Supporting Information

Cleavage of Acyclic Diaminocarbene Ligands at an Iridium(III) Center. Recognition of a New Reactivity Mode for Carbene Ligands

Mikhail A. Kinzhalov,^{*,a} Anzhelika A. Eremina,^a Andrey S. Smirnov,^a Vitalii V. Suslonov,^a Vadim Yu. Kukushkin,^a Konstantin V. Luzyanin^{*,a,b}

^aSaint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034 Russia;
^bDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom

Table of Contents

Characterization of isocyanide and diaminocarbene complexes

Table S1. C≡N stretching vibration frequency of uncomplexed isocyanides **2a**–**d** and complexes [**3a**–**d**](OTf)

Table S2. ¹H NMR monitoring of reaction between [3c](OTf) and NH₃

Table S3. Overall ¹H NMR yield and a ratio between [4c](OTf) and 6c in the reaction between [5c](OTf) and bases

Scheme S1. Proposed mechanism of base-mediated cleavage of ADC ligands in [5a-d](OTf)

Table S4. Crystal data and structures refinement

NMR spectra

1. Characterization of isocyanide and diaminocarbene complexes

1.1. Characterization of complexes [3a-b](OTf)

Complexes [3a–d](OTf) were characterized by elemental analyses (C, H, N), molar conductivity measurements, TG/DTA, high resolution ESI+-MS, IR, 1D (¹H, ¹³C{¹H}, ¹⁹F{¹H}) and 2D (¹H, ¹H COSY, ¹H, ¹³C-HMQC/¹H, ¹³C-HSQC, ¹H, ¹³C-HMBC) NMR spectroscopy. Complexes [3a–d](OTf) gave satisfactory CHN microanalyses, that are consistent with the proposed formulae. The values of molar conductivities of [3a-d](OTf) in MeCN (137–148 Ohm⁻¹cm⁻¹mol⁻¹) agree with the typical range for 1:1 electrolytes (120–160 Ohm⁻¹cm⁻¹mol⁻¹ in MeCN^[1]). The HRESI⁺-MS of [3a-d](OTf) exhibit sets of peaks with the characteristic isotopic distribution due to $[M - OTf]^+$ ions. The IR spectra of [3a-d](OTf) contain two strong v(C=N) bands in the 2145-2156 cm⁻¹ and 2173–2184 cm⁻¹ ranges, that is consistent with the *cis* placement of the two isocyanide ligands. Increase of the CN stretching vibration frequency on going from the uncomplexed (2129–2140 cm⁻¹; Table S1, ESI) to the coordinated isocyanides [**3a–d**](OTf) indicates the more pronounced electrophilic character of the C atom of ligated isocyanide and its higher susceptibility to the nucleophilic attack.^[2] Herein, a small $\Delta v = v(C \equiv N)_{coord} - v(C \equiv N)_{free}$ of *ca.* 30 cm⁻¹ for [3a-c](OTf) (5 cm⁻¹ for [3d](OTf)) indicates a limited electrophilic activation of coordinated isocyanides towards reaction with nucleophiles. Known iridium-isocyanide complexes $[Ir(F_2ppy)_2(CNAr)_2]PF_6$ (Ar 4-trifluoromethylphenyl, 3.5-= bis(trifluoromethyl)phenyl, and 4-nitrophenyl) with more electron-deficient aryl isocyanides have Δv values of 40–70 cm^{-1.[3]} ¹H and ¹³C{¹H} NMR spectra of [**3a**–d](OTf) show a single sets of resonances for the ppy and isocyanide ligands suggesting C2 symmetry. Assignment of ¹H and ¹³C{¹H} NMR signals was aided by ¹H,¹H-COSY, ¹H,¹³C-HMQC/HSQC, and ¹H,¹³C-HMBC NMR experiments.

1.2. Characterization of complexes [5a-d](OTf)

Diaminocarbene species [**5a**–**d**](OTf) were obtained as pale yellow solids in 73–86% yields; all [**5a**–**d**](OTf) are air- and moisture-stable at 20–160 °C. Complexes [**5a**–**d**](OTf) were characterized by elemental analyses (C, H, N), molar conductivity measurements, TG/DTA, high resolution ESI⁺-MS, IR, 1D (¹H, ¹³C{¹H}, ¹⁹F{¹H}) and 2D (¹H, ¹H-COSY, ¹H, ¹³C-HMQC/¹H, ¹³C-HMQC, ¹H, ¹³C-HMBC, ¹H, ¹⁵N-HSQC, and ¹H, ¹⁵N-HMBC) NMR spectroscopy. In addition, the structure of [**5b**](OTf) was elucidated by single-crystal X-ray diffraction. Complexes [**5a**–**d**](OTf) gave satisfactory CHN microanalyses, that are consistent with the proposed formulae. Values of molar conductivity for [**5a**–**d**](OTf) in acetonitrile (129–139 Ohm⁻¹cm⁻¹mol⁻¹) agree well with those for typical 1:1 electrolytes (120–160 Ohm⁻¹cm⁻¹mol⁻¹ in MeCN^[1]). HRESI⁺-MS of [**5a**–

d](OTf) exhibit sets of peaks with the characteristic isotopic distribution due to $[M - OTf]^+$ ions. IR spectra of [5a-d](OTf) display no v(C=N) bands in the range between 2300 and 2100 cm⁻¹, supporting the transformation of the isocyanide ligands into the aminocarbenes. The mediumintensity bands 3201–3465 cm⁻¹ in the IR spectra of [5a-d](OTf) are characteristic of v(N–H) vibrations from the carbene moiety. In the ¹H NMR spectra the *bis*carbene complexes [**5a**–**d**](OTf), emergence of three broad signals, viz. $\delta_{\rm H}$ 6.95, 7.27, and 7.78 ppm (ratio 1:1:1) due to NH protons suggests a restricted rotation of the NH₂ group around the C–N bond. ${}^{13}C{}^{1}H$ NMR are also consistent with the expected structure of [5a-d](OTf). Herein, addition of NH₃ to the isocyanide group is accompanied with a pronounced downfield δ^{13} C shift of the isocyanide quaternary C atoms to the range that is specific for M–C_{carbene} ($\delta_{\rm C}$ 160–224 ppm).^[4] The C_{carbene} atoms in [5a– **d**](OTf) resonate at ca. $\delta_{\rm C}$ 194 ppm that is ca. 60 ppm downfield-shifted vs. corresponded peaks in [3a-d](OTf) (e.g. δ_C 134.06 for C=N in [3b](OTf)). Although no ${}^{13}C{}^{1}H$ NMR data for iridium(III)-ADC complexes have been reported, δ^{13} C values for the C_{carbene} atom in our [5a**d**](OTf) are comparable to those in the known cyclometallated (ADC)Pt^{II} complexes $[(CNN)Pt{C(NHR^1)-(NHR^2)}](ClO_4)$ (HCNN = 6-phenyl-2,2'-bipyridine; $R^1 = t$ -Bu, Xyl, $R^2 =$ Me, NH₂, CH₂Ph) ($\delta_{\rm C}$ 185–194).^[5]

