Supporting Information

Five new 3D transition MOFs based on 1-(3,5-DicarBoxylato benzyl)-3,5-pyrazole dicarboxylic acid displaying the unique luminescent sensing towards Fe³⁺ and magnetic properties

Wei-Ni Liu,‡Wen-Quan Tong,‡ Lu-Lu Ma, Yao Wang, Jiao-Min Wang, Lei Hou* and Yao-Yu Wang*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China. E-mail: wyaoyu@nwu.edu.cn. lhou2009@nwu.edu.cn.

Complexes	1	2	3	4	5
Formula	$C_{28}H_{20}Zn_3N_4O_{19}$	C ₁₄ H ₁₆ Ba ₂ N ₂ O ₁₅	$C_{28}H_{26}Ba_4N_4O_{23}$	$C_{28}H_{24}Cd_3Cl_2N_4O_{20}$	$C_{14}H_{10}Cu_2N_2O_{10}$
$M_{ m r}$	912.65	726.97	1335.89	1144.61	493.34
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
Space group	Fddd	$P2_l/n$	P2/n	$P2_1/n$	Fddd
a (Å)	19.640(2)	9.3811(8)	12.9214(15)	10.880(9)	15.339(3)
<i>b</i> (Å)	22.990(3)	18.3474(17)	10.4575(12)	12.209(9)	30.839(7)
<i>c</i> (Å)	29.085(3)	13.1915(12)	14.1666(16)	14.708(12)	32.070(7)
α (°)	90	90	90	90	90
β (°)	90	105.0625(13)	93.894(2)	107.306(11)	90
γ (°)	90	90	90	90	90
$V(Å^3)$	13133(2)	2192.5(3)	1909.8(4)	1865(3)	15171(6)
Ζ	16	4	2	2	32
D_{calc} (g cm ⁻³)	1.846	2.202	2.323	2.038	1.728
<i>F</i> (000)	7328	1384	1260	1116	7872
R _{int}	0.0475	0.0271	0.0224	0.0244	0.0607
GOF on F^2	1.050	1.018	1.112	1.080	1.022
$R_{I^{a}}\left[I > 2\sigma(I)\right]$	0.0540	0.0238	0.0234	0.0293	0.0431
wR_2^b (all data)	0.1523	0.0569	0.0708	0.0756	0.1119

Table S1 Crystal data and structure refinements for 1-5.

 ${}^{a}R_{I} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot {}^{b} wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2} \right]^{1/2}.$

