Supporting information

PbX₂(OOCMMIm) (X = Cl, Br): Photoluminescent Organic-inorganic

Hybrid Lead Halide Compounds with High Proton Conductivity

Liao-Kuo Gong^{a,c}, Ke-Zhao Du^{*b} and Xiao-Ying Huang^{*a}

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^b College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.

^c University of Chinese Academy of Sciences, Beijing, 100049, China.

+ E-mail: xyhuang@fjirsm.ac.cn; duke@fjnu.edu.cn

Table of Contents

Experimental section

Photoluminescent properties for compounds 1 and 2

Table S1 Crystallographic data and refinement details for compounds 1 and 2.

Table S2 Hydrogen bonding data for compounds 1 and 2.

 Table S3 Comparison of the photoluminescent data of title compounds and the reported ones.

Fig. S1 The asymmetric unit of [PbCl(OOCMMIm)] (1).

Fig. S2 The structure of PbX_2 (left) and the 1D chain in $[PbX_2(OOCMMIm)]$ (right) (X = Cl, Br).

Fig. S3 Solid state excitation (dashed lines) and emission (solid lines) spectra for 1 and 2 at room

temperature (λ_{ex} = 350 nm and λ_{em} = 470 nm for **1**, λ_{ex} = 365 nm and λ_{em} = 500 nm for **2**)

- Fig. **S4** Fluorescence spectra of compound **1**, PbCl₂ and [HOOCMMIm]Cl.
- Fig. S5 The fluorescence decay time spectrum of compound 1.

Fig. S6 The fluorescence decay time spectrum of compound 2.

- Fig. **S7** UV-Vis spectrum of compound **1**.
- Fig. <mark>S8</mark> UV-Vis spectrum of compound **2**.
- Fig. S9 Impedance spectra of compound 2 at 98% RH and different temperatures.

Experimental Section

Materials

1-carboxymethyl-3-methylimidazolium halides ([HOOCMMIm]X; X = CI, Br) (99%) were purchased from Lanzhou Yulu Fine Chemical Co., LTD (Lanzhou, China); lead halides (Pb X_2 , X = CI, Br) (99.0%) were purchased from Beijing HWRK Chem Co., LTD (Beijing, China); N,N'-dimethyl formamide (DMF, 99.0%) was purchased from Sinopham Chemical Reagent Co., Ltd. (Shanghai, China). All the chemicals were used without further purification.

Synthesis

Growth of $[PbX_2(OOCMMIm)]$ (X = Cl for 1, Br for 2) crystals. A mixture of [HOOCMMIm]X (X = Cl for 1, Br for 2) and PbX₂ (X = Cl for 1, Br for 2) with the molar stoichiometric ratio of 2:1 in DMF was loaded into a 28 mL Teflon-lined stainless steel autoclave. The container was closed and heated at 140 °C for 6 days, and then cooled to room temperature naturally, resulting in a homogeneous brown solution. Colourless block-like crystals were obtained by filtration and dried in air naturally.

Characterization methods

Single crystal X-ray diffraction (SCXRD). A suitable single crystal was carefully selected under an optical microscope and glued to a thin glass fiber. The single-crystal X-ray diffraction data were collected on a SuperNova CCD diffractometer with graphite-monochromated MoK α radiation (λ = 0.71073 Å) at 100(2) K. The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using the SHELXL-2016 program package.¹ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to C atoms were located at geometrically calculated positions and were not refined. CCDC 1902685 for compound **1** and CCDC 1902686 for compound **2** contain the supplementary crystallographic data for the two structures.

Powder X-ray diffraction (PXRD). PXRD was measured on a Rigaku Miniflex-II diffractometer with Cu $K\alpha$ radiation (λ = 1.54178 Å) in the angular range of 2θ = 3-65° with a scan speed of 2°/min. The simulated PXRD patterns are based on single-crystal X-ray diffraction data using the Mercury program.^[2]

Elemental analysis (EA). EA was performed using a German Elementary Vario EL III instrument. **Thermogravimetric analysis (TGA).** TGA was performed on a NETZSCH STA 449F3 unit at a heating rate of 10 K·min⁻¹ under N₂ atmosphere. **Solid state optical adsorption spectra.** Solid state diffuse reflectance spectra were recorded at room temperature using Shimadzu 2600 UC/Vis spectrometer in the range of 800~200 nm with a BaSO₄ plate as a reference (100% reflectance). The adsorption data were calculated from the diffuse reflectance using the Kubelka-Munk function $\alpha/s = (1-R)^2/2R$. Where α is the adsorption coefficient; *S* is the scattering coefficient and *R* is the diffuse reflectance.