1.3. Characterization of complexes [4a-d](OTf) and 6a-d

Complexes [4b-d](OTf) and 6a-d were characterized by elemental analyses (C, H, N), molar conductivities (for [4b-d](OTf)), TG/DTA, high resolution ESI+-MS, IR, 1D (¹H, ¹³C{¹H}, ¹⁹F{¹H}) and 2D (¹H,¹H-COSY, ¹H,¹³C-HMQC/¹H,¹³C-HSQC, ¹H,¹³C-HMBC, ¹H,¹⁵N-HSQC, and ¹H,¹⁵N-HMBC) NMR spectroscopies. Complexes [4b–d](OTf) and 6a–d gave satisfactory CHN microanalyses, that are consistent with the proposed formulae. The values of molar conductivities of [4b–d](OTf) in acetonitrile (135–145 Ohm⁻¹cm⁻¹mol⁻¹) agree with the typical range for 1:1 electrolytes (120–160 Ohm⁻¹cm⁻¹mol⁻¹ in MeCN^[1]). The HRESI⁺-MS of [4b– d](OTf), exhibit sets of peaks $[M - OTf]^+$ with the characteristic isotopic distribution. The HRESI⁺-MS of **6a**–**d** exhibit quasi-molecular ion peaks ($[M + H]^+$ and $[M + Na]^+$) and set of peaks from $[M - CN]^+$. In the IR spectra of mixed isocyanide-diaminocarbene complexes [4b-d](OTf), we observed only one CN stretching vibration at 2139–2145 cm⁻¹ from isocyanide ligand. The IR spectra of **6a–d** display one strong v(C=N) band in the interval 2090–2092 cm⁻¹, which emerge at almost the same frequencies as the C-coordinated cyanide group in the iridium(III) complex $[n-Bu_4N]$ [Ir(ppy)₂(CN)₂] (v(C=N) 2092 cm⁻¹).^[6] The N-H resonances in the ¹H NMR spectra of [4b-d](OTf) and 6a-d were not detected. The C_{carbene}=NH atoms in [4b-d](OTf) and 6a-c were found to resonate at ca. δ_C 189 ppm and ca. δ_C 193 ppm, respectively; insufficient solubility of **6d** precluded ¹³C measurements.

[3a-d](011)				
X		v (С≡N), см ⁻¹		
	2	[3](OTf)	Δν	
a : X = F	2129	2156; 2184	+27	
b : X = Cl	2123	2151; 2179	+28	
\mathbf{c} : X = Br	2123	2151; 2180	+28	
d : X = I	2140	2145; 2173	+5	

Table S1. $C \equiv N$ stretching vibration frequency of uncomplexed isocyanides 2a-d and complexes [3a-d](OTf)

 Table S2. ¹H NMR monitoring of reaction^a between [3c](OTf) and NH₃

No.	Time	[3c](OTf)	[4c](OTf)	[5c](OTf)	6c
1	0	100%	0%	0%	0%
2	1 h	80%	20%	0%	0%
3	2 h	45%	55%	0%	0%
4	3 h	20%	70%	10%	0%
5	10 h	0%	50%	50%	0%
6	1 d	0%	30%	60%	10%
7	4 d	0%	10%	30%	60%
8	6 d	0%	0%	15%	85%
9	8 d	0%	0%	0%	100%

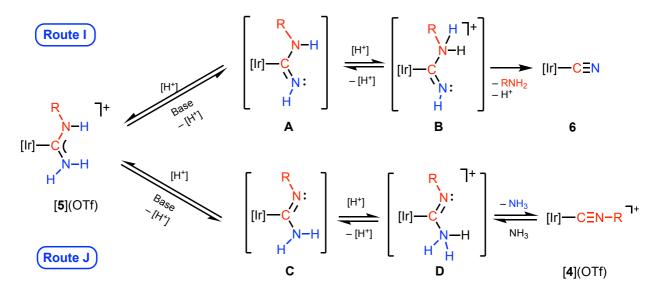

^{*a*}Reaction conditions: complex [3c](OTf) (0.005 mmol) was suspended in CD₂Cl₂ (1 mL) in a small glass vial. Vial was carefully placed in a larger scintillation flask (20mL) containing 5mL of aqueous ammonia (14M) at the bottom and kept at RT for the duration of reaction.

Table S3. Overall ¹H NMR yield and a ratio between [4c](OTf) and 6c in the reaction between

[5c](OTf) and bases.

Solvent and reagents	Time	Overall ¹ H NMR yield of [4c](OTf) and 6c, %	Ratio between [4c](OTf) and 6c
CH ₂ Cl ₂ , gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, RT	8 d	>99	only 6c
C ₂ H ₄ Cl ₂ , gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, 50 °C	3 d	>99	only 6c
MeOH, gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, 50 °C	12 h	52	only 6c
MeOH, gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, 50 °C	1 d	72	only 6c
MeOH, gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, 50 °C	2 d	96	only 6c
MeOH, gaseous NH ₃ atmosphere $(pK_a = 9.25)^a$, 50 °C	3 d	>99	only 6c
MeOH, (HOCH ₂ CH ₂) ₃ N (pK _a = 7.74) ^{<i>a</i>,<i>b</i>} , 50 °C	2 d	>99	only [4c](OTf)
MeOH, pyridine $(pK_a = 5.25)^{a,b}$, 50 °C	2 d	>99	only [4c](OTf)
MeOH, <i>N</i> -methylmorpholine $(pK_a = 7.38)^{a,b}$, 50 °C	2 d	>99	only [4c](OTf)
MeOH, NH ₄ Cl (excess)+ K ₂ CO ₃ ^c , 50 °C	2 d	>99	only [4c](OTf)
MeOH, NH ₄ Cl (excess)+ KOH ^c , 50 °C	2 d	>99	only [4c](OTf)
MeOH, Et ₃ N (pK _a = 10.75) ^{<i>a,b</i>} , 50 °C	12 h	41	1:1
MeOH, Et ₃ N (pK _a = 10.75) ^{<i>a,b</i>} , 50 °C	1 d	60	1:1
MeOH, Et ₃ N (pK _a = 10.75) ^{<i>a,b</i>} , 50 °C	2 d	>99	1:1
МеОН, КОН ^{<i>b</i>} , 50 °С	1 d	>99	1:1
MeOH, NH ₄ Cl ^b , 50 °C	1 d	0	_
MeOH, 50 °C	4 d	0	_

^{*a*}The pKa of the conjugate acid in water. ^{*b*}Ratio [5c](OTf) to organic base was 1:2. ^{*c*}Ratio [5c](OTf):NH₄Cl:base is 1:10:1.

Scheme S1. Proposed mechanism of base-mediated cleavage of ADC ligands in [5a-d](OTf).

Identification code	[3b](OTf)	[3c](OTf)
Empirical formula	C ₃₇ H ₂₄ Cl ₂ F ₃ IrN ₄ O ₃ S	$C_{37}H_{24}Br_2F_3IrN_4O_3S$
Formula weight	924.76	1013.68
Temperature/K	100(2)	100(2)
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/c$
a/Å	11.1328(3)	10.89737(11)
b/\AA	14.0956(4)	21.25955(19)
c/Å	22.0626(7)	15.54005(14)
α/°	90	90
β/°	100.734(2)	95.7060(8)
γ/°	90	90
Volume/Å ³	3401.55(17)	3582.37(6)
Ζ	4	4
$ ho_{calc}g/cm^3$	1.806	1.879
μ/mm^{-1}	4.205	10.877
<i>F(000)</i>	1808.0	1952.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.15	$0.15 \times 0.15 \times 0.08$
Radiation	MoKa ($\lambda = 0.71073$)	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	5.326 to 54.998	7.068 to 152.89
Index ranges	$-14 \le h \le 8, -18 \le k \le 11, -23 \le l \le 28$	$\begin{array}{l} \textbf{-13} \leq h \leq 13, \textbf{-26} \leq k \\ \leq 26, \textbf{-19} \leq \textbf{1} \leq \textbf{19} \end{array}$
Reflections collected	15753	44094
Independent reflections	7606 [$R_{int} = 0.0272$, $R_{sigma} = 0.0425$]	7487 [$R_{int} = 0.0475$, $R_{sigma} = 0.0260$]
Data/restraints/parameters	7606/0/460	7487/0/460
Goodness-of-fit on F^2	1.181	1.034
Final R indexes $[I>=2\sigma(I)]$	$R_1 = 0.0347, wR_2 = 0.0689$	$R_1 = 0.0300, WR_2 = 0.0779$
Final R indexes [all data]	$R_1 = 0.0451, wR_2 = 0.0732$	$R_1 = 0.0313, wR_2 = 0.0793$
Largest diff. peak/hole / e Å ⁻³	1.52/-0.83	1.77/-1.05
CCDC numbers	1538183	1538181

Table S4. Crystal data and structures refinement.