1(Zn)						
Zn(1)-O(1W) 2.006(5)		Zn(1)-O(1)	2.046(5)			
Zn(1)-O(7)#1 2.050(4)		Zn(1)-O(6)#2	2.091(4)			
Zn(1)-N(2)#1	2.240(5)	Zn(1)-O(2)	2.334(5)			
Zn(2)-O(5)#3	1.923(4)	Zn(2)-O(5)#4	1.923(4)			
Zn(2)-O(7)	1.966(4)	Zn(2)-O(7)#5	1.966(4)			
N(2)-Zn(1)#1	2.240(5)	O(5)-Zn(2)#6	1.923(4)			
O(6)-Zn(1)#2	2.091(4)	O(7)-Zn(1)#1	2.050(4)			
O(1W)-Zn(1)-O(1)	151.21(19)	O(1W)-Zn(1)-O(7)#1	104.90(19)			
O(1)-Zn(1)-O(7)#1	103.70(18)	O(1W)-Zn(1)-O(6)#2	87.8(2)			
O(1)-Zn(1)-O(6)#2	89.1(2)	O(7)#1-Zn(1)-O(6)#2	89.73(18)			
O(1W)-Zn(1)-N(2)#1	97.87(19)	O(1)-Zn(1)-N(2)#1	92.19(18)			
O(7)#1-Zn(1)-N(2)#1	75.96(15)	O(6)#2-Zn(1)-N(2)#1	165.53(19)			
O(1W)-Zn(1)-O(2)	93.48(18)	O(1)-Zn(1)-O(2)	58.63(18)			
O(7)#1-Zn(1)-O(2)	160.48(17)	O(6)#2-Zn(1)-O(2)	97.66(19)			
N(2)#1-Zn(1)-O(2)	95.30(17)	O(5)#3-Zn(2)-O(5)#4	122.5(3)			
O(5)#3-Zn(2)-O(7)	106.83(17)	O(5)#4-Zn(2)-O(7)	102.17(19)			
O(5)#3-Zn(2)-O(7)#5	102.17(19)	O(5)#4-Zn(2)-O(7)#5	106.83(17)			
O(5)#4-Zn(2)-O(7)#5	106.83(17)	O(7)-Zn(2)-O(7)#5	117.3(3)			
Symmetrical codes: #1: -x+	-1/4, y, -z+1/4; #2: -x+	1/2, -y+2, -z+1/2; #3: x-1/4	, -y+2, z-1/4; #4: x-			
1/4, y+1/4, -z+1/2; #5: x, -y	/+9/4, -z+1/4; #6: x+1/	/4, y-1/4, -z+1/2.				
	2 (E	Ba)				
Ba(1)-O(1)	2.913(2)	Ba(1)-O(1W)	2.868(3)			
Ba(1)-O(2)	2.746(2)	Ba(1)-O(2W)	2.913(2)			
Ba(1)-O(5)#1	2.687(7)	Ba(1)-O(5A)#1	2.871(7)			
Ba(1)-O(6)#1	3.187(2)	Ba(1)-O(6)#2	2.676(2)			
Ba(1)-O(6W)	2.785(2)	Ba(1)-O(7)#3	2.787(2)			
Ba(2)-O(1)#4	2.7589(19)	Ba(2)-O(2W)	2.984(2)			
Ba(2)-O(3)#5	2.793(2)	Ba(2)-O(3W)	2.852(3)			
Ba(2)-O(4WA)	2.949(12)	Ba(2)-O(4WB)	2.663(12)			
Ba(2)-O(5)#1	2.689(7)	Ba(2)-O(5A)#1	2.698(7)			
Ba(2)-O(8)#6	2.727(2)	Ba(2)-N(2)#1	3.068(2)			
O(1)-Ba(2)#7	2.7588(18)	O(3)-Ba(2)#8	2.7932(19)			
O(5)-Ba(1)#1	2.687(7)	O(5)-Ba(2)#1	2.689(7)			
O(5A)-Ba(1)#1	2.871(7)	O(5A)-Ba(2)#1	2.698(7)			
O(6)-Ba(1)#1	3.187(2)	O(6)-Ba(1)#9	2.676(2)			
O(7)-Ba(1)#10	2.787(2)	O(8)-Ba(2)#11	2.727(2)			
N(2)-Ba(2)#1	3.068(2)	O(1)-Ba(1)-O(2W)	80.05(6)			
O(1)-Ba(1)-O(6)#1	123.12(6)	O(1W)-Ba(1)-O(1)	77.44(7)			
O(1W)-Ba(1)-O(2W)	122.66(8)	O(1W)-Ba(1)-O(5A)#1 160.39(14)				
O(1W)-Ba(1)-O(6)#1	139.03(8)	O(2)-Ba(1)-O(1)	45.99(5)			
O(2)-Ba(1)-O(1W)	120.79(7)	O(2)-Ba(1)-O(2W)	70.38(7)			

Table S2. Selected bond lengths [Å] and angles [°] for 1-5.