Proton conduction measurements. AC impedance measurements were carried out with a SI 1260 IMPEDANCE/GAINPHASE analyzer over the frequency range from 0.1 Hz to 1M Hz with an applied voltage of 100 mV. The relative humidity was controlled by a STIKCorp CIHI-150BS3 incubator. The samples were pressed into a cylindrical pellet of crystalline powder sample (~1.4 mm thickness ×5 mm Φ for **1** and ~1.8 mm thickness ×5 mm Φ for **2**) coated with silver colloid. Two silver electrodes were attached to both sides of pellet to form four end terminals (quasi = four-probe method). The bulk conductivity was estimated by semicircle fittings of Nyquist plots. **Photophysical properties**. PL (photoluminescence), PLE (photoluminescence excitation) and TRPL (time-resolved photoluminescence) were recorded on an Edinburgh FL980 UV/V/NIR fluorescence spectrometer. Quantum yields were measured by Edinburgh FLS 1000 UV/V/NIR fluorescence spectrometer.

Fig. S1 The asymmetric unit of [PbCl(OOCMMIm)] (1).

Fig. S2 The structure of PbX_2 (left) and the 1D chain in $[PbX_2(OOCMMIm)]$ (right) (X = Cl, Br).

Table S1.	Crystallographic	data and	refinement	details for	compounds1	and 2.

Crystal	[Pb(OOCMMIm)Cl ₂] (1)	[Pb(OOCMMIm)Br ₂] (2)
Empirical formula	$C_6H_8Cl_2N_2O_2Pb$	$C_6H_8Br_2N_2O_2Pb$
Formula weight	418.23	507.15
Crystal system	P2 ₁ /c	P2 ₁ /c
Space group	monoclinic	monoclinic
a/Å	8.0984(6)	8.3012(4)
b/Å	17.9704(10)	18.5784(7)
c/Å	7.8257(6)	7.9673(3)
βl°		
V/Å ³	1052.61(14)	1129.74(9)
Z	4	4
т/к	295	298
F(000)	760.0	904
$ ho_{ m calcd}/ m g~cm^{-3}$	2.639	2.982
μ/mm ⁻¹	16.505	21.980
Measured refls.	5633	8763
Independent refls.	2193	2659
No. of parameters	120	119
R _{int}	0.0261	0.0551
$R_1 (l > 2\sigma(l))^a$	0.0326	0.0429
<i>wR</i> (<i>I</i> > 2 <i>σ</i> (<i>I</i>)) ^b	0.0819	0.0795
GOF	0.999	1.014

[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$, [b] $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$.

Table S2 Hydrogen bonding data for compounds 1 and 2.

1					
D-HA	d(HA) (Å)	d(DA) (Å)	d(D-H) (Å)	< (DHA) (°)	
C(2)-H(2A)Cl(1)#3	2.62	3.529(8)	0.97	155.6	
C(2)-H(2B)Cl(1)#4	2.86	3.739(8)	0.94	151.5	
C(3)-H(3A)Cl(2)#5	2.77	3.452(9)	0.93	131.3	
C(4)-H(4A)Cl(1)#6	2.95	3.613(9)	0.93	129.3	
C(5)-H(5A)Cl(1)#7	2.88	3.487(8)	0.93	123.8	
C(5)-H(5A)O(1)#1	2.35	3.049(10)	0.93	132.0	

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2; #2 x,-y+1/2,z-1/2; #3 x+1,-

$v_{\pm 1}/2 = \frac{1}{2} \cdot $	$\#5 - y + 1 - y + 1 - z + 1 \cdot \#6$	$_v+1$ $_v+1$ $_r+2$ $_\#7$ $_v+1$ $_v$ $_r+1$
y · 1/ 2,2 · 1/ 2, #+ ^ · 1, y, 2,	<i>mJ x</i> , <i>y</i> , <i>z</i> , <i>z</i> , <i>m</i>	Λ· ⊥, y· ⊥, ∠· ∠, π/ Λ· ⊥,y,∠· ⊥

2					
D-HA	d(D-H) (Å)	d(HA) (Å)	d(DA) (Å)	< (DHA) (°)	
C(2)-H(2A)Br(1)#3	0.97	2.77	3.634(8)	148.6	
C(2)-H(2B)Br(1)#4	0.97	2.91	3.851(8)	163.4	
C(3)-H(3A)Br(2)#5	0.93	3.03	3.626(10)	123.3	
C(4)-H(4A)Br(1)#6	0.93	3.07	3.762(9)	132.6	
C(5)-H(5A)Br(1)#7	0.93	3.08	3.589(8)	116.3	
C(6)-H(6A)Br(2)#6	0.96	3.20	3.612(9)	107.8	
C(5)-H(5A)O(1)#1	0.93	2.36	3.106(10)	136.7	
Symmetry transformations used to generate equivalent atoms: $\#1 x, -y+1/2, z+1/2; \#2 x, -y+1/2, z-1/2; \#3 x+1, -$					
y+1/2,z+1/2; #4 x+1,y,z; #5 -x+1,-y+1,-z+1; #6 -x+1,-y+1,-z+2; #7 x+1,y,z+1					

Fig. S3 Solid state excitation (dashed lines) and emission (solid lines) spectra for 1 and 2 at room temperature (λ_{ex} = 350 nm and λ_{em} = 470 nm for 1, λ_{ex} = 365 nm and λ_{em} = 500 nm for 2).

