Electronic Supplementary Information

The ability of the NiSOD binding loop to chelate zinc(II): the role of the terminal amino group in the enzymatic functions

Gizella Csire,[#] András Kolozsi,[‡] Tamás Gajda,[‡] Giuseppe Pappalardo,[†] Katalin Várnagy,[#] Imre Sóvágó,[#] István Fábián,^{#,§} Norbert Lihi^{#,§,*}

[#]Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032,

Debrecen, Hungary

*Department of Inorganic and Analytical Chemistry, University of Szeged, H-6721, Szeged,

Hungary

[†] CNR-IBB Istituto di Biostrutture e Bioimmagini, Via Paolo Gaifami 18,

95126 Catania, Italy

§ MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group,

University of Debrecen, H-4032, Debrecen, Hungary

*corresponding author: lihi.norbert@science.unideb.hu (N.L.)

Table of contents

Figure S1. UV-CD spectra registered in the L3 system at pH 10. 24 (black), after oxidation (blue) and after in situ reduction by dithiothreitol of the oxidized sample (red).

Figure S2. Species distribution of the complexes formed in the Zn(II):L4 1:1 system as a function of pH. $c_L = 1.5 \text{ mM}$

Figure S3. Downfield region of the ¹H NMR spectra of the **L2** systems in the absence (top) and presence (bottom) of zinc(II) at pD 9.3.

Figure S4. pH dependent CD spectra for the Zn(II):L2 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S5. pH dependent CD spectra for the Zn(II):L3 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S6. pH dependent CD spectra for the Zn(II):L4 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S7. The aliphatic region of the ¹H NMR spectra of the **L2** system in the absence (top) and presence (bottom) of zinc(II) at pD 11.2.

Figure S8. pH dependent CD spectra for the Ni(II):L4 1:1 system as a function of pH. $c_L = 1.0$ mM

Figure S9. Distribution curves as a function of pH calculated in the Zn(II):L1:L4 1:1:1 system. $c_L = 1.5 \text{ mM}$

Figure S10. Fragmentation pathway of $[Zn(II)+z_7]^-$ fragment.

Figure S11. Fragmentation pathway of [Zn(II)+DLACGV]^{2–} fragment.

Table S1. The results of ESI-TOF-MS experiments: measured and calculated m/z values obtained for the [ZnH₋₁L] complexes.

Table S2. MS/MS fragmentation of L1.

Table S3. MS/MS fragmentation of [ZnH₋₁L] complex formed between Zn(II) and L1.

Table S4. MS/MS fragmentation of L2.

Table S5. MS/MS fragmentation of [ZnH₋₁L] complex formed between Zn(II) and L2.

Table S6. MS/MS fragmentation of L3.

Table S7. MS/MS fragmentation of $[ZnH_{-1}L]$ complex formed between Zn(II) and L3.

Table S8. MS/MS fragmentation of L4.

Table S9. MS/MS fragmentation of [ZnH₋₁L] complex formed between Zn(II) and L4.

Figure S1. UV-CD spectra registered in the L3 system at pH 10. 24 (black), after oxidation (blue) and after in situ reduction by dithiothreitol of the oxidized sample (red).

Figure S2. Species distribution of the complexes formed in the Zn(II):L4 1:1 system as a function of pH. $c_L = 1.5 \text{ mM}$

Figure S3. Downfield region of the ¹H NMR spectra of the L2 systems in the absence (top) and presence (bottom) of zinc(II) at pD 9.3

Figure S4. pH dependent CD spectra for the Zn(II):L1 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S5. pH dependent CD spectra for the Zn(II):L2 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S6. pH dependent CD spectra for the Zn(II):L3 1:1 system as a function of pH. $c_L = 0.1$ mM

Figure S7. The aliphatic region of the ¹H NMR spectra of the L2 system in the absence (top) and presence (bottom) of zinc(II) at pD 11.2.

Figure S8. pH dependent CD spectra for the Ni(II):L4 1:1 system as a function of pH. $c_L = 1.0$ mM

Figure S9. Distribution curves as a function of pH calculated in the Zn(II):L1:L4 1:1:1 system. $c_L = 1.5 \text{ mM}^{\dagger}$

[†]The stepwise protonation constants of L4 used in this calculation were as follows: $H_5L = 3.40(5)$; $H_4L = 5.12$; $H_3L = 7.00(6)$; $H_2L = 8.20(6)$; HL = 8.78(6).

Figure S10. Fragmentation pathway of $[Zn(II)+z_7]^-$ fragment.

[DLACGV-3H-H₂S+Zn]²⁻

Figure S11. Fragmentation pathway of [Zn(II)+DLACGV]²⁻ fragment.

Ligand	Stoichiometry	m/z (observed)	m/z (calculated)
L1	$\label{eq:c43} \begin{split} & [C_{43}H_{59}N_{12}O_{12}S_2Zn]^{3-} \\ & H [C_{43}H_{59}N_{12}O_{12}S_2Zn]^{2-} \end{split}$	354.434 532.153	354.436 532.159
L2	$\begin{split} & [C_{45}H_{61}N_{12}O_{13}S_2Zn]^{3-} \\ & H [C_{45}H_{61}N_{12}O_{13}S_2Zn]^{2-} \end{split}$	368.439 553.161	368.440 553.164
L3	$[C_{41}H_{57}N_{12}O_{12}S_2Zn]^{3-}$	345.764	345.765
L4	$[C_{29}H_{42}N_{10}O_9S_2Zn]^{2-}$	401.091	401.094

Table S1. The results of ESI-TOF-MS experiments: measured and calculated m/z values obtained for the [ZnH₋₁L] complexes.