O(2)-Ba(1)-O(5A)#1	D(2)-Ba(1)-O(5A)#1 78.30(14) O(2)-Ba(1)-O(6)#1 79.20(6)				
O(2)-Ba(1)-O(6W)	136.95(7)	O(2)-Ba(1)-O(7)#3	119.80(7)		
O(2W)-Ba(1)-O(6)#1	2W)-Ba(1)-O(6)#1 97.07(6) O(5)#1-Ba(1)-O(1) 133.82(16)		133.82(16)		
O(5)#1-Ba(1)-O(1W)	146.21(17)	O(5)#1-Ba(1)-O(2)	92.94(16)		
O(5)#1-Ba(1)-O(2W)	63.95(16)	O(5)#1-Ba(1)-O(6)#1	42.70(17)		
O(5)#1-Ba(1)-O(6W)	81.55(16)	O(5)#1-Ba(1)-O(7)#3	96.08(17)		
O(5A)#1-Ba(1)-O(1)	119.23(13)	O(5A)#1-Ba(1)-O(2W)	56.32(14)		
O(5A)#1-Ba(1)-O(6)#1	42.57(14)	O(6)#2-Ba(1)-O(1)	75.99(6)		
O(6)#2-Ba(1)-O(1W)	80.82(8)	O(6)#2-Ba(1)-O(2)	71.25(7)		
O(6)#2-Ba(1)-O(2W)	141.47(7)	O(6)#2-Ba(1)-O(5)#1	115.03(17)		
O(6)#2-Ba(1)-O(5A)#1	111.97(15)	O(6)#2-Ba(1)-O(6)#1	72.34(7)		
O(6)#2-Ba(1)-O(6W)	72.76(8)	O(6)#2-Ba(1)-O(7)#3	147.08(7)		
O(6W)-Ba(1)-O(1)	140.91(8)	O(6W)-Ba(1)-O(1W)	74.94(8)		
O(6W)-Ba(1)-O(2W)	138.61(8)	O(6W)-Ba(1)-O(5A)#1	94.20(14)		
O(6W)-Ba(1)-O(6)#1	67.93(7)	O(6W)-Ba(1)-O(7)#3	103.25(8)		
O(7)#3-Ba(1)-O(1)	90.50(6)	O(7)#3-Ba(1)-O(1W)	66.86(8)		
O(7)#3-Ba(1)-O(2W)	61.35(7)	O(7)#3-Ba(1)-O(5A)#1	100.85(15)		
O(7)#3-Ba(1)-O(6)#1	137.72(6)	O(1)#4-Ba(2)-O(2W)	89.00(6)		
O(1)#4-Ba(2)-O(3)#5	83.45(6)	O(1)#4-Ba(2)-O(3W)	81.23(9)		
O(1)#4-Ba(2)-O(4WA)	68.7(2)	O(1)#4-Ba(2)-N(2)#1	158.78(6)		
O(2W)-Ba(2)-N(2)#1	112.08(6)	O(3)#5-Ba(2)-O(2W)	143.71(6)		
O(3)#5-Ba(2)-O(3W)	D(3)#5-Ba(2)-O(3W) 138.86(9) O(3)#5-Ba(2)-O(4WA) 65.6(2)		65.6(2)		
O(3)#5-Ba(2)-N(2)#1	80.72(6)	V2(6) O(3W)-Ba(2)-O(2W) 73.91(8)			
O(3W)-Ba(2)-O(4WA)	3W)-Ba(2)-O(4WA) 139.3(2) O(3W)-Ba(2)-N(2)#1 101.70(8)		101.70(8)		
O(4WA)-Ba(2)-O(2W)	D(4WA)-Ba(2)-O(2W) 78.6(2) O(4WA)-Ba(2)-N(2)#1 116.4(2)				
O(4WB)-Ba(2)-O(1)#4	0(4WB)-Ba(2)-O(1)#4 79.2(3) O(4WB)-Ba(2)-O(2W) 71.8(2)				
O(4WB)-Ba(2)-O(3)#5 71.9(2) O(4WB)-Ba(2)-O(3W) 140.5(3)		140.5(3)			
O(4WB)-Ba(2)-O(5A)#1	O(4WB)-Ba(2)-O(5A)#1 99.9(3) O(4WB)-Ba(2)-O(8)#6 144.3(2)		144.3(2)		
O(4WB)-Ba(2)-N(2)#1	108.8(3)	O(5)#1-Ba(2)-O(1)#4	138.81(16)		
O(5)#1-Ba(2)-O(2W)	62.94(16)	O(5)#1-Ba(2)-O(3)#5	137.04(16)		
O(5)#1-Ba(2)-O(3W)	63.02(18)	O(5)#1-Ba(2)-O(4WA)	127.3(2)		
O(5)#1-Ba(2)-O(8)#6	95.12(16)	O(5)#1-Ba(2)-N(2)#1	56.52(16)		
O(5A)#1-Ba(2)-O(1)#4	143.60(15)	O(5A)#1-Ba(2)-O(2W)	57.17(14)		
O(5A)#1-Ba(2)-O(3)#5	131.37(15)	O(5A)#1-Ba(2)-O(3W)	76.90(17)		
O(5A)#1-Ba(2)-O(8)#6	108.34(14)	O(5A)#1-Ba(2)-N(2)#1	56.05(15)		
O(8)#6-Ba(2)-O(1)#4	90.14(6)	O(8)#6-Ba(2)-O(2W)	142.65(6)		
O(8)#6-Ba(2)-O(3)#5	73.04(7)	O(8)#6-Ba(2)-O(3W)	69.07(8)		
O(8)#6-Ba(2)-O(4WA)	134.9(2)	O(8)#6-Ba(2)-N(2)#1	71.78(6)		
Symmetrical codes: #1: -x+	-1, -y, -z+2; #2: x-1, y,	z; #3: x-1/2, -y+1/2, z+1/2	; #4: x+1/2, -y+1/2,		
z+1/2; #5: x+1, y, z+1; #6: x, y, z+1; #7: x-1/2, -y+1/2, z-1/2; #8: x-1, y, z-1; #9: x+1, y, z; #10:					
x+1/2, -y+1/2, z-1/2; #11: x	к, y, z-1.				
	3 (B	a)			
Ba(3)-O(8)#1	2.726(3)	Ba(3)-O(8)	2.726(3)		