Identification code	[4b](OTf)	[5b](OTf)	6c
Empirical formula	$C_{36}H_{26}Cl_2IrN_5$	$C_{38}H_{31}Cl_5F_3IrN_6O_3S$	$C_{31}H_{24}BrCl_3IrN_5$
Formula weight	791.72	1078.20	845.01
Temperature/K	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	$P2_1/c$	$P2_1/c$
a/Å	11.3436(7)	13.0467(8)	14.0167(3)
b/\AA	22.3709(10)	30.1504(13)	12.4881(2)
c/Å	13.9967(8)	10.5444(5)	19.1229(3)
$lpha/^{\circ}$	90	90	90
$eta /^{\circ}$	94.676(6)	100.392(6)	105.7660(19)
$\gamma^{/\circ}$	90	90	90
Volume/Å ³	3540.1(3)	4079.7(4)	3221.38(10)
Ζ	4	4	4
$ ho_{calc}g/cm^3$	1.485	1.755	1.742
μ/mm^{-1}	3.953	3.711	11.993
F(000)	1552.0	2120.0	1632.0
Crystal size/mm ³	0.2 imes 0.2 imes 0.2	$0.1\times0.1\times0.08$	$0.15 \times 0.15 \times 0.1$
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	CuKα (λ = 1.54184)
2Θ range for data collection/°	5.75 to 55	5.404 to 55	6.552 to 152.658
Index ranges	$\begin{array}{l} -14 \leq h \leq 14, -29 \leq k \leq \\ 28, -18 \leq l \leq 18 \end{array}$	$\begin{array}{l} \text{-15} \leq h \leq 16, \text{-39} \leq k \\ \leq 32, \text{-13} \leq l \leq 10 \end{array}$	$\begin{array}{l} \text{-}17 \leq h \leq 17, \text{-}14 \leq \\ k \leq 15, \text{-}24 \leq l \leq 16 \end{array}$
Reflections collected	23108	20065	27500
Independent reflections	$\begin{array}{l} 8132 \; [R_{int} = 0.0307, \\ R_{sigma} = 0.0371] \end{array}$	9356 [$R_{int} = 0.0689$, $R_{sigma} = 0.1006$]	$\begin{array}{l} 6699 \; [R_{int} = 0.0890, \\ R_{sigma} = 0.0507] \end{array}$
Data/restraints/parameters	8132/0/397	9356/0/481	6699/6/371
Goodness-of-fit on F^2	1.184	1.252	1.030
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0554, wR_2 = 0.1096$	$R_1 = 0.0765, wR_2 = 0.1371$	$R_1 = 0.0514, wR_2 = 0.1331$
Final R indexes [all data]	$R_1 = 0.0689, wR_2 = 0.1159$	$R_1 = 0.0896, wR_2 = 0.1425$	$R_1 = 0.0601, wR_2 = 0.1427$
Largest diff. peak/hole / e $Å^{-3}$	2.95/-2.36	2.10/-3.15	2.40/-3.07
CCDC numbers	1538186	1538184	1538185

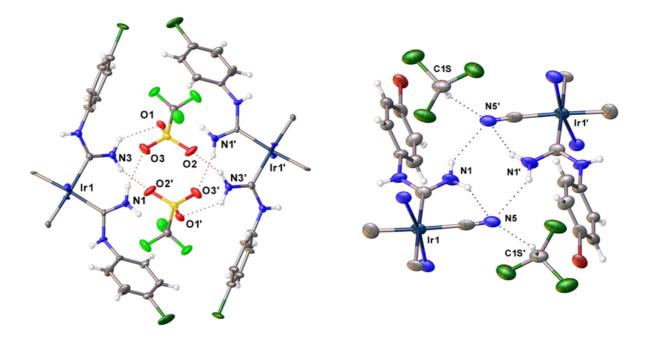


Figure S1. View of the H-bonded dimeric associates of [5b](OTf) (left) and 6c (right) with the intermolecular and intramolecular hydrogen bonds. Cyclometalated ligand fragments were omitted for simplicity.

[5b](OTf)		6с	6c		
Bond lengths, Å					
N1–H…O3	3.014(9)	N1–H···N5	3.115(9)		
N1'–H…O3'	3.014(9)	N1–H…N5'	3.401(8)		
N3–H…O1	2.994(8)	N5–H···C1S	3.225(6)		
N3–H…O2'	2.883(11)	N1'–H…N5'	3.115(9)		
N3'–H…O1'	2.994(8)	N1'–H…N5	3.401(8)		
N3'–H…O2	2.883(11)	N5'-H…C1S'	3.225(6)		
Bond angles, °					
N1–H…O3	161.36(8)	N1–H…N5	145.10(8)		
N1'–H…O3'	161.36(8)	N1–H…N5'	135.61(7)		
N3–H…O1	125.95(6)	N5–H···C1S	145.65(5)		
N3–H…O2'	155.90(7)	N1'–H…N5'	145.10(8)		
N3'–H…O1'	125.95(6)	N1'–H…N5	135.61(7)		
N3'–H…O2	155.90(7)	N5'–H…C1S'	145.65(5)		

Table S5. Selected H-bond lengths and angles for [5b](OTf) and 6c

In the crystal structure of [5b](OTf), N–H…O hydrogen bonds (HBs) between triflate anion from the first molecule and the carbene NH₂ protons of the other molecule, can be recognized. A system of six N–H…O intermolecular HBs link two organometallic cations and two triflate anions into H-bonded dimeric associates. The heavy atom distance in N3–H···O2' (2.883(11) Å) contact between the NH₂ of the carbene groups and the triflate anion is approximately 0.19 Å shorter than the sum of the Bondi's van der Waals radii for the O and N atoms (3.07 Å¹). At the same time longer distances in N3–H···O1 (2.994(8) Å) and N1–H···O3 (3.014(9) Å) contacts indicate that these H-bonds between the NH₂ of the carbene groups and the triflate anion are rather weak.

In the crystal structure of 6c, intermolecular interactions lead to dimeric associates. Hence in this complex, each NH₂ group interacts with two cyanide groups from different molecules giving H-bonded dimers.

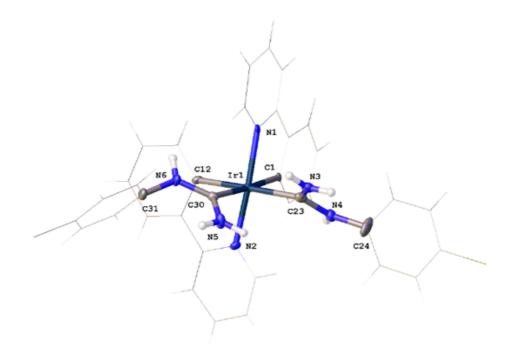


Figure S2. Mutual arrangement of the ADC moieties in [5b]⁺.

