Supporting Information

Luminescent anticancer Ruthenium(II)-*p*-cymene complexes of extended imidazophenanthroline ligands: synthesis, structure, reactivity, biomolecular interaction and live cell imaging[‡]

Bidisha Sarkar,^{a†} Ashaparna Mondal,^{a†} Yukti Madaan,^a Nilmadhab Roy,^a Anbalagan Moorthy^b, Yung-Chih Kuo^c, Priyankar Paira^a*

Figure S1: (a) UV-Vis Spectra and (b) Fluorescence spectra

C1: 16a, C2: 16b, C3: 17a, C4: 17b, C5: 17c, C6: 17d, C7: 19a, C8: 19b, C9: 19c

Figure S2: Stability study of Ru (II)-arene complexes (a) 16b, (b) 17a and (c) 19a in 1% DMSO-PBS medium.

(b)

Figure S4: [DNA]/(ε_a - ε_f) vs. [DNA] linear plots of complex 16b, 17a and 19b.

Figure S5: Fluorescence spectra of EtBr-DNA of (a) 16b, (c) 17a and (e) 19a with increase in concentration of the complexes in 5 mM Tris-HCl /NaCl buffer of pH 7.2 at 298 K and the respective Stern-Volmer plots of I_0/I vs. complex (a) 16b, (c) 17a and (e) 19b.

Figure S7: Fluorescence quenching of BSA on addition of complexes (a) 16b, (b) 17a and (c) 19c with increasing concentration of the complexes in 5 mM TrisHCl/NaCl buffer.

(c)

Figure S8: Plot of I_0/I vs. concentrations of complexes (a) 16b, (b) 17a and (c) 19c.

Figure S9: Scatchard plot of $log([I_0-I]/I)$ vs. log[complex] for BSA in the presence of complexes (a) 16b, (b) 17a and (c) 19c.

Figure S10: (a) ¹H-NMR and (b) ¹³C-NMR of 10

(b) LC-MS spectra

Figure S11: (a) IR Spectra and (b) LC-MS Spectra of 10

Figure S12: (a) ¹H-NMR and (b) ¹³C-NMR of 12a

Figure S13: (a) IR Spectra and (b) LC-MS Spectra of 12a

Figure S15: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 14a

Figure S16: (a) IR Spectra of 14a

Figure S17: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 14b

Figure S18: (a) IR Spectra of 14b

(b) ¹³C-NMR

Signature SIF VIT VELLORE UCH3PA

Figure S19: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 14c

Figure S20: (a) IR Spectra of 14c

Figure S21: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 14d

Figure S22: (a) IR Spectra of 14d

Figure S23: (a) ¹H-NMR and (b) IR Spectra of 18a

(b) ¹³C-NMR

Figure S24: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 18b

Figure S25: (a) IR Spectra of 18b

Figure S26: (a) ¹H-NMR and (b) ¹³C-NMR Spectra of 18c

Figure S27: (a) IR Spectra of 18c

(b) ¹⁹F-NMR

Figure S28: (a) ¹H-NMR (b) ¹⁹F-NMR (c) ¹³C NMR Spectra of 16a

Figure S29: (a) ³¹P-NMR (b) IR Spectra of16a

Figure S30: (a) LC-MS Spectra of 16a

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

-200

ppm

32

Figure S31: (a) ¹H-NMR and (b) ¹⁹F-NMR (c) ¹³C-NMR Spectra of 16b

Figure S32: (a) ³¹P-NMR (b) IR Spectra of 16b

Figure S33: (a) LC-MS Spectra of 16b

Figure S34: (a) ¹H-NMR (b) ¹⁹F-NMR (c) ¹³C NMR Spectra of 17a

37

(C)

Figure S35: (a) ³¹P-NMR (b) IR Spectra of 17a

Figure S36: (a) LC-MS Spectra of 17a

Figure S37: (a) ¹H-NMR (b) ¹⁹F-NMR (c) ¹³C NMR Spectra of 17b

Figure S38: (a) ³¹P-NMR (b) IR Spectra of 17b

Figure S39: (a) LC-MS Spectra of 17b

(b) ¹⁹F-NMR

Figure S40: (a) ¹H-NMR (b) ¹⁹F-NMR and (C) ¹³C NMR Spectra of 17c

Figure S41: (a) ³¹P-NMR (b) IR Spectra of 17c

Figure S42: (a) LC-MS Spectra of 17c

(a) ¹H-NMR

(b) ¹⁹F-NMR

Figure S43: (a) ¹H-NMR (b) ¹⁹F-NMR and (c) ¹³C NMR Spectra of 17d

Figure S44: (a) ³¹P-NMR (b) IR Spectra of 17d

Figure S45: (a) ¹H-NMR (b) ¹⁹F-NMR and (c) ¹³C NMR Spectra of 19a

Figure S46: (a) ³¹P-NMR (b) IR Spectra of 19a

1/cm

Figure S47: LC-MS Spectra of 19a

Figure S48: (a) ¹H-NMR (b) ¹⁹F-NMR and (c) ¹³C NMR Spectra of 19b

Figure S49: (a) ³¹P-NMR (b) IR Spectra of 19b

Figure S50: (a) LC-MS Spectra of 19b

Figure S51: (a) ¹H-NMR (b) ¹⁹F-NMR and (c) ¹³C NMR Spectra of 19c

Figure S52: (a) ³¹P-NMR (b) IR Spectra of 19c

3000

2500

0-

4000 3500 R-OCHBSP 2000

1500

1000

500 1/cm

Figure S53: (a) LC-MS Spectra of 19c

Samples	Time (h)	Conductance ∧ _M ª in
		10% aq. DMSO
16b	0	160
	1	194
	6	300
	12	400
17c	0	95
	1	112
	6	150
	12	168
19c	0	86
	1	105
	6	194
	12	220

Table S1 Time dependent conductance measurement

[complex] = 3 X 10⁻⁵ M

Table S2 PH dependent conductivity study

Samples	PH	Conductance
		(Λ _M , ms)
		in
		100% DMSO
16b	5	1.3
	4	2.6
	3	3.9
	2	4.8
	1	6.1

[16b] = 3 X 10⁻⁵ M

Table S3 GSH dependent conductivity study

Samples	[GSH]	Conductance
	(10-4)	(Λ _M , μs)
		in
		100% DMSO
16b	1	60
	2	65
	3	68
	4	72

5	75
1	35
2	39
3	43
4	48
5	54
1	34
2	38
3	42
4	48
5	53
	5 1 2 3 4 5 1 2 3 4 5 5

[complex] = 3 X 10⁻⁵ M

Table S4 conductivity study in presence of DNA

[DNA] (10 ⁻⁶)	r _i = [complex]/[DNA]	Conductance (Λ _M , μs) in 100% DMSO
1	30	28
2	15	32
3	10	34
4	7.5	36
	[DNA] (10 ⁻⁶) 1 2 3 4	[DNA] ri = [complex]/[DNA] (10-6) 30 1 30 2 15 3 10 4 7.5

[16b] = 3 X 10⁻⁵ M