Ba(3)-O(4)#2	2.751(3)	Ba(3)-O(4)#3	2.751(3)
Ba(3)-O(2)#4	2.831(3)	Ba(3)-O(2)#5	2.831(3)
Ba(3)-O(11)	2.753(4)	Ba(3)-O(11)#1	2.753(4)
Ba(2)-O(8)#1	2.845(3)	Ba(2)-O(1)#5	2.868(3)
Ba(2)-O(4)#2	2.882(3)	Ba(2)-O(7)#1	2.932(3)
Ba(2)-O(2)#5	3.106(3)	Ba(2)-O(6)#6	3.190(3)
Ba(2)-O(6)	2.720(3)	Ba(2)-O(3)#2	2.839(3)
Ba(2)-O(5)#6	2.745(3)	Ba(2)-O(12)#7	2.900(5)
Ba(2)-O(10)	3.014(5)	Ba(1)-O(1)#8	2.772(3)
Ba(1)-O(1)#9	2.772(3)	Ba(1)-O(7)#10	2.835(3)
Ba(1)-O(7)#2	2.835(3)	Ba(1)-O(5)	2.592(3)
Ba(1)-O(5)#11	2.592(3)	Ba(1)-O(9)	2.729(7)
O(8)-Ba(3)-O(8)#1	83.00(12)	O(8)-Ba(3)-O(4)#3	72.34(8)
O(8)#1-Ba(3)-O(4)#2	72.34(8)	O(8)-Ba(3)-O(4)#2	85.83(8)
O(8)#1-Ba(3)-O(4)#3	85.83(8)	O(8)-Ba(3)-O(2)#4	65.95(9)
O(8)#1-Ba(3)-O(2)#5	65.95(9)	O(8)-Ba(3)-O(2)#5	147.18(8)
O(8)#1-Ba(3)-O(2)#4	147.18(9)	O(8)#1-Ba(3)-O(11)	119.60(11)
O(8)-Ba(3)-O(11)	136.70(11)	O(8)-Ba(3)-O(11)#1	119.60(11)
O(8)#1-Ba(3)-O(11)#1	136.70(11)	O(4)#2-Ba(3)-O(4)#3	150.92(12)
O(4)#3-Ba(3)-O(2)#4	75.18(9)	O(4)#3-Ba(3)-O(2)#5	113.63(9)
O(4)#2-Ba(3)-O(2)#4	113.63(9)	O(4)#2-Ba(3)-O(2)#5	75.18(9)
O(4)#2-Ba(3)-O(11)	134.32(12)	O(4)#3-Ba(3)-O(11)#1	134.32(12)
O(4)#3-Ba(3)-O(11)	73.19(13)	O(4)#2-Ba(3)-O(11)#1	73.19(13)
O(2)#5-Ba(3)-O(2)#4	146.41(12)	O(11)#1-Ba(3)-O(2)#4	72.14(11)
O(11)#1-Ba(3)-O(2)#5	80.52(11)	O(11)-Ba(3)-O(2)#4	80.52(11)
O(11)-Ba(3)-O(2)#5	72.13(11)	O(11)-Ba(3)-O(11)#1	70.7(2)
O(8)#1-Ba(2)-O(1)#5	74.44(9)	O(8)#1-Ba(2)-O(4)#2	68.74(8)
O(8)#1-Ba(2)-O(7)#1	45.13(8)	O(8)#1-Ba(2)-O(2)#5	60.93(9)
O(8)#1-Ba(2)-O(6)#6	129.96(8)	O(8)#1-Ba(2)-O(12)#7	151.45(15)
O(8)#1-Ba(2)-O(10)	140.27(14)	O(1)#5-Ba(2)-O(4)#2	112.60(8)
O(1)#5-Ba(2)-O(7)#1	64.16(9)	O(1)#5-Ba(2)-O(2)#5	43.57(8)
O(1)#5-Ba(2)-O(6)#6	110.18(8)	O(1)#5-Ba(2)-O(10)	143.55(14)
O(1)#5-Ba(2)-O(12)#7	80.00(15)	O(4)#2-Ba(2)-O(6)#6	136.84(8)
O(4)#2-Ba(2)-O(7)#1	113.07(8)	O(4)#2-Ba(2)-O(2)#5	69.21(8)
O(4)#2-Ba(2)-O(12)#7	111.03(12)	O(4)#2-Ba(2)-O(10)	81.32(13)
O(7)#1-Ba(2)-O(2)#5	84.76(9)	O(7)#1-Ba(2)-O(6)#6	90.37(9)
O(7)#1-Ba(2)-O(10)	143.31(12)	O(2)#5-Ba(2)-O(6)#6	152.13(7)
O(6)-Ba(2)-O(8)#1	74.12(9)	O(6)-Ba(2)-O(1)#5	138.04(10)
O(6)-Ba(2)-O(4)#2	80.43(9)	O(6)-Ba(2)-O(7)#1	73.99(10)
O(6)-Ba(2)-O(2)#5	132.16(9)	O(6)-Ba(2)-O(6)#6	71.68(9)
O(6)-Ba(2)-O(3)#2	111.66(10)	O(6)-Ba(2)-O(5)#6	99.84(10)
O(6)-Ba(2)-O(12)#7	134.42(15)	O(6)-Ba(2)-O(10)	75.69(13)
O(3)#2-Ba(2)-O(8)#1	108.43(10)	O(3)#2-Ba(2)-O(1)#5	104.19(10)

