Controlled synthesis of bifunctional particle-like Mo/Mn-Ni $_{\rm x}S_{\rm y}/{\rm NF}$

electrocatalyst for highly efficient overall water splitting

Yaqiong Gong^{ab*}, Zhi Yang^a, Yu Lin^a, Tao Zhou^a, Jinhui Li^a, Feixiang Jiao^a, Wenfei Wang^a,

^a Chemical Engineering and Technology Institute, North University of China, Taiyuan, Shanxi

030051,

^b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, JiangSu 210093.

Catalyst	Overpotential (mV vs. RHE)	Ref
Mo/Mn-Ni _x S _y /NF	144 mV@10 mA cm ⁻²	This work
Mo, S- codoping NiSe	88 mV@10 mA cm ⁻²	[1]
Sn-Ni ₃ S ₂ /NF	170 mV@100 mA cm ⁻²	[2]
2H-MoS ₂ /G/NF	117 mV@10 mA cm ⁻²	[3]
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂	136 mV@10 mA cm ⁻²	[4]
Co ₁ Mn ₁ CH/NF	180 mV@10 mA cm ⁻²	[5]
MoS ₂ -Ni ₃ S ₂	211mV@10 mA cm ⁻²	[6]
MoSe ₂ -CoSe ₂	148 mV@10 mA cm ⁻²	[7]
CoS _x /Ni ₃ S ₂	204 mV@10 mA cm ⁻²	[8]
P-Doped Co-Ni-S	187 mV@100 mA cm ⁻²	[9]
Er-doped CoP NMs	66 mV@10 mA cm ⁻²	[10]
Mo, S-codoping NiSe/NF	88 mV@10 mA cm ⁻²	[22]
N,S-codoped Zn _{0.975} Co _{0.025} S/CoS ₂	152 mV@10 mA cm ⁻²	[23]

Table. S1 Comparison of HER properties for catalysts of superior electrochemistry materials

Catalyst	Overpotential (mV vs. RHE)	Ref
Mo/Mn-Ni _x S _y /NF	162 mV @ 50 mA cm ⁻²	This work
CoS _x /Ni ₃ S ₂	280 mV@ 20 mA cm ⁻²	[8]
Er-doped CoP NMs	256mV@10 mA cm ⁻²	[10]
MoS ₂ /NiS	271 mV @10 mA cm ⁻²	[11]
СоООН	262 mV @10 mA cm ⁻²	[12]
Fe-doped Ni ₃ S ₂	253 mV @100 mA cm ⁻²	[13]
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂	160 mV@10 mA cm ⁻²	[4]
CS-NiFeCu	180 mV@10 mA cm ⁻²	[14]
NiS _{1.03} -NSCs	270 mV@10 mA cm ⁻²	[15]
Cu ₂ S/CF	336 mV@20 mA cm ⁻²	[16]
Ce-doped NiFe-LDH/CNT	227 mV@10 mA cm ⁻²	[17]
P-Doped Co-Ni-S	292 mV@100 mA cm ⁻²	[9]
Sn-Ni ₃ S ₂ /NF	270 mV@100 mA cm ⁻²	[2]
N,S-codoped Zn _{0.975} Co _{0.025} S/CoS ₂	270 mV@10 mA cm ⁻²	[23]
P,N Co-doped PNGF	320 mV@10 mA cm ⁻²	[24]

Table. S2 Comparison of OER properties for catalysts of superior electrochemistry materials

