1/2	0.000036-0.000009i	0.000037	-0.000036-0.000053i	0.000064	-0.000044+0.000033i	0.000055			
3/2	-0.021455-0.009922i	0.023638	-0.194987-0.180308i	0.265577	-0.566339-0.275418i	0.629758			
5/2	-0.923717-0.261616i	0.960050	0.070582+0.047243i	0.084934	-0.173422-0.103089i	0.201749			
7/2	0.000184	0.000184	0	0.000000	0.000119	0.000119			

1/	4		5		6	
M_J	143.7 cm ⁻¹		176.4 cm ⁻¹		176.4 cm ⁻¹	
	c	c	с	c	с	c
-7/2	0.000048+0.000109i	0.000119	0	0.000000	0.351291+0.126352i	0.373323
-5/2	0.164052+0.117429i	0.201749	0.00006-0.000021i	0.000064	-0.000083+0.000002i	0.000083

-3/2	-0.479656-0.408075i	0.629758	0.000169-0.00004i	0.000174	-0.000088+0.000049i	0.000101
-1/2	-0.000013+0.000054i	0.000056	0.858477-0.351634i	0.927701	-0.000115-0.000183i	0.000216
1/2	0.000005+0.000238i	0.000238	-0.000171+0.000134i	0.000217	-0.688802-0.621434i	0.927701
3/2	0.264891+0.679815i	0.729600	0.000066+0.000076i	0.000101	0.000145+0.000095i	0.000173
5/2	-0.049555-0.167127i	0.174319	-0.000077-0.00003i	0.000083	-0.000049-0.00004i	0.000063
7/2	-0.000025	0.000025	-0.373323	0.373323	0	0.000000

M _J	7		8	
	252.7 cm ⁻¹		252.7 cm ⁻¹	
	с	c	с	c
-7/2	0	0.000000	-0.704799-0.603231i	0.927701
-5/2	0.000034-0.000006i	0.000035	0.000163+0.000076i	0.000180
-3/2	0.000098-0.000015i	0.000099	-0.00014-0.000007i	0.000140
-1/2	0.345466-0.141504i	0.373323	-0.000017-0.000085i	0.000087
1/2	-0.000069+0.000054i	0.000088	-0.170448-0.332141i	0.373323
3/2	0.00011+0.000086i	0.000140	0.000064+0.000075i	0.000099
5/2	0.000173+0.000049i	0.000180	-0.000022-0.000026i	0.000034
7/2	0.927701	0.927701	0	0.000000