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
с1-2Н	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H	256.087	256.086	$C_9H_{14}N_5O_2S$	1-
c ₂ -2H-H ₂ S	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	$C_8H_{10}N_4O$	1-
c ₂ -2H-H ₂ S-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
с ₅ -2Н	581.251	581.249	C ₂₄ H ₃₇ N ₈ O ₇ S	1-
c ₅ -2H-H ₂ S	547.263	547.261	C ₂₄ H ₃₅ N ₈ O ₇	1-
CDLP-2H-CO-CH ₂ N	371.152	371.150	C ₁₆ H ₂₅ N ₃ O ₅ S	1-
CDLP-2H-CO-CH ₂ N-O ₂	339.162	339.160	C ₁₆ H ₂₅ N ₃ O ₃ S	1-
CDLP-2H-CO-CH ₂ N-O ₂ -HS	306.182	306.181	C ₁₆ H ₂₄ N ₃ O ₃	1-
H_2L	501.203	501.200	$C_{43}H_{62}N_{12}O_{12}S_2$	2-
H_2L-2H_2S	467.215	467.213	$C_{43}H_{58}N_{12}O_{12}$	2-
H_2L-2H ₂ S-C	461.215	461.213	$C_{42}H_{58}N_{12}O_{12}$	2-
$H_{-2}L-2H_2S-H_2O$	458.210	458.208	C ₄₃ H ₅₆ N ₁₂ O ₁₁	2-
H_2L-H ₂ S	484.209	484.207	$C_{43}H_{60}N_{12}O_{12}S$	2-
H_2L-H2S-H2O	475.204	475.202	$C_{43}H_{58}N_{12}O_{11}S$	2-
Tyr-NH ₃	162.056	162.055	C ₉ H ₈ NO ₂	1-
х ₂ -2Н	304.130	304.129	$C_{15}H_{18}N_3O_4$	1-
x ₄ -1H-H ₂ S	431.181	431.179	C ₂₀ H ₂₅ N ₅ O ₆	1-
у2-2Н	278.151	278.150	$C_{14}H_{20}N_{3}O_{3}$	1-
уз-2Н	335.172	335.171	$C_{16}H_{23}N_4O_4$	1-
y ₄ -2H-H ₂ S	404.194	404.192	$C_{19}H_{26}N_5O_5$	1-
у7-2Н	763.345	763.342	$C_{34}H_{51}N_8O_{10}S$	1-
y ₇ -2H-H ₂ S	729.358	729.355	$C_{34}H_{49}N_8O_{10}$	1-
z ₄ -3H	421.155	421.153	$C_{19}H_{25}N_4O_5S$	1-
z ₄ -3H-CH ₂ S-CO	347.172	347.171	$C_{17}H_{23}N_4O_4$	1-
z ₄ -3H-H ₂ S	387.167	387.166	$C_{19}H_{23}N_4O_5$	1-
z ₄ -3H-H ₂ S-C ₂ H ₂	361.152	361.150	$C_{17}H_{21}N_4O_5$	1-
z ₇ -3H	746.319	746.316	$C_{34}H_{48}N_7O_{10}S$	1-
z ₇ -3H-H ₂ S	712.331	712.328	$C_{34}H_{46}N_7O_{10}$	1-
z ₇ -3H-H ₂ S	355.662	355.660	C ₃₄ H ₄₅ N ₇ O ₁₀	2-
z ₇ -3H-H ₂ S-H ₂ O	694.321	694.318	C ₃₄ H ₄₄ N ₇ O ₉	1-

Table S2. MS/MS fragmentation of L1.

