Kinetic investigation of the dissociation of dinuclear hierarchically assembled titanium(IV) helicates

David Van Craen,^a Marcel Schlottmann,^a Wolfgang Stahl,^a Christoph Räuber,^a Markus Albrecht,*^a

Table of Content:

Stacked ¹ H NMR of the equilibration process of Li[Li ₃ {(Me) ₃ Ti} ₂] at 25 °C	2
Solution of the kinetic approach of an A to 2 B equilibrium	3
Kinetic of Li[Li ₃ {(Me) ₃ Ti} ₂] for 25 °C to 65 °C	6
Kinetic of Li[Li ₃ {(cyBu) ₃ Ti} ₂] for 25 °C to 65 °C	7
Arrhenius plots of Li[Li ₃ {(Me) ₃ Ti} ₂] and Li[Li ₃ {(cyBu) ₃ Ti} ₂]	8
Kinetic of Li[Li ₃ {(3-Pent) ₃ Ti} ₂] at 25 °C	9
Kinetic of Li[Li ₃ {(3,5-F₂-Bz) ₃ Ti} ₂] at 25 °C	9
Kinetic of Li[Li ₃ {(3,5-Cl₂-Bz) ₃ Ti} ₂] at 25 °C	9
Kinetic of Li[Li ₃ {(3,5-Br₂-Bz) ₃ Ti} ₂] at 25 °C	9
Error estimation	10

Stacked ¹H NMR of the equilibration process of Li[Li₃{(Me)₃Ti}₂] at 25 °C

$$A \xrightarrow{k_1} 2 B$$

The following reaction with the given starting conditions is investigated:

$$a(t=0) = a_0$$
$$b(t=0) = 0$$

The time dependend change of *a* is described as:

$$\frac{da}{dt} = -k_1a + k_2b^2$$

Regarding to the equilibrium with the equilibrium concentrations:

$$\lim_{t \to \infty} \frac{da}{dt} = 0$$
$$K = \frac{1}{K_{dim.}} = \frac{b_{\infty}^2}{a_{\infty}} = \frac{k_1}{k_2}$$

These equations allow to describe the kinetic approach:

$$\frac{da}{dt} = -k_2(Ka - b^2)$$

Including the starting conditions and the stoichiometry for **b**:

$$b = 2(a_0 - a)$$

$$\frac{da}{dt} = -k_2[-4a^2 + (K + 8a_0)a - 4a_0^2]$$

Integration via separation of the variables gives:

$$\int_{a_0}^{a} \frac{da}{-4a^2 + (K + 8a_0)a - 4a_0^2} = -k_2t$$

The integral can be described as:

$$\int_{a_0}^{a} \frac{da}{-4a^2 + (K + 8a_0)a - 4a_0^2} = \int \frac{dx}{px^2 + qx + r}$$

With: x = a

$$p = -4$$
$$q = K + 8a_0$$
$$r = -4a_0^2$$

Transforming the integral into:

$$\int \frac{dx}{px^2 + qx + r} = \frac{1}{p} \int \frac{dx}{x^2 + \frac{q}{p} + \frac{r}{p}} = \frac{1}{p} \int \frac{dx}{(x - x_1)(x - x_2)}$$

With:

$$x^{2} + \frac{q}{p} + \frac{r}{p} = 0$$
$$x_{1} = -\frac{q}{2p} + \frac{\sqrt{q^{2} - 4pr}}{2p}$$
$$x_{2} = -\frac{q}{2p} - \frac{\sqrt{q^{2} - 4pr}}{2p}$$

It is necessary that $q^2 - 4pr \ge 0$ because x_1 and x_2 are real.

Partial fraction decomposition results in:

$$\frac{1}{(x-x_1)(x-x_2)} = \frac{A}{x-x_1} + \frac{B}{x-x_2}$$

With:

$$A = -B = \frac{1}{x_1 - x_2} = \frac{p}{\sqrt{q^2 - 4pr}}$$

Integration gives:

$$\int \frac{dx}{(x-x_1)(x-x_2)} = \frac{1}{x_1-x_2} \left(\int \frac{dx}{x-x_1} - \int \frac{dx}{x-x_2} \right) = \frac{1}{x_1-x_2} \left[\ln(|x-x_1|) - \ln(|x-x_2|) \right]$$
$$= \frac{1}{x_1-x_2} \ln \left| \frac{x-x_1}{x-x_2} \right| = \frac{p}{\sqrt{q^2-4pr}} \ln \left| \frac{2px+q-\sqrt{q^2-4pr}}{2px+q+\sqrt{q^2-4pr}} \right|$$

Thus the solution for the previous simplified integral is:

$$\int \frac{dx}{px^2 + qx + r} = \frac{1}{p} \int \frac{dx}{(x - x_1)(x - x_2)} = \frac{1}{\sqrt{q^2 - 4pr}} \ln \left| \frac{2px + q - \sqrt{q^2 - 4pr}}{2px + q + \sqrt{q^2 - 4pr}} \right|$$

Reintroducing the previous substituted following terms: x = a

p = -4 $q = K + 8a_0$ $r = -4a_0^2$

With respect to the integration limits:

$$\int_{a_0}^{a} \frac{da}{-4a^2 + (K+8a_0)a - 4a_0^2} = \frac{1}{Q} \ln \left| \frac{-8a + K + 8a_0 - Q}{-8a + K + 8a_0 + Q} \right| - \frac{1}{Q} \ln \left| \frac{K-Q}{K+Q} \right|$$

This term results in the final linear equation for the determination of k_2 :

$$y = -k_2t + c$$

With

$$y = \frac{1}{Q} ln \left| \frac{-8a + K + 8a_0 - Q}{-8a + K + 8a_0 + Q} \right|$$
$$c = \frac{1}{Q} ln \left| \frac{K - Q}{K + Q} \right|$$

$$Q = \sqrt{K(K + 16a_0)}$$
 while $K(K + 16a_0) \ge 0$ because $K \ge 0$ and $a_0 \ge 0$

Kinetic of Li[Li₃{(**cyBu**)₃Ti}₂] for 25 °C to 65 °C

Arrhenius plots of Li[Li₃{(**cyBu**)₃Ti}₂]

Kinetic of Li[Li₃{(**3,5-F₂-Bz**)₃Ti}₂] at 25 °C

Kinetic of Li[Li₃{(**3,5-Cl₂-Bz**)₃Ti}₂] at 25 °C

Kinetic of Li[Li₃{ $(3,5-Br_2-Bz)_3Ti$ }] at 25 °C

Error estimation

The errors of the dimerization constants were obtained via a propagation of the NMR uncertainty (\pm 5 % for the integration).

The errors of the rate constants were obtained via comparison of the two different kinetic methods. The rate constants obtained from solving the kinetic approach ($y = -k_2t + c$) are compared to those obtained by the initial slope $\ln(c_d/c_{d,t=0})$. This approach allows the direct estimation of the uncertainties of the shown rate constants.

Example for Li[Li₃{(**Me**)₃Ti}₂]:

Rate constants obtained by solving the kinetic approach: $k_1 = 3.295 \cdot 10^{-4}$; $k_2 = 6.392 \cdot 10^{-2}$

Rate constants obtained by the initial slope: $k_1 = 3.756 \cdot 10^{-4}$; $k_2 = 7.287 \cdot 10^{-2}$

Estimated errors obtained by comparison: $\Delta k_1 = \pm 0.461 \cdot 10^{-4}$; $\Delta k_2 = \pm 0.895 \cdot 10^{-2}$

The errors for the activation energies were obtained from the linear regression.