O(3)#2-Ba(2)-O(4)#2	45.32(9)	O(3)#2-Ba(2)-O(7)#1	151.99(10)
O(3)#2-Ba(2)-O(2)#5	71.21(11)	O(3)#2-Ba(2)-O(6)#6	117.59(11)
O(3)#2-Ba(2)-O(12)#7	65.72(12)	O(3)#2-Ba(2)-O(10)	60.76(13)
O(5)#6-Ba(2)-O(8)#1	112.20(9)	O(5)#6-Ba(2)-O(1)#5	67.81(9)
O(5)#6-Ba(2)-O(4)#2	179.05(9)	O(5)#6-Ba(2)-O(7)#1	67.87(9)
O(5)#6-Ba(2)-O(2)#5	111.13(8)	O(5)#6-Ba(2)-O(6)#6	42.64(8)
O(5)#6-Ba(2)-O(3)#2	133.84(10)	O(5)#6-Ba(2)-O(12)#7	68.13(13)
O(5)#6-Ba(2)-O(10)	97.86(13)	O(12)#7-Ba(2)-O(7)#1	130.96(12)
O(12)#7-Ba(2)-O(2)#5	91.67(14)	O(12)#7-Ba(2)-O(6)#6	71.03(13)
O(12)#7-Ba(2)-O(10)	63.58(17)	O(10)-Ba(2)-O(2)#5	131.49(12)
O(10)-Ba(2)-O(6)#6	60.53(12)	O(1)#8-Ba(1)-O(1)#9	86.03(12)
O(1)#8-Ba(1)-O(7)#10	148.90(9)	O(1)#8-Ba(1)-O(7)#2	66.65(9)
O(1)#9-Ba(1)-O(7)#10	66.65(9)	O(1)#9-Ba(1)-O(7)#2	148.90(9)
O(7)#10-Ba(1)-O(7)#2	143.33(12)	O(5)-Ba(1)-O(1)#9	71.37(10)
O(5)#11-Ba(1)-O(1)#8	71.37(10)	O(5)-Ba(1)-O(1)#8	114.97(10)
O(5)#11-Ba(1)-O(1)#9	114.97(10)	O(5)#11-Ba(1)-O(7)#2	71.39(9)
O(5)#11-Ba(1)-O(7)#10	105.96(9)	O(5)-Ba(1)-O(7)#10	71.39(9)
O(5)-Ba(1)-O(7)#2	105.96(9)	O(5)-Ba(1)-O(5)#11	171.95(16)
O(5)#11-Ba(1)-O(9)	85.98(8)	O(5)-Ba(1)-O(9)	85.97(8)
O(9)-Ba(1)-O(1)#9	136.98(6)	O(9)-Ba(1)-O(1)#8	136.98(6)
O(9)-Ba(1)-O(7)#10	71.67(6)	O(9)-Ba(1)-O(7)#2	71.67(6)