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
с ₁ -2Н	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H-H ₂ S	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	C ₈ H ₁₀ N ₄ O	1-
c ₂ -2H-H ₂ S-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₂ -4H+Zn	318.001	318.000	C ₉ H ₁₂ N ₅ O ₂ SZn	1-
c ₅ -4H+Zn	643.165	643.165	C ₂₄ H ₃₅ N ₈ O ₇ SZn	1-
c ₅ -4H+Zn-H ₂ S	609.177	609.179	C ₂₄ H ₃₃ N ₈ O ₇ Zn	1-
Tyr side chain	106.042	106.042	C ₇ H ₆ O	1-
Tyr-NH ₃	162.056	162.055	C ₉ H ₈ NO ₂	1-
x ₄ -1H-H ₂ S	431.181	431.179	C ₂₀ H ₂₅ N ₅ O ₆	1-
x ₄ -1H-H ₂ S	431.181	431.181	$C_{20}H_{25}N_5O_6$	1-
x ₄ -2H-H ₂ S	215.087	215.087	$C_{20}H_{24}N_5O_6$	2-
x ₈ -1H+Zn-CH ₂ S	303.761	303.760	$C_{37}H_{53}N_9O_{12}SZn$	3-
x ₈ -1H+Zn-H ₂ S	307.761	307.761	C ₃₈ H ₅₃ N ₉ O ₁₂ SZn	3-
y ₂ -2H	278.151	278.150	$C_{14}H_{20}N_{3}O_{3}$	1-
y ₄ -2H-H ₂ S	201.593	201.593	$C_{19}H_{25}N_5O_5$	2-
y ₅ -3H-CH ₂ S	244.120	244.119	$C_{23}H_{32}N_6O_6$	2-
y ₅ -3H-H ₂ S	250.120	250.119	$C_{24}H_{32}N_6O_6$	2-
y ₅ -4H+Zn	597.148	597.149	$C_{24}H_{33}N_6O_6SZn$	1-
y ₅ -5H+Zn	298.070	298.070	$C_{24}H_{32}N_6O_6SZn$	2-
y ₇ -5H+Zn	412.126	412.125	$C_{34}H_{48}N_8O_{10}SZn$	2-
z ₄ -3H	421.155	421.153	$C_{19}H_{25}N_4O_5S$	1-
z ₄ -3H-H ₂ S	387.167	387.166	$C_{19}H_{23}N_4O_5$	1-
z ₄ -4H	210.074	210.074	$C_{19}H_{24}N_4O_5S$	2-
z ₇ -5H+Zn	808.232	808.231	$C_{34}H_{46}N_7O_{10}SZn$	1-
z ₇ -5H+Zn-CO ₂	764.243	764.241	$C_{33}H_{46}N_7O_8SZn$	1-
z ₇ -6H+Zn	403.613	403.611	$C_{34}H_{45}N_7O_{10}SZn$	2-
$z_7-6H+Zn-CO_2$	381.618	381.617	$C_{33}H_{45}N_7O_8SZn$	2-
ZnH ₁ L-2H ₂ S	498.172	498.174	$C_{43}H_{56}N_{12}O_{12}Zn$	2-
ZnH ₁ L-2H ₂ S-CHNO	476.669	476.666	$C_{43}H_{56}N_{12}O_{12}Zn$	2-
ZnH ₋₁ L-CH ₂ S	339.108	339.107	$C_{42}H_{57}N_{12}O_{12}SZn$	3-
ZnH ₋₁ L-H ₂ S	343.108	343.108	C ₄₃ H ₅₇ N ₁₂ O ₁₂ SZn	3-
ZnH ₋₁ L-H ₂ S	515.166	515.166	$C_{43}H_{58}N_{12}O_{12}SZn$	2-
ZnH ₋₁ L-Tyr side chain	319.090	319.089	$C_{36}H_{53}N_{12}O_{11}S_2Zn$	3-

Table S3. MS/MS fragmentation of $[ZnH_{-1}L]$ complex formed between Zn(II) and L1.

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
c ₁ -2H	195.089	195.088	C ₈ H ₁₁ N ₄ O ₂	1-
c ₁ -2H-C ₂ H ₂ O	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₁ -2H-NH ₃	178.062	178.061	C ₈ H ₈ N ₃ O ₂	1-
с ₂ -2Н	298.098	298.096	C ₁₁ H ₁₆ N ₅ O ₃ S	1-
c ₂ -2H-H ₂ S	264.110	264.109	C ₁₁ H ₁₄ N ₅ O ₃	1-
c ₂ -2H-H ₂ S-C ₂ H ₂ O	222.100	222.099	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-C ₂ H ₂ O-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₂ -2H-H ₂ S-H ₂ O	246.100	246.098	$C_{11}H_{12}N_5O_2$	1-
c ₅ -2H	623.262	623.258	$C_{26}H_{39}N_8O_8S$	1-
c ₅ -2H-H ₂ S	589.274	589.271	C ₂₆ H ₃₇ N ₈ O ₈	1-
CDLP-2H-CH ₂ NO	383.152	383.150	$C_{17}H_{25}N_{3}O_{5}S$	1-
CDLP-2H-CO-C ₂ H ₅ N-O ₂	324.139	324.137	$C_{15}H_{22}N_{3}O_{3}S$	1-
CDLP-2H-CO-CH ₂ N	371.152	371.150	$C_{16}H_{25}N_{3}O_{5}S$	1-
CDLP-2H-CO-CH ₂ N-O ₂	339.162	339.160	$C_{16}H_{25}N_{3}O_{3}S$	1-
CDLP-2H-CO-CH ₂ N-O ₂ -HS	306.182	306.181	$C_{16}H_{24}N_{3}O_{3}$	1-
H_2L	522.208	522.205	$C_{45}H_{64}N_{12}O_{13}S_2$	2-
$H_{-2}L-2H_2S$	488.221	488.218	$C_{45}H_{60}N_{12}O_{13}$	2-
$H_{-2}L-2H_2S-C$	482.221	482.218	$C_{44}H_{60}N_{12}O_{13}$	2-
$H_{-2}L-2H_2S-CO_2$	466.226	466.223	$C_{44}H_{60}N_{12}O_{11}$	2-
$H_{-2}L-2H_2S-H_2O$	479.215	479.212	$C_{45}H_{58}N_{12}O_{12}$	2-
$H_{-2}L-H_2S$	505.215	505.211	$C_{45}H_{62}N_{12}O_{13}S$	2-
$H_2L-H_2S-H_2O$	496.209	496.206	$C_{45}H_{60}N_{12}O_{12}S$	2-
Tyr-NH ₃	162.056	162.055	C ₉ H ₈ NO ₂	1-
x ₂ -2H	304.130	304.129	$C_{15}H_{18}N_3O_4$	1-
x ₄ -1H-H ₂ S	431.181	431.179	$C_{20}H_{25}N_5O_6$	1-
y ₂ -2H	278.151	278.150	$C_{14}H_{20}N_{3}O_{3}$	1-
y ₃ -2H	335.172	335.171	$C_{16}H_{23}N_4O_4$	1-
y ₄ -2H-H ₂ S	404.194	404.192	$C_{19}H_{26}N_5O_5$	1-
y ₇ -2H	763.345	763.342	$C_{34}H_{51}N_8O_{10}S$	1-
y ₇ -2H-H ₂ S	729.358	729.355	$C_{34}H_{49}N_8O_{10}$	1-
y ₈ -2H-2H ₂ S	398.686	398.684	$C_{37}H_{51}N_9O_{11}$	2-
y ₈ -2H-2H ₂ S	798.379	798.375	$C_{37}H_{52}N_9O_{11}$	1-
y ₈ -2H-H ₂ S	832.367	832.363	$C_{37}H_{54}N_9O_{11}S$	1-
y ₈ -2H-H ₂ S-NH ₃	815.340	815.335	$C_{37}H_{51}N_8O_{11}S$	1-
z ₄ -3H	421.155	421.153	$C_{19}H_{25}N_4O_5S$	1-
z ₄ -3H-CH ₂ S-CO	347.172	347.171	C ₁₇ H ₂₃ N ₄ O ₄	1-