NMR spectra

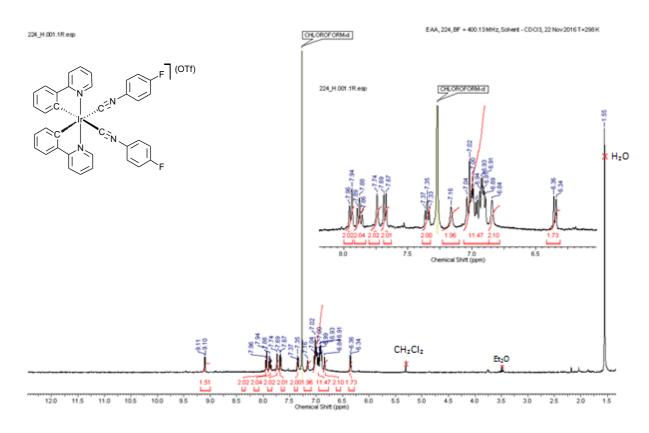


Figure S3. ¹H NMR spectrum of [3a](OTf) in CDCl₃

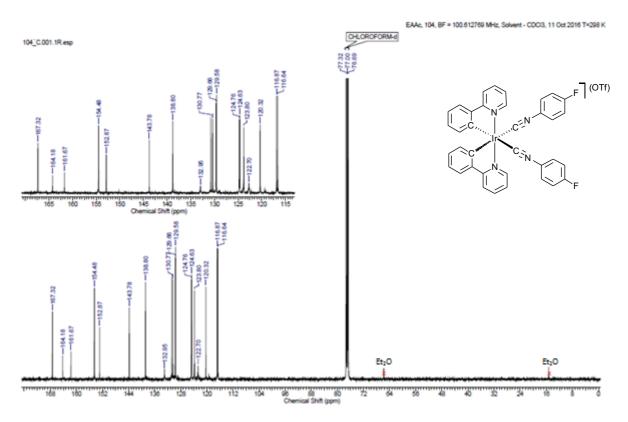


Figure S4. ¹³C{¹H} NMR spectrum of [3a](OTf) in CDCl₃

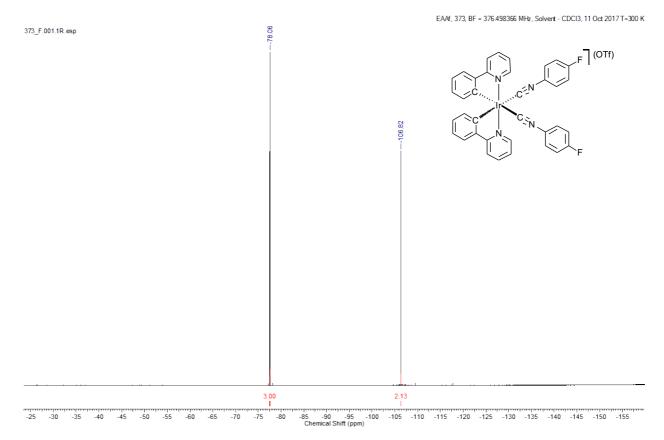


Figure S5. ${}^{19}F{}^{1}H$ NMR spectrum of [3a](OTf) in CDCl₃

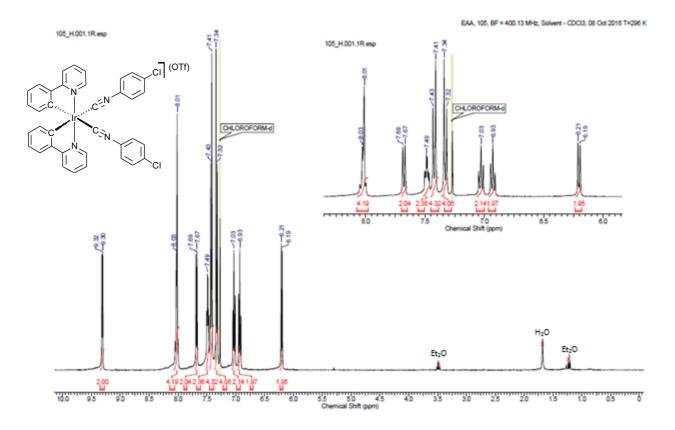


Figure S6. ¹H NMR spectrum of [3b](OTf) in CDCl₃

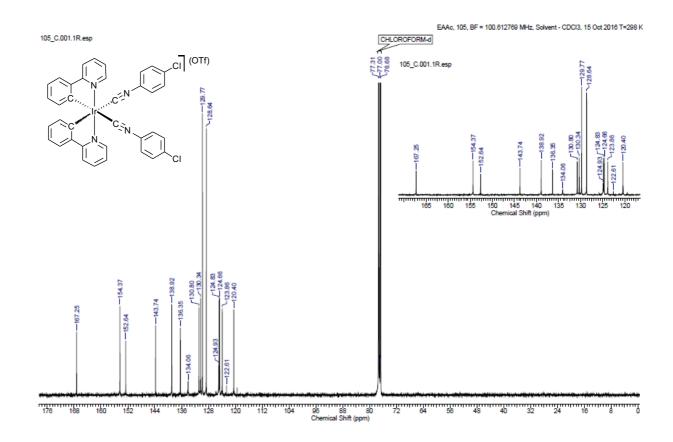


Figure S7. ¹³C{¹H} NMR spectrum of [3b](OTf) in CDCl₃

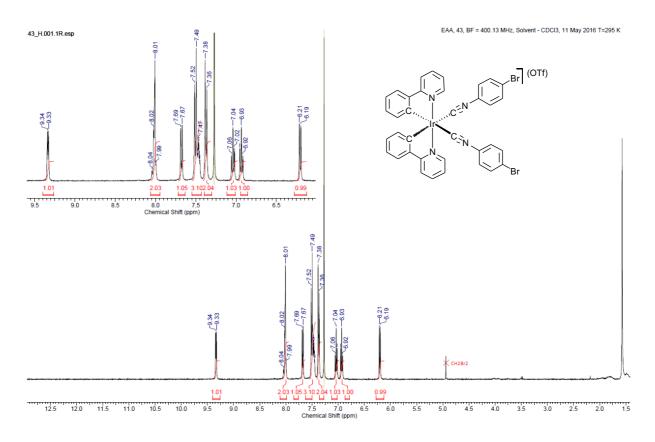


Figure S8. ¹H NMR spectrum of [3c](OTf) in CDCl₃

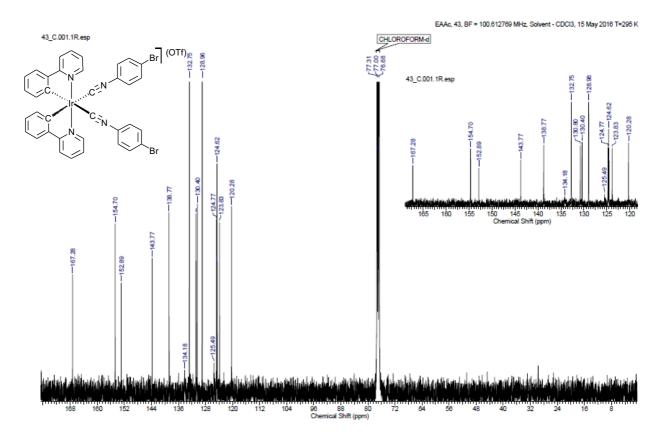


Figure S9. ¹³C{¹H} NMR spectrum of [3c](OTf) in CDCl₃

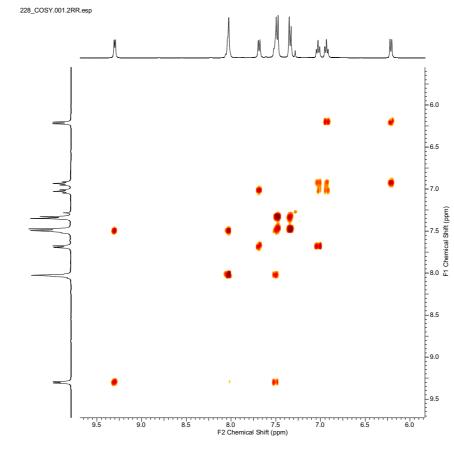


Figure S10. ¹H, ¹H-COSY NMR spectrum of [3c](OTf) in CDCl₃

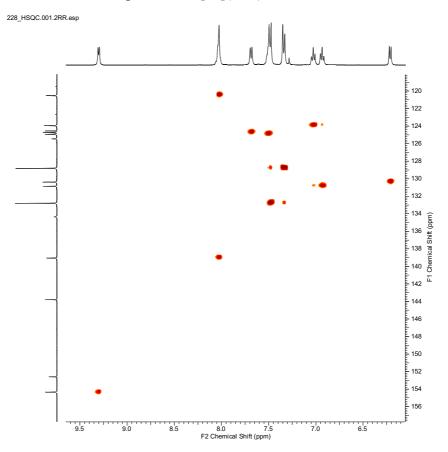


Figure S11. ¹H, ¹³C-HSQC NMR spectrum of [3c](OTf) in CDCl₃

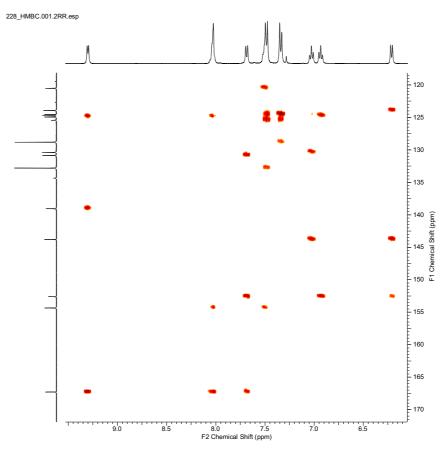


Figure S12. ¹H, ¹³C-HMBC NMR spectrum of [3c](OTf) in CDCl₃