Symmetrical codes: #1: -x+1/2, y, -z+1/2; #2: -x+1, -y+1, -z+1; #3: x-1/2, -y+1, z-1/2; #4: x, y-1, z; #5: -x+1/2, y-1, -z+1/2; #6: -x, -y+1, -z+1; #7: x-1, y-1, z; #8: -x+1, -y+2, -z+1; #9: x-1/2, -y+2, z+1/2; #10: x-1/2, -y+1, z+1/2; #11: -x+1/2, y, -z+3/2; #12: x+1/2, -y+1, z+1/2; #13: -x+1/2, y+1, -z+1/2; #14: x, y+1, z; #15: x+1, y+1, z.

4 (Cd)						
Cd(1)-O(1)#1	2.309(2)	Cd(1)-O(1)	2.420(2)			
Cd(1)-O(3)#2	2.280(2)	Cd(1)-O(7)#3	2.369(2)			
Cd(1)-N(1)	2.428(3)	Cd(2)-O(4)#2	2.326(2)			
Cd(2)-O(4)#5	2.326(2)	Cd(2)-O(9)#4	2.335(3)			
Cd(2)-O(9)	2.335(3)	O(1)#1-Cd(1)-O(1)	73.60(8)			
O(1)#1-Cd(1)-O(7)#3	90.76(10)	O(1)-Cd(1)-N(1)	69.36(7)			
O(1)#1-Cd(1)-N(1) 142.65(7) O(3)#2-Cd(1)-		O(3)#2-Cd(1)-O(1)	79.65(8)			
O(3)#2-Cd(1)-O(1)#1 90.16(10) O(3)#		O(3)#2-Cd(1)-O(7)#3	170.34(8)			
O(3)#2-Cd(1)-N(1) 87.86(9) O(O(7)#3-Cd(1)-O(1)	91.39(9)			
O(7)#3-Cd(1)-N(1) 85.58(9)		O(4)#5-Cd(2)-O(4)#2	180.00(10)			
O(4)#5-Cd(2)-O(9)#4 89.23(11) O(O(4)#2-Cd(2)-O(9)	89.23(11)			
O(4)#2-Cd(2)-O(9)#4 90.77(11)		O(4)#5-Cd(2)-O(9)	90.77(11)			
Symmetrical codes: #1: -x+1, -y+1, -z; #2: -x+3/2, y+1/2, -z+1/2; #3: -x+1, -y, -z; #4: -x+2, -y+1,						
-z; #5: x+1/2, -y+1/2, z-1/2; #6: -x+3/2, y-1/2, -z+1/2.						
5 (Cu)						
Cu(1)-O(2)#1	1.942(3)	Cu(1)-O(1)	1.955(3)			
Cu(1)-O(7)#2 1.964(3) Cu(1)-O(8)#3 1.969(3)						