Table	S4.	MS/MS	fragmentation	of L2 .

z_4 -3H-H ₂ S	387.167	387.166	$C_{19}H_{23}N_4O_5$	1-
z_4 -3H-H ₂ S-C ₂ H ₂	361.152	361.150	$C_{17}H_{21}N_4O_5$	1-
z ₇ -3H	746.319	746.316	$C_{34}H_{48}N_7O_{10}S$	1-
z ₇ -3H-H ₂ S	355.662	355.660	$C_{34}H_{45}N_7O_{10}$	2-
z ₇ -3H-H ₂ S	712.331	712.328	$C_{34}H_{46}N_7O_{10}$	1-
z ₇ -3H-H ₂ S-H ₂ O	694.321	694.318	C ₃₄ H ₄₄ N ₇ O ₉	1-

Fragment	<i>m/z</i> ,	m/z.	Stoichiometry	Charge
	(calculated)	(observed)		chunge
a ₅ -4H+Zn	640.154	640.150	$C_{25}H_{34}N_7O_7SZn$	1-
b ₃ -4H+Zn	458.012	458.009	C ₂₅ H ₄₁ N ₆ O ₈ SZn	1-
b ₄ -4H+Zn	571.096	571.092	C ₂₁ H ₂₇ N ₆ O ₇ SZn	1-
c ₁ -2H	195.089	195.088	$C_8H_{11}N_4O_2$	1-
c ₁ -2H-NH ₃	178.062	178.061	$C_8H_8N_3O_2$	1-
с2-2Н	298.098	298.096	$C_{11}H_{16}N_5O_3S$	1-
c ₂ -2H-H ₂ S	264.110	264.108	$C_{11}H_{14}N_5O_3$	1-
c_2 -2H-H ₂ S-C ₂ H ₂ O	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c_2 -2H-H ₂ S-C ₂ H ₂ O-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₂ -2H-H ₂ S-H ₂ O	246.100	246.098	$C_{11}H_{12}N_5O_2$	1-
c ₂ -4H+Zn	360.011	360.009	$C_{11}H_{14}N_5O_3S$	1-
c ₅ -4H+Zn	685.175	685.171	$C_{26}H_{39}N_8O_8S$	1-
DLPCGV-6H-H ₂ S-CO ₂	501.247	501.244	C ₂₄ H ₃₃ N ₆ O ₆	1-
DLPCGV-6H-H ₂ S-CO ₂ -H ₂ O	483.236	483.233	$C_{24}H_{31}N_6O_5$	1-
Tyr-NH ₃	162.056	162.055	C ₉ H ₈ NO ₂	1-
х ₂ -2Н	304.130	304.128	C ₁₅ H ₁₈ N ₃ O ₄	1-
x ₄ -1H-H ₂ S	431.181	431.178	C ₂₀ H ₂₅ N ₅ O ₆	1-
у2-2Н	278.151	278.149	C ₁₄ H ₂₀ N ₃ O ₃	1-
уз-2Н	335.172	335.170	C ₁₆ H ₂₃ N ₄ O ₄	1-
y ₄ -2H-H ₂ S	404.194	404.191	C ₁₉ H ₂₆ N ₅ O ₅	1-
y ₅ -4H+Zn	597.148	597.144	C ₂₄ H ₃₃ N ₆ O ₆ SZn	1-
y ₆ -2H-H ₂ S	614.331	614.327	C ₃₀ H ₄₄ N ₇ O ₇	1-
y ₇ -4H+Zn	825.259	825.253	$C_{34}H_{49}N_8O_{10}SZn$	1-
y ₇ -5H+Zn	412.126	412.125	C ₃₄ H ₄₈ N ₈ O ₁₀ SZn	2-
y ₈ -4H-H ₂ S+Zn	894.280	894.276	C ₃₇ H ₅₂ N ₉ O ₁₁ SZn	1-
y ₈ -5H-H ₂ S+Zn	446.637	446.633	C ₃₇ H ₅₁ N ₉ O ₁₁ SZn	2-
z ₄ -3H	421.155	421.153	C ₁₉ H ₂₅ N ₄ O ₅ S	1-
z ₄ -3H-CH ₂ S-CO	347.172	347.170	C ₁₇ H ₂₃ N ₄ O ₄	1-
z ₄ -3H-H ₂ S	387.167	387.165	C ₁₉ H ₂₃ N ₄ O ₅	1-
z ₇ -5H+Zn	808.233	808.228	C ₃₄ H ₄₆ N ₇ O ₁₀ SZn	1-
z ₇ -5H-CO ₂ +Zn	764.243	764.238	C ₃₃ H ₄₆ N ₇ O ₈ SZn	1-
z ₇ -5H-H ₂ O+Zn	790.222	790.217	C ₃₄ H ₄₄ N ₇ O ₉ SZn	1-
z ₇ -6H+Zn	403.613	403.611	C ₃₄ H ₄₅ N ₇ O ₁₀ SZn	2-
ZnH ₁ L-2H ₂ S	519.177	519.174	C ₄₅ H ₅₈ N ₁₂ O ₁₃ Zn	2-
ZnH ₁ L-2H ₂ S-CO ₂	497.179	497.183	C ₄₄ H ₅₈ N ₁₂ O ₁₁ Zn	2-
ZnH ₋₁ L-2H ₂ S-H ₂ O	510.172	510.169	C ₄₅ H ₅₆ N ₁₂ O ₁₂ Zn	2-