Catalyst	Overpotential (mV vs. RHE)	Ref
Mo/Mn-Ni _x S _y /NF	1.49 V @ 10 mA cm ⁻²	This work
Er-doped CoP NMs	1.58 V@10 mA cm ⁻²	[10]
MoS ₂ /NiS	1.61 V @10 mA cm ⁻²	[9]
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂	1.53 V@10 mA cm ⁻²	[4]
Co ₁ Mn ₁ CH/NF	1.68 V@10 mA cm ⁻²	[5]
Zn-doped Co ₃ O ₄	1.39 V@10 mA cm ⁻²	[18]
MoP/Ni ₂ P	1.55 V@10 mA cm ⁻²	[19]
Co ₃ O ₄ @MoS ₂ /CC	1.59 V@10 mA cm ⁻²	[20]
NiFe-P/NF	1.56 V@10 mA cm ⁻²	[21]
CoS _x /Ni ₃ S ₂	1.57 V@10 mA cm ⁻²	[8]
P-Doped Co-Ni-S	1.60 V@10 mA cm ⁻²	[9]
Sn-Ni ₃ S ₂ /NF	1.46 V@10 mA cm ⁻²	[2]
N,S-codoped Zn _{0.975} Co _{0.025} S/CoS ₂	1.59 V@10 mA cm ⁻²	[23]

 Table. S3 Comparison of overall water splitting properties for catalysts of superior

 electrochemistry materials

Fig. S1. High-magnification XPS spectra (a) Ni 2p and (b) S 2p of Ni₃S₂/NF, (c) Ni 2p and (d) S 2p of NiS@Ni_{0.96}S/NF, (e) Ni 2p, (f) S 2p and (g) Mo 3d of Mo-Ni₃S₂/NF, (h) Ni 2p, (i) S 2p, and (j) Mn 2p of Mn-NiS@Ni_{0.96}S/NF.

Fig. S2. CVs for HER of (a) Ni₃S₂/NF; (b) NiS@Ni_{0.96}S/NF, (c) Mo-Ni₃S₂/NF, (d) Mn-NiS@Ni_{0.96}S/NF,

(e) Mo/Mn-Ni_xS_y/NF with different scan rates (10-50 mV s⁻¹) in the region from -1.08 to -1.02 vs RHE.

Fig. S3. CVs for OER of (a) Ni₃S₂/NF; (b) NiS@Ni_{0.96}S/NF; (c) Mo-Ni₃S₂/NF; (d) Mn-NiS@Ni_{0.96}S/NF,

(e) Mo/Mn-Ni_xS_y/NF with different scan rates (10-50 mV s⁻¹) in the region from 1.00 to 1.12 vs RHE.

Fig. S4 Comparison of the overpotentil (HER) required for achieving current density of 10 mA cm-2, and the current density at overpotential of 300 mV for Ni3S2/NF, NiS@Ni0.96S/NF, Mo-Ni3S2/NF, Mn-NiS@Ni0.96S/NF, and Mo/Mn-NixSy/NF.

Fig. S5 Comparison of the overpotentil (OER) required for achieving current density of 50 mA cm-2, and the current density at overpotential of 500 mV for Ni3S2/NF, NiS@Ni0.96S/NF, Mo-Ni3S2/NF, Mn-NiS@Ni0.96S/NF, and Mo/Mn-NixSy/NF.

Fig. S6 Comparison of the voltage required for achieving current density of 10 mA cm-2, and the current density at voltage of 1.9 V for Ni3S2/NF, NiS@Ni0.96S/NF, Mo-Ni3S2/NF, Mn-NiS@Ni0.96S/NF, and Mo/Mn-NixSy/NF.

