Supporting Information

For

Metal-Coordination Driven Intramolecular Twisting: A turn-on Fluorescent-Redox Probe for Hg²⁺ Ion Through Interaction of Ferrocene Nonbonding Orbital and Dibenzylidenehydrazine

Sushil Ranjan Bhatta^a, Bijan Mondal^{b‡}, Sudhir Lima^{c‡} and Arunabha Thakur^{a*}

^aDepartment of Chemistry, Jadavpur University, Kolkata-700032, India.

^bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-36, India.

^cDepartment of Chemistry, National Institute of Technology Rourkela, Odisha-769008, India.

Phone: 033-2457-2779, +919937760940

Email: arunabha.thakur@jadavpuruniversity.in, babuiitm07@gmail.com

Table of content

Fig. S1. ¹ H NMR spectrum of compound 3 in CDCl ₃ as a solvent.	S3			
Fig. S2. ¹³ C NMR spectrum of compound 3 in $CDCl_3$ as a solvent.				
Fig. S3. ¹ H NMR spectrum of compound 4 in CDCl ₃ as a solvent.	S5			
Fig. S4. 13 C NMR spectrum of compound 4 in CDCl ₃ as a solvent.	S 6			
Fig. S5. HRMS spectrum of compound 3.	S 7			
Fig. S6. HRMS spectrum of compound 4.	S 8			
Fig. S7. Changes in the absorption spectra of 4 (10 ⁻⁴ M) in CH ₃ CN/H ₂ O (2/8)				
Upon addition of several metal cations tested.	S9			
Fig. S8. ESI-mass spectrum of $[4 \cdot Hg^{2+}]$.	S10			
Fig. S9. Effect of adding various metal ions on fluorescence of $4[M^{n+}] = 10^{-6} M$.	S11			
Fig. S10. Calculation of limit of detection (LOD) by $3\sigma/S$ method.	S12			
Fig. S11. Quantitative binding data (Benesi-Hildebrand plot) for with Hg ²⁺ ion.	S13			
Fig. S12. Bar plot representation of the fluorescence emission intensity of 4				

upon the addition of 1 equiv and 6 equiv of several competitive cations in	
CH ₃ CN solution.	S14
Fig. S13. Evolution of CV of 4 (10 ⁻⁴ M) (CH ₃ CN/H ₂ O) upon addition of several metal	
cations in CH ₃ CN/H ₂ O (2/8) [$(n-Bu)_4N$]ClO ₄ as supporting electrolyte. S15	
Fig. S14. Reversible interaction between 4 and EDTA by the introduction of	
Hg ²⁺ to the system; Inset: Stepwise complexation/decomplexation cycles	
carried out with 4 and EDTA.	S16
Fig. S15. Application of sensor 4 on supported silica. Colour changes of silica gel	
soaked with 4 upon addition into aqueous solution of Hg^{2+} ion.	S17
Fig. S16. Fluorescence emission titration of compound 4 (10^{-8} M) upon addition of	
(a) pond water and (b) tap water.	S18
Fig. S17. Fluorescence calibration curve for (a) pond water and (b) tap water.	S19
Table S1 . Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy	
density, H(r), potential energy density, V(r) and kinetic energy density,	
G(r) in hartree Å ⁻³ of selected bond critical points (BCPs) and cage	
critical point (CCP) in complexat the B3LYP/def2-SVP level of theory.	S20
Fig. S18. Frontier molecular orbitals (isovalue 0.03) of 4, as obtained from DFT	
calculations.	S21
Fig. S19. Frontier molecular orbitals (isovalue 0.03) of $[4 \cdot Hg^{2+}]$ as obtained	
from DFT calculations.	S22

Fig. S1. ¹H NMR spectrum of compound **3** in CDCl₃ as a solvent.

Fig. S2. ¹³C NMR spectrum of compound **3** in CDCl₃ as a solvent.

Fig. S3. ¹H NMR spectrum of compound **4** in CDCl₃ as a solvent.

Fig. S4. ¹³C NMR spectrum of compound 4 in CDCl₃ as a solvent.

Fig. S5. HRMS spectrum of compound 3.

Fig. S6. HRMS spectrum of compound 4.

Fig. S7. Changes in the absorption spectra of 4 (10⁻⁴ M) in CH_3CN/H_2O upon addition of several metal cations tested.

Fig. S8. ESI-mass spectrum of $[4 \cdot Hg^{2+}]$.

Fig. S9. Effect of adding various metal ions on fluorescence of **4**. $[M^{n+}] = 10^{-6} M$.

Fig. S10. Calculation of limit of detection (LOD) by $3\sigma/S$ method.

Fig. S11. Quantitative binding data (Benesi-Hildebrand plot) with Hg^{2+} ion.

Fig. S12. Bar plot representation of the fluorescence emission intensity of 4 upon the addition of (a) 1 equiv and (b) 6 equiv of several competitive ions in CH_3CN solution.

Fig. S13. Evolution of CV of **4** (10⁻⁴ M) (CH₃CN/H₂O) upon addition of several metal cations in CH₃CN/H₂O (2/8) [$(n-Bu)_4$ N]ClO₄ as supporting electrolyte.

Fig. S14. Reversible interaction between **4** and EDTA by the introduction of Hg^{2+} to the system; Inset: Stepwise complexation/decomplexation cycles carried out with **4** and EDTA.

Fig. S15. Colour changes of silica gel soaked with 4 upon addition into aqueous solution of Hg^{2+} ion.

Fig. S16. Fluorescence emission titration of compound 4 (10^{-8} M) upon addition of (a) pond water and (b) tap water.

Fig. S17. Fluorescence calibration curve for (a) pond water and (b) tap water.

Table S1. Electron density, $\rho(r)$, Laplacian of electron density, $\nabla^2 \rho(r)$, total energy density, H(r), potential energy density, V(r) and kinetic energy density, G(r) in hartree Å⁻³ of selected bond critical points (BCPs) and cage critical point (CCP) in complex at the B3LYP/def2-SVP level of theory.

BCP/RCP	ρ(r)	$\nabla^2 \rho(r)$	H(r)	V(r)	G(r)
N-Hg	0.116	0.377	-0.0327	-0.1588	0.126
	0.1161	0.3769	-0.0327	-0.1588	0.1261
O-Hg	0.0196	0.0658	0.00028	-0.0159	0.0161
	0.0196	0.0658	0.00028	-0.0158	0.01618

Fig. S18. Overlay structures of 4 optimized at S_0 state (Red) and S_1 state (Green).

Fig. S19. Overlay structures of $[4 \cdot Hg^{2+}]$ optimized at S₀ state (Red) and S₁ state (Green).