Table S5. MS/MS fragmentation of $[ZnH_{-1}L]$ complex formed between Zn(II) and L2.

ZnH ₋₁ L-H ₂ S	536.171	536.167	$C_{45}H_{60}N_{12}O_{13}SZn$	2-
ZnH ₋₁ L-H ₂ S-CO ₂	514.176	514.173	$C_{44}H_{60}N_{12}O_{11}SZn$	2-
ZnH ₋₁ L-H ₂ S-H ₂ O	527.166	527.162	$C_{45}H_{58}N_{12}O_{12}SZn$	2-

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
c ₁ -2H	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H	256.087	256.086	$C_9H_{14}N_5O_2S$	1-
c ₂ -2H-H ₂ S	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	C ₈ H ₁₀ N ₄ O	1-
c ₂ -2H-H ₂ S-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₅ -2H	555.235	555.232	$C_{22}H_{35}N_8O_7S$	1-
c ₅ -2H-NH ₃	538.209	538.207	$C_{22}H_{32}N_7O_7S$	1-
c ₅ -2H-NH ₃ -H ₂ S	504.221	504.219	$C_{22}H_{30}N_7O_7$	1-
H_2L	488.195	488.195	$C_{41}H_{60}N_{12}O_{12}S_2$	2-
$H_{-2}L-2H_2S$	454.208	454.205	$C_{41}H_{56}N_{12}O_{12}$	2-
$H_{-2}L-2H_2S-C$	448.208	448.205	$C_{40}H_{56}N_{12}O_{12}$	2-
$H_{-2}L-2H_2S-H_2O$	445.202	445.200	$C_{41}H_{54}N_{12}O_{11}$	2-
H ₋₂ L-2H ₂ S-H ₂ O-NHCO	423.699	423.697	$C_{40}H_{53}N_{11}O_{10}$	2-
$H_{-2}L-H_2S$	471.201	471.199	$C_{41}H_{58}N_{12}O_{12}S$	2-
$H_{-2}L-H_2S-H_2O$	462.196	462.194	$C_{41}H_{56}N_{12}O_{11}S$	2-
Tyr-NH ₃	162.056	162.055	C ₉ H ₈ NO ₂	1-
x ₂ -2H	304.130	304.129	$C_{15}H_{18}N_3O_4$	1-
x ₄ -1H-H ₂ S	431.181	431.179	$C_{20}H_{25}N_5O_6$	1-
y ₂ -2H	278.151	278.150	$C_{14}H_{20}N_{3}O_{3}$	1-
y ₃ -2H	335.172	335.171	$C_{16}H_{23}N_4O_4$	1-
y ₄ -2H-H ₂ S	404.194	404.192	$C_{19}H_{26}N_5O_5$	1-
y ₅ -2H-H ₂ S	475.231	475.229	$C_{22}H_{31}N_6O_6$	1-
y ₅ -2H-H ₂ S-H ₂ O	457.220	457.218	$C_{22}H_{29}N_6O_5$	1-
y ₆ -2H-H ₂ S	588.315	588.312	$C_{28}H_{42}N_7O_7$	1-
y ₆ -2H-H ₂ S-H ₂ O	570.305	570.302	$C_{28}H_{40}N_7O_6$	1-
y ₇ -2H	737.330	737.324	$C_{32}H_{49}N_8O_{10}S$	1-
y ₇ -2H-H ₂ S	703.342	703.339	$C_{32}H_{47}N_8O_{10}$	1-
y ₇ -2H-H ₂ S	351.167	351.166	$C_{32}H_{46}N_8O_{10}$	2-
y ₇ -2H-H ₂ S-2H ₂ O	333.157	333.155	$C_{32}H_{42}N_8O_8$	2-
y_7 -2H-H ₂ S-NH ₃	342.654	342.653	$C_{32}H_{43}N_7O_{10}$	2-
z ₄ -3H	421.155	421.153	$C_{19}H_{25}N_4O_5S$	1-
z ₄ -3H-CH ₂ S-CO	347.172	347.171	$C_{17}H_{23}N_4O_4$	1-
z ₄ -3H-H ₂ S	387.167	387.166	$C_{19}H_{23}N_4O_5$	1-
z ₄ -3H-H ₂ S-C ₂ H ₂	361.152	361.150	$C_{17}H_{21}N_4O_5$	1-
z ₅ -2H-H ₂ S-CH ₃ CO	416.194	416.192	$C_{20}H_{26}N_5O_5$	1-
z ₅ -3H-H ₂ S-H ₂ O	440.194	440.192	$C_{22}H_{26}N_5O_5$	1-