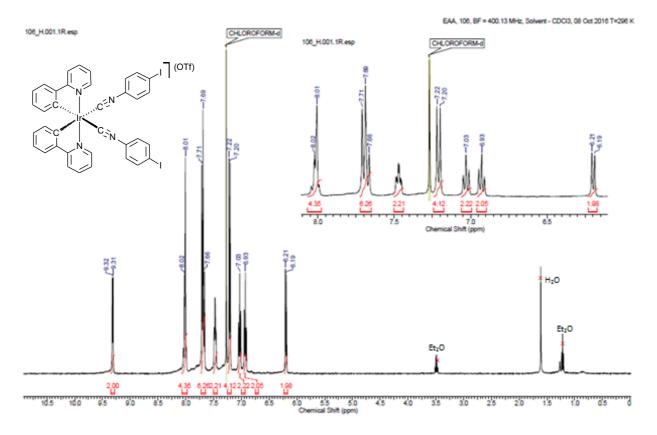


Figure S13. ¹H NMR spectrum of [3d](OTf) in CDCl₃

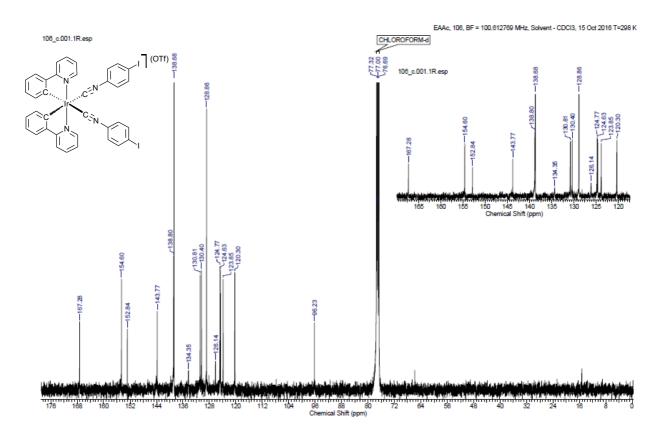


Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of [3d](OTf) in CDCl₃

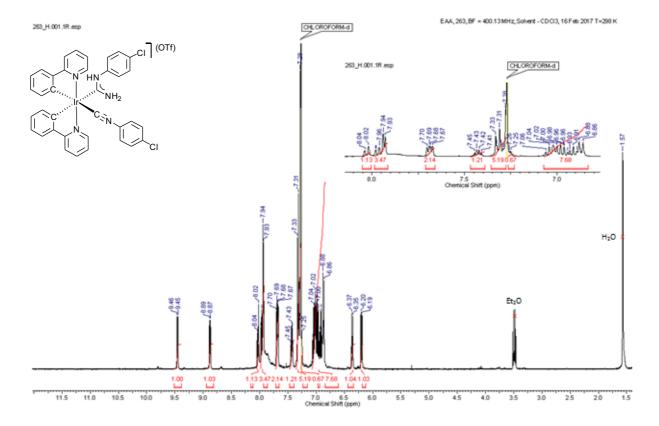


Figure S15. ¹H NMR spectrum of [4b](OTf) in CDCl₃

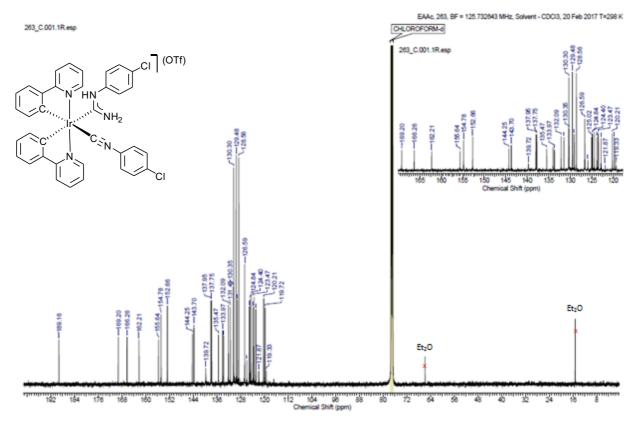


Figure S16. ¹³C{¹H} NMR spectrum of [4b](OTf) in CDCl₃

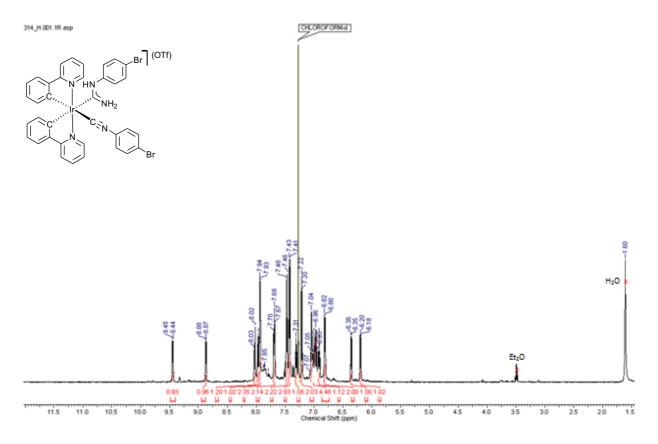


Figure S17. ¹H NMR spectrum of [4c](OTf) in CDCl₃

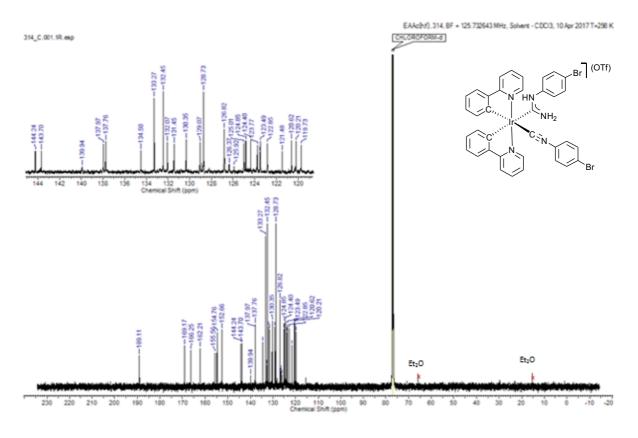


Figure S18. ¹³C{¹H} NMR spectrum of [4c](OTf) in CDCl₃

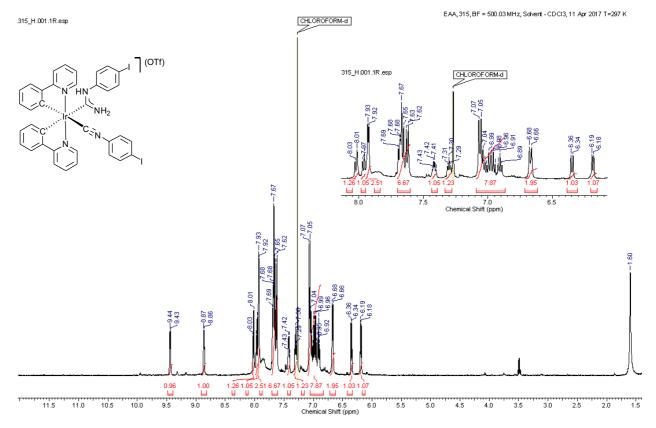


Figure S19. ¹H NMR spectrum of [4d](OTf) in CDCl₃

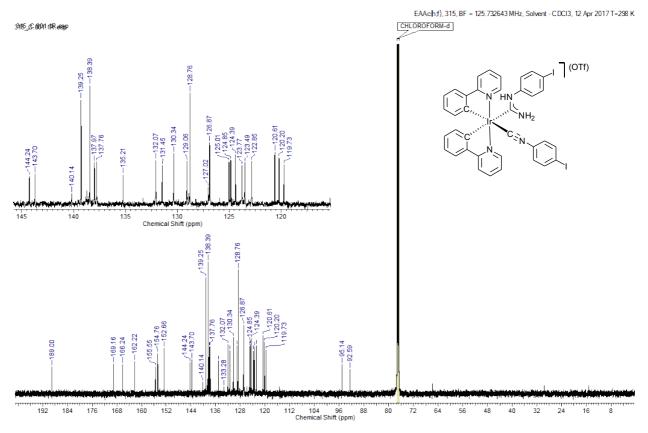


Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum of [4d](OTf) in CDCl₃

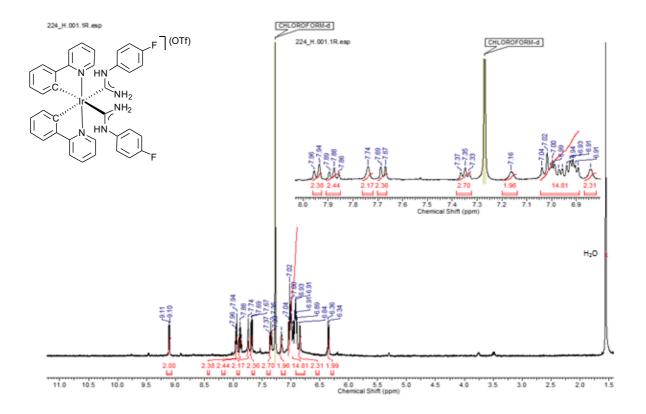


Figure S21. ¹H NMR spectrum of [5a](OTf) in CDCl₃

EAAc, 224, BF = 100.612789 MHz, Solvent - CDCI3, 30 Nov 2016 T=298 K

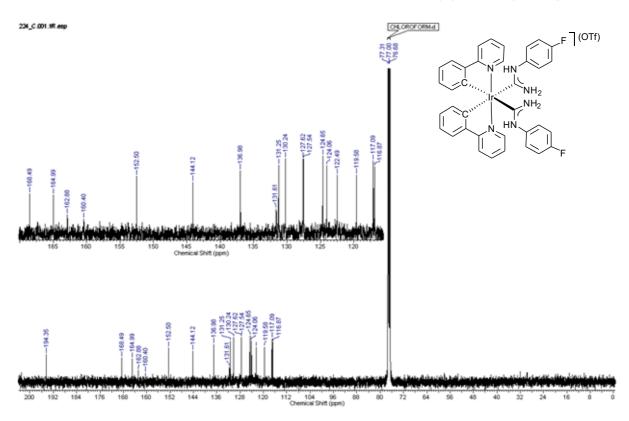


