Supporting Information

Flexible and Conductive Metallic Paper-based Current Collector with Energy Storage

Capability in Supercapacitor Electrodes

Yaoyin Li^{a,b,c}, Qiyuan Wang^{a,b,c}, Yong Wang^{a,b,c}, Mingjun Bai^d, Jian Shao^{a,b,c}, Hongjun Ji^{a,b,c}, Huanhuan Feng^{a,b,c}, Jiaheng Zhang^{a,b,c}, Xing Ma^{a,b,c} and Weiwei Zhao^{a,b,c,*}

^aFlexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, P. R. China

^bState Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen, 518055, P. R.China

^cSchool of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, P. R. China

^dSchool of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China

* Corresponding author. E-mail: wzhao@hit.edu.cn

Figure S1. SEMimages of Ni-paper-MnO₂ electrodes with different soaking time: (a) 5 min;(b) 10 min; (c) 20 min; (d) 30 min; (e) 30 min (high magnification).

Figure S2. XRD patterns of Ni-paper-MnO₂ electrodes with different soaking time.

Figure S3. CV carves of Ni-paper-MnO₂ electrodes: (a) Ni-paper-5;(b) Ni-paper-10;(c) Ni-paper-20;(d) Ni-paper-30.

Figure S4. GCD carves of Ni-paper-MnO₂ electrodes: (a) Ni-paper-5;(b) Ni-paper-10;(c) Ni-paper-20;(d) Ni-paper-30.

Materials	Current collector	Electrolyte	Capacitance	Stability (cycles)	Ref.
MnO ₂ nanostructure	Graphite foam	1M Na ₂ SO ₄	201 F/g (1A/g)	96.7% (1000)	S 1
MnO ₂	Graphite fiber	1M Na ₂ SO ₄	245 F/g (1A/g)	80% (1000)	S2
MnO ₂ nanowires	PVDF membrance	0.5M Na ₂ SO ₄	118 F/g (200 mV/s)	95.3% (1000)	S3
MnO ₂ nanorods	Carbon nanofibers	1M Na ₂ SO ₄	291 F/g (1A/g)	90.9% (5000)	S4
MnO ₂ nanoflowers	Graphite paper	6%NH4HC O3	368.3 F/g (0.2A/g)	98.4% (3000)	S 5
MnO ₂ nanosheets	Carbon sphere	1M Na ₂ SO ₄	231 F/g (0.5A/g)	96% (1000)	S 6
MnO ₂ nanoparticle	3D graphene	1M Na ₂ SO ₄	324 F/g (0.4A/g)	91.1% (5000)	S7
MnO ₂ /reduce d graphene oxide	Ni fibers	1M Na ₂ SO ₄	119.4 mF/cm ² (0.5mA/cm ²)		S8
MnO ₂ nanorods	Porous carbon	6М КОН	196.2 F/g (1A/g)	78.5% (5000)	S9
MnO ₂ nanosheets	Carbon fibers	1M Na ₂ SO ₄	115.3 F/g (0.5A/g)	85.6% (2000)	S10
MnO ₂	Ni Paper	1M Na ₂ SO ₄	1095 mF/cm ² (1 mA/cm ²) 352 F/g (0.33 F/g)	73% (2000)	This work

Table.S1 Comparison of as prepared supercapacitor with some reported supercapacitors.

Figure S5. Areal specific capacitance measured at different current densities in the potential range of 0-1.0 V for Ni-paper-30 and Ni-paper-40.

Figure S6. Cycling stability of the Ni-paper-30 at a current density of 10 mA/cm².

Figure S7. log(i) vs log(v) plot of the sample:(a) Ni-paper-5;(b) Ni-paper-10;(c) Ni-paper-20;(d) Ni-paper-30.

The contribution of the capacitive charge storage and the diffusion controlled insertion processes could be quantitative separated by the following formula: S11,S12

$$i(V) = k_1 v + k_2 v^{1/2}$$
(1)
$$i(V)/v^{1/2} = k_1 v^{1/2} + k_2$$
(2)

where i(V) is the current at a given voltage, k_1 and k_2 areconstants, and v is the scan rate. k_1v and $k_2v^{1/2}$ represents the capacitive behaviourand diffusion controlled insertion processes, respectively. k_1 and k_2 could be obtained by formula (2).

Figure S8. Diffusive and capacitive capacitance contribution of the samples at a scan rate 5 mV/s.

References

[S1] X. B. Lv, H. L. Zhang, F. F. Wang, Z. F. Hu, Y. X. Zhang, L. L. Zhang, R. Xie, J. Y. Ji, CrystEngComm, 2018, **20**, 1690.

[S2] J. Y. Zhang, X. F. Yang, Y. B. He, Y. L. Bai, L. P. Kang, H. Xu, F. Shi, Z. B. Lei, Z. H. Liu, J. Mater. Chem. A, 2016, 4, 9088.

[S3] W. Yao, J. Wang, H. Li, Y. Lu, Journal of Power Sources, 2014, 247, 824.

[S4] K. B. Xu, S. J. Li, J. M. Yang, J. Q. Hu, Journal of Colloid and Interface Science, 2018, **513**, 448.

[S5] X. Q. Feng, Y. H. Li, G. S. Chen, Z. Liu, X. H. Ning, A. P. Hu, Q. L. Tang, X. H. Chen, Materials Letters, 2018, **231**, 114.

[S6] X. P. Chen, J. Wen, C. X. Zhao, Y. T. Li, N. Wang, ChemistrySelect, 2018, 3, 9301.

[S7] P. Y. Wang, C. Zhou, S. Wang, H. J. Kong, Y. N. Li, S. D. Li, S. M. Sun, J Mater Sci: Mater Electron, 2017, **28**, 12514.

[S8] J. H. Zhou, N. N. Chen, Y. Ge, H. L. Zhu, X. M. Feng, R. Q. Liu, Y. W. Ma, L. H. Wang, W. H. Hou, Sci China Mater, 2018, **61**, 243.

[S9] Y. M. Xie, L. J. Wang, Q. Y. Guo, J. Yin, J. Liu, L. Q. Fan, J. H. Wu, J Mater Sci: Mater Electron, 2018, **29**, 7957.

[S10] S. C. Sekhar, G. Nagaraju, S. M. Cha, J. S. Yu, Dalton Trans, 2016, 45, 19322.

[S11] J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111,14925.

[S12] H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 2017, 16, 454.