i ubie 500 mis/mis muginemunon of Le.	Table	S6 .	MS/MS	fragmentation of L3.
---------------------------------------	-------	-------------	-------	----------------------

z ₇ -3H	720.303	720.300	$C_{32}H_{46}N_7O_{10}S$	1-
z ₇ -3H-H ₂ O	702.293	702.288	$C_{32}H_{44}N_7O_9S$	1-
z ₇ -3H-H ₂ S	686.316	686.312	$C_{32}H_{44}N_7O_{10}$	1-
z ₇ -3H-H ₂ S-2H ₂ O	650.294	650.291	$C_{32}H_{40}N_7O_8$	1-
z ₇ -3H-H ₂ S-CO ₂	642.326	642.322	$C_{31}H_{44}N_7O_8$	1-
z ₇ -3H-H ₂ S-CO ₂ -H ₂ O	624.315	624.312	$C_{31}H_{42}N_7O_7$	1-
z ₇ -3H-H ₂ S-H ₂ O	668.305	668.302	$C_{32}H_{42}N_7O_9$	1-

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
b ₄ -4H+Zn	529.085	529.083	C ₁₉ H ₂₅ N ₆ O ₆ SZn	1-
b ₄ -H ₂ O-4H+Zn	511.075	511.074	C ₁₉ H ₂₃ N ₆ O ₅ SZn	1-
b ₄ -H ₂ O-4H-C ₄ H ₆ N ₃ +Zn	415.019	415.016	C ₁₅ H ₁₇ N ₃ O ₅ SZn	1-
с ₁ -2Н	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H-H ₂ S	222.100	222.100	C ₉ H ₁₂ N ₅ O ₂	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	C ₈ H ₁₀ N ₄ O	1-
c ₂ -4H+Zn	318.001	318.000	C ₉ H ₁₂ N ₅ O ₂ SZn	1-
c ₂ -5H+Zn	158.497	158.496	C ₉ H ₁₁ N ₅ O ₂ SZn	2-
c ₅ -4H+Zn	617.148	617.148	C ₂₂ H ₃₃ N ₈ O ₇ SZn	1-
c ₅ -4H+Zn-NH ₃	600.122	600.122	C ₂₂ H ₃₀ N ₇ O ₇ SZn	1-
c ₅ -4H+Zn-NH ₃ -H ₂ O	582.112	582.111	C ₂₂ H ₂₈ N ₇ O ₆ SZn	1-
DLACGV-3H-H ₂ S+Zn	293.087	293.085	C ₂₃ H ₃₄ N ₆ O ₈ Zn	2-
DLACGV-7H-H ₂ S-CO ₂	237.112	237.111	C ₂₂ H ₃₀ N ₆ O ₆	2-
L-H-H ₂ S-2NH ₃	454.175	454.173	$C_{41}H_{63}N_{12}O_{12}S_2$	2-
Tyr-NH ₃	162.056	162.056	C ₉ H ₈ NO ₂	1-
x ₂ -2H	304.130	304.129	C ₁₅ H ₁₈ N ₃ O ₄	1-
x ₄ -1H-H ₂ S	431.181	431.180	C ₂₀ H ₂₅ N ₅ O ₆	1-
z_4 -3H-H ₂ S-C ₂ H ₂	361.152	361.150	C ₁₇ H ₂₁ N ₄ O ₅	1-
x ₄ -2H-H ₂ S	215.087	215.087	C ₂₀ H ₂₄ N ₅ O ₆	2-
y ₄ -2H-H ₂ S	201.593	201.593	C ₁₉ H ₂₅ N ₅ O ₅	2-
y ₄ -2H-H ₂ S	404.194	404.193	C ₁₉ H ₂₆ N ₅ O ₅	1-
y ₄ -3H	218.587	218.587	C ₁₉ H ₂₇ N ₅ O ₅ S	2-
z ₄ -3H	421.155	421.155	$C_{19}H_{25}N_4O_5S$	1-
z ₄ -3H-H ₂ S	387.167	387.166	C ₁₉ H ₂₃ N ₄ O ₅	1-
z ₄ -4H	210.074	210.073	$C_{19}H_{24}N_4O_5S$	2-
z ₅ -5H+Zn	554.106	554.105	C ₂₂ H ₂₈ N ₅ O ₆ SZn	1-
z ₅ -5H+Zn-C ₂ H ₂ NO ₃	466.102	466.101	$C_{20}H_{26}N_4O_3SZn$	1-
z ₇ -5H+Zn	782.217	782.215	$C_{32}H_{44}N_7O_{10}SZn$	1-
z ₇ -5H-CO ₂ +Zn	738.227	738.227	C ₃₁ H ₄₄ N ₇ O ₈ SZn	1-
z ₇ -5H-H ₂ O+Zn	764.206	764.206	C ₃₂ H ₄₂ N ₇ O ₉ SZn	1-
z ₇ -5H-H ₂ O-H ₂ S+Zn	730.218	730.217	C ₃₂ H ₄₀ N ₇ O ₉ Zn	1-
z ₇ -5H-H ₂ S+Zn	748.229	748.228	$C_{32}H_{42}N_7O_{10}Zn$	1-
z ₇ -6H+Zn	390.605	390.603	C ₃₂ H ₄₃ N ₇ O ₁₀ SZn	2-
z ₇ -6H-CO ₂ +Zn	368.610	368.608	$C_{31}H_{43}N_7O_8SZn$	2-
z ₇ -6H-CO ₂ -H ₂ O+Zn	359.604	359.602	$C_{31}H_{41}N_7O_7SZn$	2-
z ₇ -6H-H ₂ O+Zn	381.599	381.598	C ₃₂ H ₄₁ N ₇ O ₉ SZn	2-