Figure S22. ¹³C{¹H} NMR spectrum of [5a](OTf) in CDCl₃

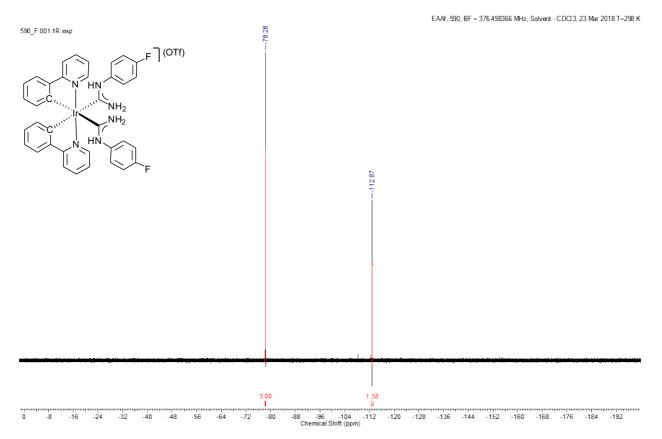


Figure S23. ¹⁹F{¹H} NMR spectrum of [5a](OTf) in CDCl₃

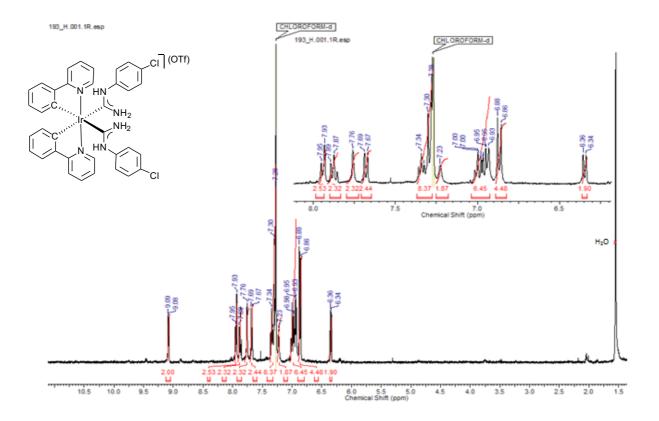


Figure S24. ¹H NMR spectrum of [5b](OTf) in CDCl₃

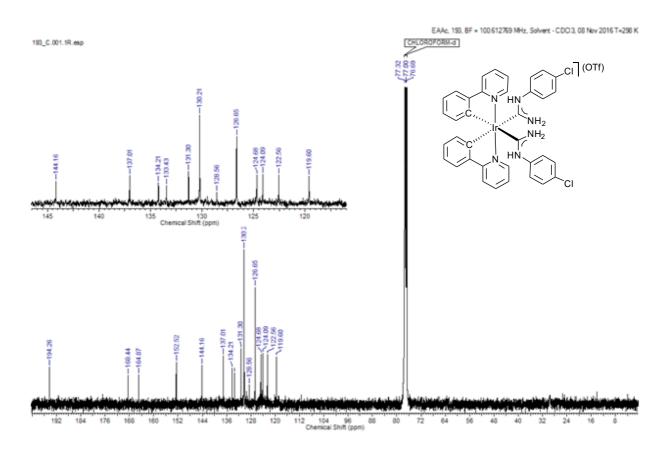


Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of [5b](OTf) in CDCl₃

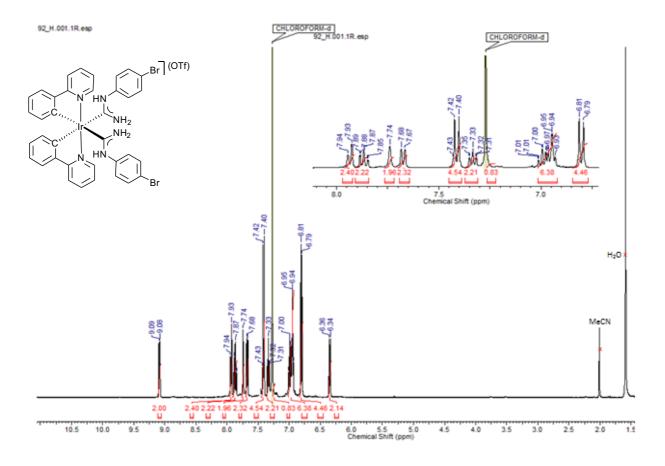


Figure S26. ¹H NMR spectrum of [5c](OTf) in CDCl₃

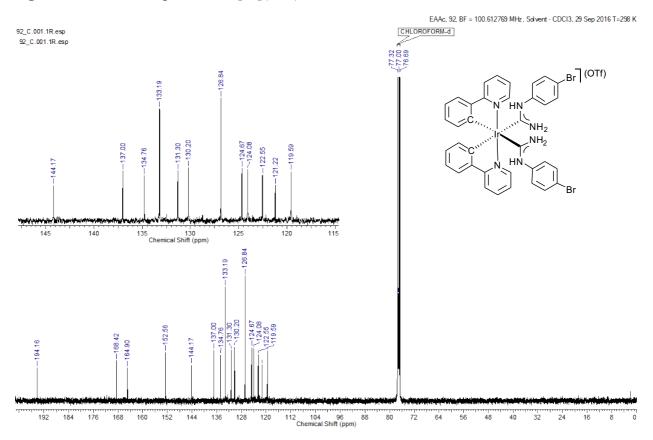


Figure S27. ¹³C{¹H} NMR spectrum of [5c](OTf) in CDCl₃

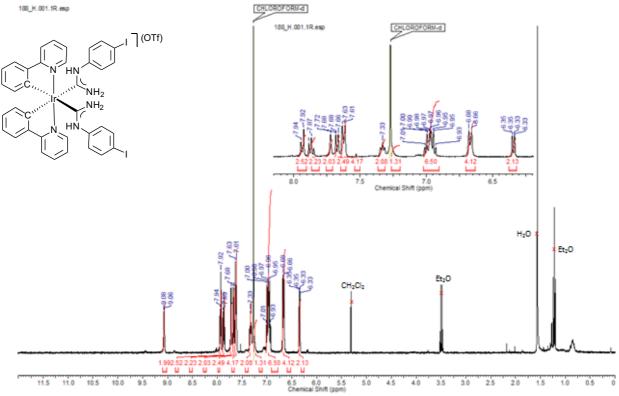


Figure S28. ¹H NMR spectrum of [5d](OTf) in CDCl₃

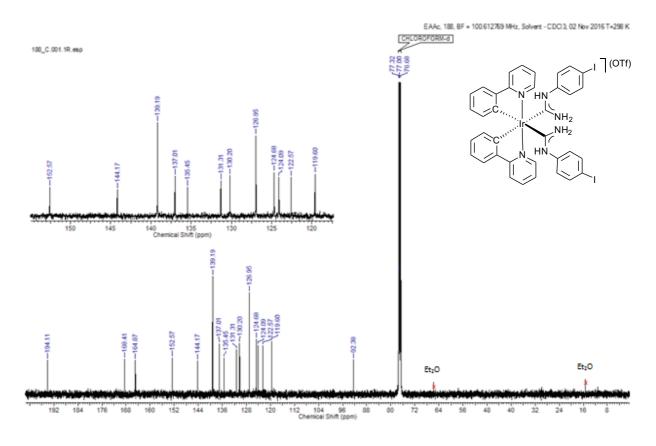


Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of [5d](OTf) in CDCl₃

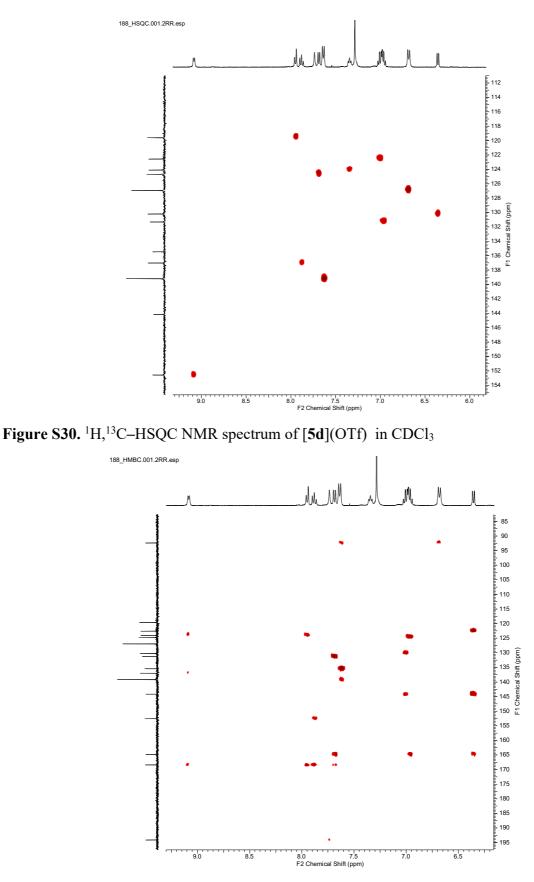


Figure S31. ¹H, ¹³C–HMBC NMR spectrum of [5d](OTf) in CDCl₃

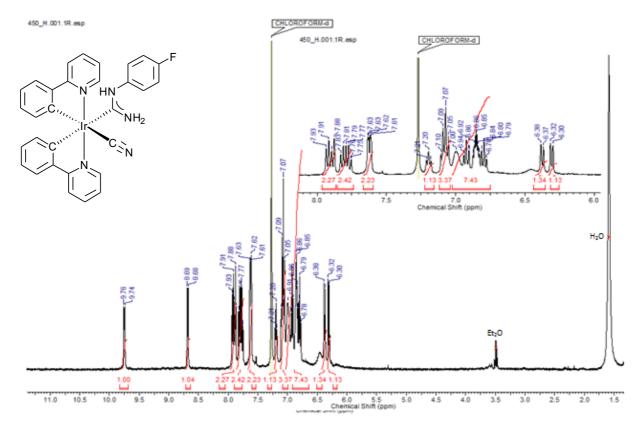


Figure S32. ¹H NMR spectrum of 6a in CDCl₃

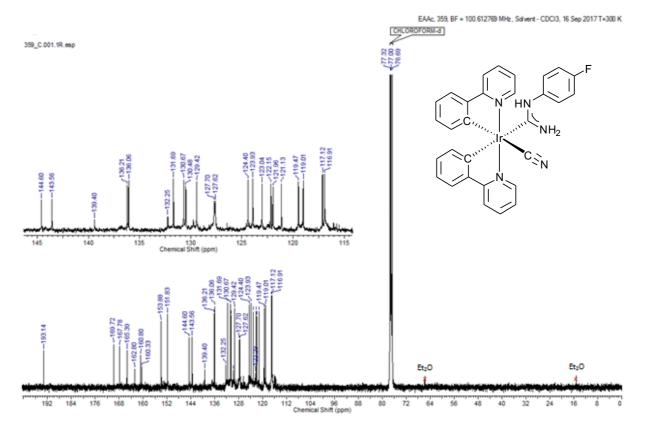