Notes and references

- [1] S. Zhang, X. Y. Zhang, J. Li, E. K. Wang, J. Mater. Chem. A, 2017, 5, 20588-20593.
- [2] J. Jian, L. Yuan, H. Qi, X. J. Sun, L. Zhang, H. Li, H. M. Yuan, S. H. Feng, ACS Appl. Mater. Interfaces 2018, 10, 40568-40576.
- [3] P. Zhu, Y. Zhou, Z. X. Yang, D. Wu, X. xiong, F. P. Ouyang, J. Mater. Chem. A, 2018, 6, 16458-16464.
- [4] Y. Y. Wu, Y. P. Liu, G. D. Li, X. Zou, X. R. Lian, D. J. Wang, L. Sun, T. Asefa, X.X. Zou, Nano Energy, 2017, 35, 161-170.
- [5] T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu,
 J. Am. Chem. Soc. 2017, 139, 8320-8328.
- [6] X. Q. Du, Z. Y. Lin, Y. Q. Gong, M. Zhao, J. Mater. Chem. A. 2018, 6, 6938-6946.
- [7] X. Q. Wang, B. J. Zhang, B. Yu, W. Q. Hou, W. L. Zhang, Y. F. Chen, J. Mater. Chem. A, 2018, 6, 7842-7850.
- [8] S. H. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Y. Koo, P. Samanta, T. Kuila, ACS Appl. Mater. Interfaces 2018, 10, 27712-27722.
- [9] F. F. Zhang, Y. C. Ge, H. Chu, P. Dong, R. Baines, Y. Pei, M. X. Ye, J. F. Shen, ACS Appl. Mater. Interfaces 2018, 10, 7087-7095-27722.
- [10] G. W. Zhang, B. Wang, J. L. Bi, D. Q. Fang, S. C. Yang, J. Mater. Chem. A, 2019, 7, 5769-5778.
- [11] Z. J. Zhai, C. Li, L. Zhang, H. C. Wu, L. Zhang, N. Tang, W. Wang, J. L. Gong, J. Mater. Chem. A, 2018, 6, 9833-9838.
- [12] J. S. Wang, J. Liu, B. Zhang, H. Z. Wan, Z. S. Li, X. Ji, K. Xu, C. Chen, D. Zha, L. Miao, J. J.

Jiang, Nano Energy, 2017, 42, 98-105.

- [13] N. Y. Cheng, Q. Liu, A. M. Asiri, W. Xing, X. P. Sun, J. Mater. Chem. A, 2015, 3, 23207-23212.
- [14] P. L. Zhang, L. Li, D. Nordlund, H. Chen, L. Z. Fan, B. B. Zhang, X. Sheng, Q. Daniel, L. C.Sun, Nat. Commun. 2018, 9, 381-391.
- [15] H. C. Yang, C. H. Wang, Y. J. Zhang, Q. B. Wang, Small 2018, 14, 1703273-1703280.
- [16] L. b. He, D. Zhou, Y. Lin, R. X. Ge, X. D. Hou, X. P. Sun, C. B. Zheng, ACS Catal. 2018, 8, 3859-3864.
- [17] H. J. Xu, B. K. Wang, C. F. Shan, W. S. Liu, Y. Tang, ACS Appl. Mater. Interfaces 2018, 10, 6336-6345.
- [18] X. J. Liu, W. Xi, C. Li, X. B. li, J. Shi, Y. L. Shen, J. He, L. H. Zhang, L. Xie, X. M. Sun, P.Wang, J. Luo, L. M. Liu, Y. Ding, Nano Energy 2018, 44, 371-377.
- [19] C. C. Du, M. X. Shang, J. X. Mao, W. B. Song, J. Mater. Chem. A, 2017, 5, 15940-15949.
- [20] J. J. Jiang, J. Liu, J. S. Wang, L. Miao, B. Zhang, Y. J. Ruan, J. Mater. Chem. A. 2018, 6, 2067-2072.
- [21] J. H. Xing, H. Li, S. M. Geyer, J. Mater. Chem. A, 2016, 4, 13866-13873.
- [22] S. Zhang, X. Y. Zhang, J. Li, E. K. Wang, J. Mater. Chem. A, 2017, 5, 20588-20593.
- [23] Z. Yu, Y. Bai, S. M. Zhang, Y. X. Liu, N. Q. Zhang, K. N. Sun, J. Mater. Chem. A, 2018, 6, 10441-10446.
- [24] G. L. Chai, K. P. Qiu, M. Qiao, M. M. Titirici, C. X. Shang, Z. X. Guo, Energy Environ. Sci. 2017, 10, 1186-1195.