Table S7. MS/MS fragmentation of $[ZnH_{-1}L]$ complex formed between Zn(II) and L3.

z ₇ -6H-H ₂ O-H ₂ S+Zn	364.606	364.604	$C_{32}H_{39}N_7O_9Zn$	2-
z ₇ -6H-H ₂ S+Zn	373.611	373.610	$C_{32}H_{41}N_7O_{10}Zn$	2-
$ZnH_{-1}L\textbf{-}2H_2S\textbf{-}C_4H_{10}O_2$	440.130	440.130	$C_{37}H_{44}N_{12}O_{10}Zn$	2-
$ZnH_{-1}L-2H_2S-H_2O$	476.159	476.157	$C_{41}H_{52}N_{12}O_{11}Zn$	2-
ZnH ₋₁ L-H ₂ S	334.436	334.435	$C_{41}H_{55}N_{12}O_{12}SZn$	3-
ZnH ₋₁ L-H ₂ S	502.158	502.157	$C_{41}H_{56}N_{12}O_{12}SZn$	2-
ZnH ₋₁ L-H ₂ S-2H ₂ O	484.148	484.147	$C_{41}H_{52}N_{12}O_{10}SZn$	2-
ZnH ₋₁ L-H ₂ S-H ₂ O	328.433	328.431	$C_{41}H_{53}N_{12}O_{11}SZn$	3-
ZnH ₋₁ L-H ₂ S-H ₂ O	493.153	493.152	$C_{41}H_{54}N_{12}O_{11}SZn$	2-

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
c ₁ -2H	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H	256.087	256.086	$C_9H_{14}N_5O_2S$	1-
c ₂ -2H-H ₂ S	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	C ₈ H ₁₀ N ₄ O	1-
c ₂ -2H-H ₂ S-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₅ -2H	581.251	581.249	$C_{24}H_{37}N_8O_7S$	1-
c ₅ -2H-H ₂ S	547.263	547.261	C ₂₄ H ₃₅ N ₈ O ₇	1-
c ₅ -2H-H ₂ S-H ₂ O	529.253	529.249	C ₂₄ H ₃₃ N ₈ O ₆	1-
DLP-2H	324.156	324.154	$C_{15}H_{22}N_{3}O_{5}$	1-
H_2L	370.137	370.135	$C_{29}H_{44}N_{10}O_9S_2$	2-
$H_{-2}L-2H_2S$	336.150	336.147	$C_{29}H_{40}N_{10}O_9$	2-
$H_{-2}L-2H_2S$	673.306	673.302	C ₂₉ H ₄₁ N ₁₀ O ₉	1-
$H_{-2}L-2H_2S-C$	330.150	330.147	$C_{28}H_{40}N_{10}O_9$	2-
H_2L-2H ₂ S-C	661.306	661.302	$C_{28}H_{41}N_{10}O_9$	1-
$H_{-2}L-2H_2S-C_2ONH_2$	308.647	308.645	C ₂₇ H ₃₉ N ₉ O ₈	2-
$H_2L-2H_2S-C_2ONH_2$	618.300	618.296	$C_{27}H_{40}N_9O_8$	1-
H_2L-2H ₂ S-C-H ₂ O	321.144	321.142	C ₂₈ H ₃₈ N ₁₀ O ₈	2-
H_2L-2H ₂ S-CHNO	630.300	630.296	$C_{28}H_{40}N_9O_8$	1-
H_2L-2H_2S-CONH ₂	314.647	314.645	C ₂₈ H ₃₉ N ₉ O ₈	2-
$H_2L-2H_2S-H_2O$	327.144	327.142	$C_{29}H_{40}N_{10}O_9$	2-
$H_{-2}L-2H_2S-H_2O$	655.296	655.291	$C_{29}H_{39}N_{10}O_8$	1-
$H_{-2}L$ - $CH_{2}S$	347.143	347.141	$C_{28}H_{42}N_{10}O_9S$	1-
$H_{-2}L-H_2S$	353.143	353.141	$C_{29}H_{42}N_{10}O_9S$	2-
$H_{-2}L-H_2S$	707.294	707.289	$C_{29}H_{43}N_{10}O_9S$	1-
H_2L-H2S-CHNO	664.288	664.283	$C_{28}H_{42}N_9O_8S$	1-
$H_2L-H_2S-H_2O$	344.138	344.136	$C_{29}H_{40}N_{10}O_8S$	2-
y ₃ -2H	273.103	273.101	$C_{10}H_{17}N_4O_3S$	1-
y ₃ -2H-H ₂ S	239.115	239.113	$C_{10}H_{15}N_4O_3$	1-
y ₅ -2H	501.214	501.211	$C_{20}H_{33}N_6O_7S$	1-
y ₆ -3H	301.608	301.606	$C_{23}H_{37}N_7O_8S_2$	2-
y ₆ -3H-H ₂ S	284.614	284.612	$C_{23}H_{35}N_7O_8S$	2-
z ₂ -3H	159.023	159.022	$C_5H_7N_2O_2S$	1-
z_2 -3H-H ₂ S	125.036	125.035	$C_5H_5N_2O_2$	1-
z ₅ -3H	484.187	484.184	$C_{20}H_{30}N_5O_7S$	1-
z ₅ -3H-CH ₂ S-CO ₂	394.210	394.207	$C_{18}H_{28}N_5O_5$	1-
z ₅ -3H-CH ₂ S-CO ₂ -NH ₃	377.183	377.181	$C_{18}H_{25}N_4O_5$	1-