Cu(1)-O(10)	2.112(3)	Cu(2)-O(4)	1.895(3)				
Cu(2)-O(5)#4	1.937(3)	Cu(2)-O(9)	1.948(3)				
Cu(2)-N(2)#4	2.029(3)	O(5)-Cu(2)#4	1.937(3)				
O(2)-Cu(1)#1	1.942(3)	O(8)-Cu(1)#5	1.969(3)				
N(2)-Cu(2)#4	2.029(3)	O(7)-Cu(1)#2	1.964(3)				
O(2)#1-Cu(1)-O(1)	167.74(13)	O(2)#1-Cu(1)-O(7)#2	89.31(17)				
O(1)-Cu(1)-O(7)#2	89.31(18)	O(2)#1-Cu(1)-O(8)#3	89.42(16)				
O(1)-Cu(1)-O(8)#3	89.38(16)	O(7)#2-Cu(1)-O(8)#3	167.95(12)				
O(2)#1-Cu(1)-O(10)	100.29(14)	O(1)-Cu(1)-O(10)	91.96(14)				
O(7)#2-Cu(1)-O(10)	98.81(13)	O(8)#3-Cu(1)-O(10)	93.20(13)				
O(4)-Cu(2)-O(5)#4	176.24(12)	O(4)-Cu(2)-O(9)	94.48(11)				
O(5)#4-Cu(2)-O(9)	84.61(11)	O(4)-Cu(2)-N(2)#4	98.25(12)				
O(5)#4-Cu(2)-N(2)#4	O(5)#4-Cu(2)-N(2)#4 81.92(12) O(9)-Cu(2)-N(2)#4 162.65(12)						
Symmetrical codes: #1: -x+1, -y+3/2, -z+1/2; #2: -x+5/4, -y+5/4, z; #3: x-1/4, y+1/4, -z+1/2; #4: -							
x+3/4, y, -z+3/4; #5: x+1/4, y-1/4, -z+1/2.							

Table S3 Standard Deviation (δ) calculation for the detection of Fe³⁺ for 1(Zn).

Test	Fluorescence intensity (nm)
1	5506.319
2	5507.293
3	5507.033
4	5506.435
5	5506.632
6	5507.155
7	5506.914
8	5507.332
9	5507.139
10	5507.265
average	5506.952
Standard deviation (δ)	0.367

(c) (d) (e) (a) (b)

Fig. S1 Coordination modes of H₄L in 1-5.

Fig. S2 Coordination arrangement of Ba²⁺1 (a) and Ba²⁺3 (b) ions could be described as a distorted pentagonal bipyramid and distorted prismaid coordination geometry respectively.

Fig. S3 Coordination arrangement of Cd^{2+1} (a) and Cd^{2+2} (b) ions could be described as a distorted quadrilateral bipyramid and quadrilateral bipyramid coordination geometry respectively.

Fig. S4 Coordination arrangement of Cu^{2+1} (a) and Cu^{2+2} (b) ions could be described as a distorted pentagonal pyramid and distorted quadrilateral coordination geometry respectively.

Fig. S5 PXRD patterns of complex 1-5 simulated from the X-ray single-crystal data and assynthesized products.

Fig. S6 The TGA curve of complex 1-5.

Fig. S7 The FT-IR spectra of complex 1-5.

Fig. S8 Solid-state excitation spectra of H₄L ligands and MOFs 1–4.

Fig. S9 Pictures of different $M^{n+}@1(Zn)$ solutions.

Fig. S10 The linear correlation for the plot of I_0/I vs concentration of Fe³⁺ ions in low concentration range.

Fig. S11 Quenching efficiency defined by the Stern–Volmer relationship for Fe³⁺ ions.

Fig. S12 Luminescence intensity at 407 nm of 1(Zn) dispersed in water with addition of different mixed ions (10⁻²M) mixed solution added Fe³⁺ ions (10⁻² M) (m1: K⁺/Cd²⁺; m2: Ca²⁺/Ag⁺/Cd²⁺; m3: Al³⁺/Pb²⁺/Cu²⁺; m4: Na⁺/Co²⁺/Zn²⁺; m5:Mg²⁺/Ni²⁺).

Fig. S13 The PXRD patterns of 1(Zn) treated by Fe³⁺ aqueous solutions.

Sample	Concentration of Zn ²⁺ (ug/mL)
Blank sample (H ₂ O)	0.0206
Initial solution after immersing in H ₂ O	0.0318
Final solution after recycle sensing experiment for Fe ³⁺	0.0296

Fig.	S14 ICP	experiments	of 1(Zn)	after imm	ersing in	different	solution.
------	---------	-------------	----------	-----------	-----------	-----------	-----------

Fig. S15 Luminescent intensity at 407 nm of 1(Zn) after five recycles in Fe³⁺ solutions (10⁻² M).

Fig. S16 UV-Vis adsorption spectrum of $M(NO_3)_n$ aqueous solution and the excitation spectrum of 1(Zn).