Supporting Information

Alkali Metal and Stoichiometric Effects in Intermolecular Hydroamination Catalysed by Lithium, Sodium and Potassium Magnesiates

Laia Davin, Alberto Hernán-Gómez, Calum McLaughlin, Alan R. Kennedy, Ross McLellan and Eva Hevia*

	15	16
Empirical formula	$C_{54}H_{108}Mg_2N_6Na_2O_6$	$C_{32}H_{72}Mg_1N_8Na_2$
Mol. Mass	1032.06	639.26
Crystal system	triclinic	Monoclinic
a/ Å	11.6474(5)	10.4760(14)
b/ Å	11.7398(7)	19.224(2)
c/ Å	23.4025(8)	19.864(2)
α/ °	100.805(4)	90
β/ °	94.008(3)	93.733(10)
γ/ °	106.319(4)	90
V/ Å ³	2991.0(2)	3991.9(8)
Ζ	2	4
λ/ Å	1.5418	0.71073
Measured reflections	43397	19600
Unique reflections	11830	7810
R _{int}	0.0316	0.0781
Observed rflns [I>2 σ (I)]	9231	4183
GooF	1.020	1.011
R [on F, obs rflns only]	0.0578	0.0711
ω R [on <i>F</i> ² , all data]	0.1752	0.2205
Largest diff. Peak/hole. e/ Å ⁻³	0.486 / -0.363	0.613 / -0.381

Figure S1X-ray diffraction structures of 15-18.17 and 18 provide general connectivityinformation only, due to poor data quality.

Catalysis - NMR Spectra

Figure S2 Hydroamination of diphenylacetylene with piperidine, catalysed by $LiMg(CH_2SiMe_3)_3$ (1) (5 mol%) in d_8 -THF.

Figure S3 Hydroamination of diphenylacetylene with piperidine, catalysed by NaMg(CH₂SiMe₃)₃ (2) (5 mol%) in d_8 -THF.

Figure S4 Hydroamination of diphenylacetylene with piperidine, catalysed by $KMg(CH_2SiMe_3)_3$ (3) (5 mol%) in d_8 -THF.

Figure S5 Hydroamination of diphenylacetylene with piperidine, catalysed by NaMg(CH₂SiMe₃)₃ (2) (10 mol%) in d_8 -THF.

Figure S6 Hydroamination of diphenylacetylene with piperidine, catalysed by $NaMg(CH_2SiMe_3)_3$ (2) (2 mol%) in d_8 -THF.

Figure S7 Hydroamination of diphenylacetylene with piperidine, catalysed by $[(TMEDA)_2Li_2Mg(CH_2SiMe_3)_4]$ (5) (5 mol%) in d_8 -THF.

Figure S8 Hydroamination of diphenylacetylene with piperidine, catalysed by $[(TMEDA)_2Na_2Mg(CH_2SiMe_3)_4]$ (6) (5 mol%) in d_8 -THF.

Figure S9 Hydroamination of diphenylacetylene with piperidine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S10 Hydroamination of diphenylacetylene with piperidine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) and 10 mol% of 18-crown-6 in d_8 -THF.

Figure S11 Hydroamination of diphenylacetylene with pyrrolidine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S12 Hydroamination of diphenylacetylene with morpholine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S13 Hydroamination of diphenylacetylene with dibenzylamine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S14 Hydroamination of diphenylacetylene with diphenylamine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S15 Hydroamination of styrene with piperidine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S16 Hydroamination of styrene with pyrrolidine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Figure S17 Hydroamination of styrene with morpholine, catalysed by $[(PMDTA)_2K_2Mg(CH_2SiMe_3)_4]$ (7) (5 mol%) in d_8 -THF.

Amide complexes 15-18 NMR Spectra

Figure S18 ¹H NMR spectrum of $[(THF)_2{NaMg(NC_5H_{10})_3}]_2$ (15) in C₆D₆.

Figure S19 ${}^{13}C$ NMR spectrum of [(THF)₂{NaMg(NC₅H₁₀)₃}]₂ (15) in C₆D₆.

Figure S21 ^{1H} NMR spectrum of $[(THF)_3 \{KMg(NC_5H_{10})_3\}]_2$ (16) in C_6D_6 .

Figure S22 ${}^{13}C$ NMR spectrum of $[(THF)_3\{KMg(NC_5H_{10})_3\}]_2$ (16) in C_6D_6 .

Figure S23 ¹H NMR DOSY spectrum of $[(THF)_3\{KMg(NC_5H_{10})_3\}]_2$ (16) in d_8 -THF.

Figure S25 ${}^{13}C$ NMR spectrum of [(TMEDA)₂Na₂Mg(NC₅H₁₀)₄] (17) in C₆D₆.

Figure S27 ${}^{13}C$ NMR spectrum of [(PMDETA)₂K₂Mg(NC₅H₁₀)₄] (18) in C₆D₆.