Table	S8.	MS/MS	fragmentation	of L4 .

z ₅ -3H-CH ₂ S-H ₂ O	420.189	420.186	$C_{19}H_{26}N_5O_6$	1-
z ₅ -3H-CO ₂	440.197	440.195	$C_{19}H_{30}N_5O_5S$	1-
z ₅ -3H-H ₂ O	466.177	466.174	$C_{20}H_{28}N_5O_6S$	1-
z ₅ -3H-H ₂ S	450.199	450.197	$C_{20}H_{28}N_5O_7$	1-
z ₅ -3H-H ₂ S-CO ₂	406.210	406.207	$C_{19}H_{28}N_5O_5$	1-
z ₅ -3H-H ₂ S-CO ₂ -H ₂ O	388.199	388.196	$C_{19}H_{26}N_5O_4$	1-
z ₅ -3H-H ₂ S-H ₂ O	432.189	432.186	$C_{20}H_{26}N_5O_6$	1-

Fragment	<i>m/z</i> (calculated)	<i>m/z</i> (observed)	Stoichiometry	Charge
b ₃ -4H+Zn	416.001	415.999	C ₁₃ H ₁₄ N ₅ O ₅ SZn	1-
b ₃ -4H-H ₂ S+Zn	382.014	382.011	$C_{13}H_{12}N_5O_5Zn$	1-
b ₄ -4H-CO ₂ +Zn	485.095	485.092	C ₁₈ H ₂₅ N ₆ O ₄ SZn	1-
b ₄ -4H-H ₂ O+Zn	511.075	511.071	C ₁₉ H ₂₃ N ₆ O ₅ SZn	1-
с ₁ -2Н	153.078	153.077	C ₆ H ₉ N ₄ O	1-
c ₂ -2H	256.087	256.086	$C_9H_{14}N_5O_2S$	1-
c ₂ -2H-H ₂ S	222.100	222.098	$C_9H_{12}N_5O_2$	1-
c ₂ -2H-H ₂ S-CHNO	179.094	179.093	$C_8H_{10}N_4O$	1-
c ₂ -2H-H ₂ S-NH ₃	205.073	205.072	$C_9H_9N_4O_2$	1-
c ₂ -4H+Zn	318.000	317.999	C ₉ H ₁₂ N ₅ O ₂ SZn	1-
c ₂ -4H-NH ₃ +Zn	300.974	300.972	C ₉ H ₉ N ₄ O ₂ SZn	1-
c ₅ -4H+Zn	643.165	643.160	C ₂₄ H ₃₅ N ₈ O ₇ SZn	1-
c ₅ -4H+Zn-H ₂ O	625.154	625.150	C ₂₄ H ₃₃ N ₈ O ₆ SZn	1-
y ₃ -2H-H ₂ S	239.115	239.113	$C_{10}H_{15}N_4O_3$	1-
y ₃ -4H+Zn	335.016	335.014	$C_{10}H_{15}N_4O_3SZn$	1-
y ₄ -4H+Zn	448.100	448.098	$C_{16}H_{26}N_5O_4SZn$	1-
y ₅ -4H+Zn	563.127	563.124	$C_{20}H_{31}N_6O_7SZn$	1-
y ₅ -5H+Zn	281.060	281.058	$C_{20}H_{30}N_6O_7SZn$	1-
z ₂ -3H	159.023	159.022	$C_5H_7N_2O_2S$	1-
z ₂ -3H-H ₂ S	125.036	125.035	$C_5H_5N_2O_2$	1-
z ₅ -3H-H ₂ O	528.090	528.087	$C_{20}H_{26}N_5O_6S$	1-
$z_5-5H+Zn$	546.100	546.097	$C_{20}H_{28}N_5O_7SZn$	1-
z ₅ -5H-CO ₂ +Zn	502.111	502.108	$C_{19}H_{28}N_5O_5SZn$	1-
$z_5-6H+Zn$	272.547	272.545	$C_{20}H_{27}N_5O_7SZn$	1-
ZnH ₋₁ L-CH ₂ S	378.100	378.098	$C_{28}H_{40}N_{10}O_9SZn$	2-
ZnH ₋₁ L-H ₂ S	384.100	384.097	$C_{29}H_{40}N_{10}O_9SZn$	2-
ZnH ₋₁ L-H ₂ S	769.208	769.203	$C_{29}H_{41}N_{10}O_9SZn$	1-
ZnH_1L-H2S-CHNO	362.597	362.595	$C_{29}H_{40}N_{10}O_9SZn$	2-
ZnH_1L-H2S-CHNO	726.202	726.198	$C_{28}H_{40}N_9O_8SZn$	1-
ZnH ₋₁ L-H ₂ S-H ₂ O	375.095	375.093	$C_{29}H_{38}N_{10}O_8SZn$	2-

Table S9. MS/MS fragmentation of $[ZnH_{-1}L]$ complex formed between Zn(II) and L4.