Figure S33. ¹³C{¹H} NMR spectrum of 6a in CDCl₃

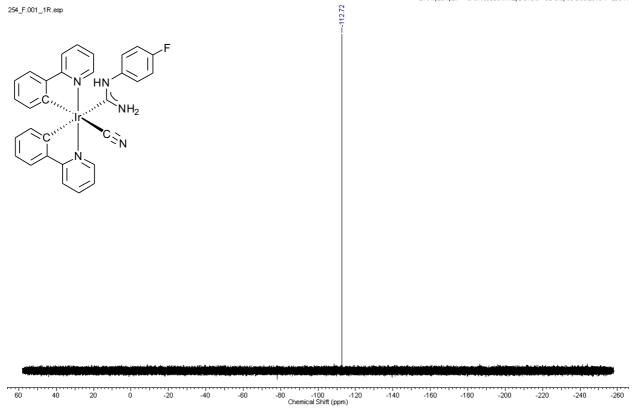


Figure S34. ${}^{19}F{}^{1}H$ NMR spectrum of 6a in CDCl₃

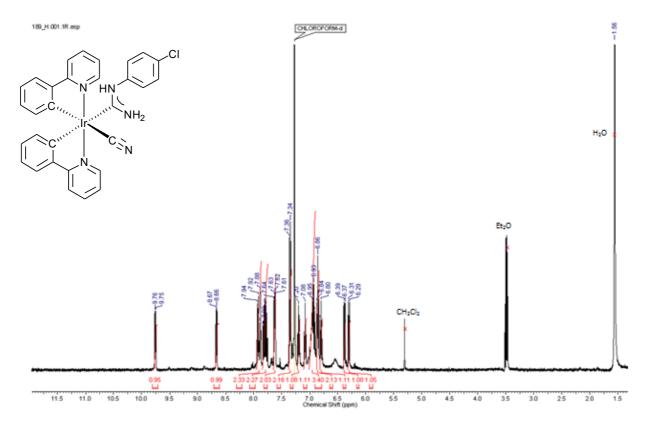


Figure S35. ¹H NMR spectrum of 6b in CDCl₃

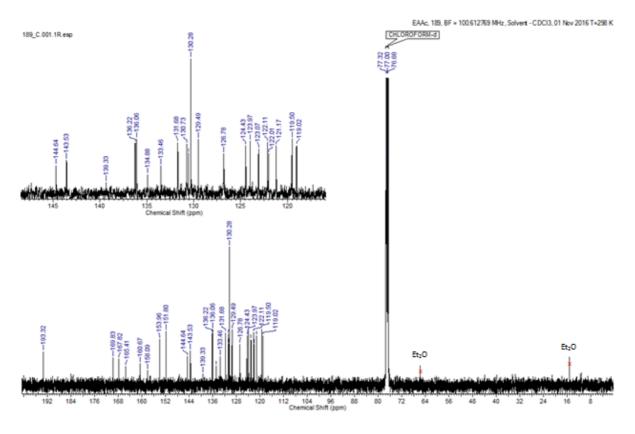


Figure S36. ¹³C{¹H} NMR spectrum of 6b in CDCl₃

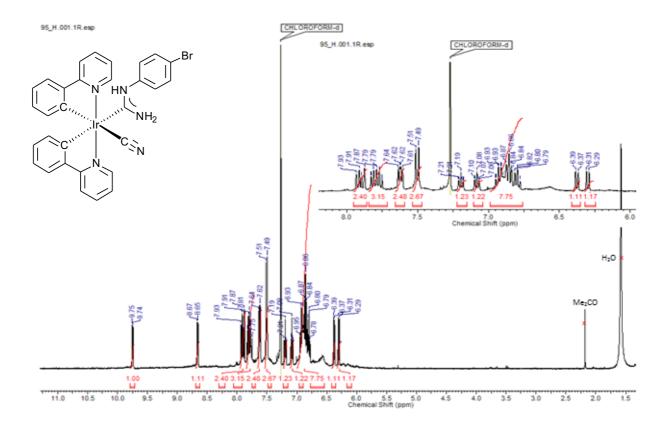


Figure S37. ¹H NMR spectrum of 6c in CDCl₃

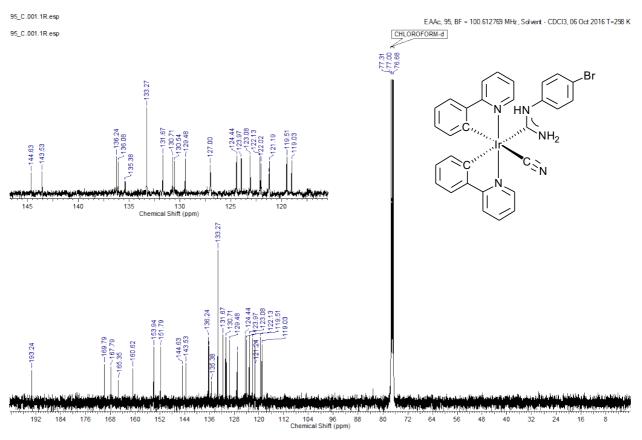


Figure S38. ¹³C{¹H} NMR spectrum of 6c in CDCl₃

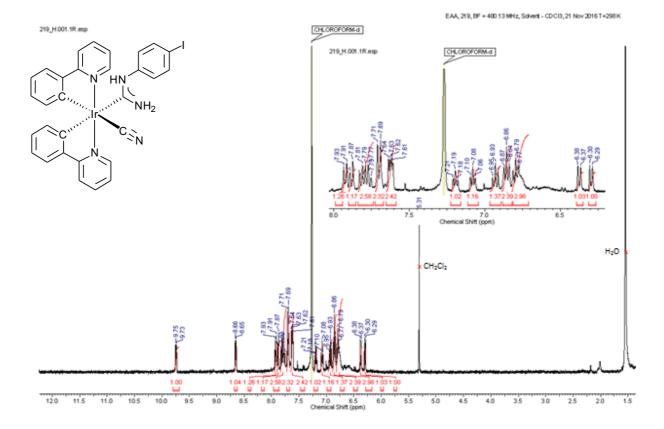


Figure S39. ¹H NMR spectrum of 6d in CDCl₃

References

- [1] W. J. Geary, *Coord. Chem. Rev.* **1971**, *7*, 81–122.
- [2] R. A. Michelin, A. J. L. Pombeiro, M. F. C. Guedes da Silva, Coord. Chem. Rev. 2001, 218, 75–112.
- [3] H. Na, A. Maity, R. Morshed, T. S. Teets, Organometallics 2017, 36, 2965-2972.