Fig. S4 Fluorescence spectra of compound 1 (λ_{ex} = 350 nm, λ_{em} = 470 nm), PbCl₂ (λ_{ex} = 295 nm, λ_{em} = 480 nm) and [HOOCMMIm]Cl (λ_{ex} = 280 nm, λ_{em} = 512nm).

Fig. S5 The fluorescence decay time spectrum of compound 1.

Fig. S6 The fluorescence decay time spectrum of compound 2.

Fig. S7 UV-Vis spectrum of compound 1.

Fig. S8 UV-Vis spectrum of compound 2.

Photoluminescence properties for compounds 1 and 2

Besides the proton conduction, the title compounds also exhibit interesting photoluminescence (PL). As shown in Fig. S3, under optimal excitations (350 nm for 1 and 365 nm for 2), compounds 1 and 2 exhibit blue-green and yellow broad emissions peaking at 470 nm (CIE (0.229, 0.291)) and 500 nm (CIE (0.451, 0.461)), respectively. The quantum yields (QYs) are characterized as 4.79% for <mark>1</mark> and 2.79% for **2**, respectively, which can be compared with that of reported metal halides.³⁻⁶ The decay times of **1** and **2** are 3.53 ns and 3.73 ns, respectively. To better understand the photoluminescence mechanism, the emissions of [HOOCMMIm]Cl and bulk PbCl₂ were investigated. As shown in Fig. S4, PbCl₂ displays a blue light emission centred at ~480 nm under 295 nm excitation, whereas [HOOCMMIm]Cl shows a blue light emission centred at 512 nm under 280nm excitation. The range of these emissions overlap with that of 1, demonstrating that blue-green emission in ${f 1}$ is derived from the synergetic contribution of inorganic and organic parts.^{5, 7} The PL of 2 exhibits a red shift compared with that of 1, which should be due to the narrower bandgap of **2** as shown in Figs. S7 and S8. The wide peaks should arise from the self-trapping exciton induced by the lattice distortion of the octahedron (Pb X_4O_2) in the structures.^{3,4}

Compound	QY	$\lambda_{ ext{ex}}, \lambda_{ ext{em}}(ext{nm})$	Ref.
[PbCl ₂ (bp4mo)] (bp4mo = N-oxide-4,4'-bipye)	6%	380, 600	6
[PbBr ₂ (bp4mo)] (bp4mo = N-oxide-4,4'-bipye)	22%	380, 600	6
[Pb ₂ F ₂][O ₂ C(CH ₂) ₄ CO ₂]	1.8%	280, 541	4
$[Pb_2Cl_2][O_2C(CH_2)_4CO_2]$	11.8%	327, 536	4
$[Pb_2Br_2][O_2C(CH_2)_4CO_2]$	2%	356, 565	4
$[PbBr_2][O_2C(CH_2)_4CO_2]$	5.6%	360, 530	3
[Pb ₃ Br ₄][O ₂ C(CH ₂) ₂ CO ₂]	1.8%	370, 480	3
[PbCl ₂ (OOCMMIm)]	4.79%	350, 470	This work
[PbBr ₂ (OOCMMIm)]	2.79%	365, 500	This Work

Table S3 Comparison of the photoluminescent data of title compounds and the reported ones.

Fig. S9 Impedance spectra of compound 2 at 98% RH and different temperatures.

Reference:

- 1. G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
- 2. http://www.ccdc.cam.au.uk/mercury/
- 3. C. Peng, Z. Zhuang, H. Yang, G. Zhang and H. Fei, Chem. Sci., 2018, 9, 1627-1633.
- 4. Z. W. Zhuang, C. D. Peng, G. Y. Zhang, H. M. Yang, J. L. Yin and H. H. Fei, Angew. Chem. Int. Ed., 2017, 56, 14411-14416.
- 5. G.-E. Wang, G. Xu, M.-S. Wang, L.-Z. Cai, W.-H. Li and G.-C. Guo, Chem. Sci., 2015, 6, 7222-7226.
- 6. O. Toma, N. Mercier, M. Allain, F. Meinardi and C. Botta, Eur. J. Inorg. Chem., 2017, 2017, 844-850.
- 7. L. L. Zhu, Y. E. Huang, Y. P. Lin, X. Y. Huang, H. Q. Liu, D. B. Mitzi and K. Z. Du, Polyhedron, 2019, 158, 445-448.