Doubled-basic Sr-Amino containing MOF as highly stable heterogeneous catalyst

Pedro Leo^a, Gisela Orcajo^b, David Briones^a, Antonio Rodríguez-Diéguez^c, Duane Choquesillo-Lazarte^d, Guillermo Calleja^b and Fernando Martínez^{*a}

^a Department of Chemical and Environmental Technology, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles, Spain.

^b Department of Chemical, Energy and Mechanical Technology, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles, Spain.

^c Department of Inorganic Chemistry, University of de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain

^d Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Avda. de las Palmeras 4, 18100, Armilla, Granada, Spain.

S1. Crystallographic data of Sr(NH₂-bdc)

S2. Selected bonds distances and angles of Sr(NH₂-bdc)

S3. Isotherm at 77 K of Sr(NH₂-bdc)

S4. ¹H and ¹³C NMR analysis of catalytic product ethyl trans-α-cyanocinnamate

S5. Stability of IRMOF-3 catalyst

S6. IR spectra of the Sr(NH₂-bdc) before and after catalytic activity

S7. SEM images of Sr(NH₂-bdc)

S1. Crystallographic data of Sr(NH₂-bdc)

Chemical formula	$C_{11}H_{12}N_2O_5Sr$		
Molecular weight (g.mol ⁻¹)	339,85		
Temperature (K)	100		
λ (Å)	0,71073		
Crystallographic system	Monoclinic		
Space group	$P2_1/_n$		
<i>a</i> (Å)	9.9671 (8)		
b(Å)	7.3143 (6)		
<i>c</i> (Å)	18.1950 (16)		
α (°)	90		
β (°)	90.611(3)		
	90		
Volume (Å ³)	1326.38(19)		
Z	4		
ρ (g.cm ⁻³)	1.702		
μ(mm ⁻¹)	4.082		
F(000)	680		
Crystal size (mm)	0.12 x 0.11 x 0.08		
Observed reflections	3106		
R _{int}	0.0273		
$R1 b / wR2 c [I > 2\sigma(I)]$	0.0410 / 0.0919		
R1 ^b / wR2 ^c (all data)	0.0458 / 0.0951		
GoF	1.272		
Largest diff. pk and hole [eÅ-3]	0.583 and -0.892		

 Table S1. Crystallographic data for Sr(NH₂-bdc).

S2. Selected bonds distances and angles of Sr(NH₂-bdc)

Distances Ang			es		
Sr1 O1	2.458(4)	01 Sr1 O1	149.12(10)	O3 Sr1 O3	152.98(7)
Sr1 O1	2,672(4)	01 Sr1 O2	154.11(14)	O3 Sr1 O4	155.37(15)
Sr1 O2	2.569(4)	O1 Sr1 O3	95.48(14)	O3 Sr1 O5A	68.0(2)
Sr1 O3	2.631(4)	O1 Sr1 O3	75.87(12)	O3 Sr1 O5A	71.9(3)
Sr1 O3	2.504(4)	O1 Sr1 O4	98.27(17)	O3 Sr1 O5A	85.2(3)
Sr1 O4	2.604(5)	O1 Sr1 O5A	79.6(2)	O3 Sr1 O5B	81.0(3)
Sr1 O5A	2.723(10)	O1 Sr1 O5A	75.1(2)	O3 Sr1 O5B	126.5(3)
Sr1 O5A	2.596(9)	O1 Sr1 O5A	69.7(2)	O3 Sr1 O5B	75.3(3)
Sr1 O5B	2.685(12)	O1 Sr1 O5B	66.6(3)	O4 Sr1 O1	93.02(16)
Sr1 O5B	2.639(12)	O1 Sr1 O5B	70.3(3)	O4 Sr1 O3	50.10(15)
		O1 Sr1 O5B	83.2(3)	O4 Sr1 O5A	117.7(3)
		O2 Sr1 O1	49.50(13)	O4 Sr1 O5B	122.5(3)
		O2 Sr1 O3	110.38(13)	O4 Sr1 O5B	80.2(3)
		O2 Sr1 O4	97.34(17)	05A Sr1 01	135.0(2)
		O2 Sr1 O5A	86.3(3)	05A Sr1 03	131.3(3)
		O2 Sr1 O5A	110.8(3)	05A Sr1 04	83.5(3)
		O2 Sr1 O5B	92.2(3)	05A Sr1 05A	149.2(3)
		O2 Sr1 O5B	105.4(3)	05A Sr1 05B	148.6(3)
		O3 Sr1 O1	70.23(11)	05B Sr1 01	140.3(3)
		O3 Sr1 O1	104.20(13)	C(3B)-N(1B)-C(2B)	120(2)
		O3 Sr1 O2	81.35(14)		

Table S2. Selected distances (Å) and angles (°) for $Sr(NH_2$ -bdc).

S3. N₂ Isotherm at 77k of Sr(NH₂-bdc)

Figure S3. N₂ adsorption–desorption isotherms at 77 K.

S4. ¹H and ¹³C NMR analysis of catalytic product ethyl trans-α-cyanocinnamate.

Product was confirmed by means of ¹H, ¹³C NMR spectroscopy. As an example, we present here the results obtained following this reaction conditions: 80°C, using DMF as solvent, equimolar ratio of benzaldehyde/ethyl cyanoacetate, and catalyst concentration of 5 mmol of strontium. For ethyl trans- α -cyanocinnamate product different proton chemical shifts were detected in the range of 1.28 to 8.38 ppm. DMF, H₂O and starting materials were also identified in the spectra.

Figure S4a. ¹H NMR of reaction media at 300min (298 K, 400 MHz, DMSO-d6). Ethyl trans- α -cyanocinnamate product: δ 8.38 (s, 1H), 8.05-8.03 (d, J = 7.1 Hz, 2H), 7.65 – 7.55 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). The following multiplicity abbreviations are used: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) muliplet.

Figure S4b. ¹³C NMR of reaction media at 300min (298 K, 100 MHz, DMSO-d6). Ethyl trans- α -cyanocinnamate product: δ 162.44, 155.72, 134.06, 131.99, 131.46, 129.97, 116.24, 103.22, 63.04, 14.62.

S5. Stability of IRMOF-3 catalyst

Figure S5. X-ray diffraction patterns of fresh and used IRMOF-3 and Sr(NH₂-bdc). Reaction conditions of the catalytic run: 80 °C, equimolar ratio of benzaldehyde and ethyl cyanoacetate and DMF as solvent.

S6. IR spectra of the Sr(NH₂-bdc) before and after catalytic activity

Figure S6. FT-IR spectra of the fresh (a) and used (b) Sr(NH₂-bdc). Reaction conditions of the catalytic run: 80 °C, equimolar ratio of benzaldehyde and ethyl cyanoacetate and DMF as solvent.

S7. SEM images of Sr(NH₂-bdc)