- [4] a) M. A. Kinzhalov, V. P. Boyarskiy, K. V. Luzyanin, F. M. Dolgushin, V. Y. Kukushkin, *Dalton Trans.* 2013, 10394–10397; b) M. A. Kinzhalov, K. V. Luzyanin, V. P. Boyarskiy, M. Haukka, V. Y. Kukushkin, *Organometallics* 2013, *32*, 5212–5223; c) M. A. Kinzhalov, K. V. Luzyanin, V. P. Boyarskiy, M. Haukka, V. Y. Kukushkin, *Russ Chem Bull* 2013, *62*, 758–766; d) E. A. Valishina, M. F. C. Guedes da Silva, M. A. Kinzhalov, S. A. Timofeeva, T. M. Buslaeva, M. Haukka, A. J. L. Pombeiro, V. P. Boyarskiy, V. Y. Kukushkin, K. V. Luzyanin, *J. Mol. Catal. A: Chem.* 2014, *395*, 162–171; e) S. A. Timofeeva, M. A. Kinzhalov, E. A. Valishina, K. V. Luzyanin, V. P. Boyarskiy, T. M. Buslaeva, M. Haukka, V. Y. Kukushkin, *J. Catal.* 2015, *329*, 449–456; f) T. B. Anisimova, M. A. Kinzhalov, M. F. C. Guedes da Silva, A. S. Novikov, V. Y. Kukushkin, A. J. L. Pombeiro, K. V. Luzyanin, *New J. Chem.* 2017, *41*, 3246–3250.
- [5] S.-W. Lai, M. C.-W. Chan, K.-K. Cheung, C.-M. Che, Organometallics 1999, 18, 3327-3336.
- [6] M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier, L. Zuppiroli, M. Graetzel, J. Am. Chem. Soc. 2003, 125, 8790-8797.