Supporting information

## Hg<sup>2+</sup> and Cd<sup>2+</sup> binding of a bioinspired hexapeptide with two cysteine units constructed as a minimalistic metal ion sensing fluorescent probe

Levente I. Szekeres, Sára Bálint, Gábor Galbács, Ildikó Kálomista, Tamás Kiss, Flemming H. Larsen, Lars Hemmingsen, Attila Jancsó\*

- Table S1. pK<sub>a</sub> values for the deprotonation processes leading to the various mono and bis complexes formed in the Hg<sup>2+</sup>:DY system (with their errors in parentheses, last digit) (*I* = 0.1 M NaClO<sub>4</sub>, *T* = 298 K).
- Table S2. Overall formation constants (logβ) of the species formed in the Hg<sup>2+</sup>:DY system calculated by using different, fixed "arbitrary" logβ values for the HgH<sub>2</sub>L complex and pK<sub>a</sub> values characterizing the deprotonation processes of the various mono and bis complexes.
- Figure S1. UV absorption spectra of DY as a function of pH, in the range of pH = 1.87 to 10.89 (c<sub>DY</sub> = 1×10<sup>-4</sup> M, T = 298 K).
- Figure S2. UV absorption spectra recorded in the Hg<sup>2+</sup>:DY 0.5:1 (A) and 1:1 (B) systems as a function of pH, in the ranges of pH = 1.83 to 10.87 (A) and pH = 1.83 to 10.95 (B) ( $c_{DY}$  =  $1 \times 10^{-4}$  M, T = 298 K). Dashed and dotted lines show the spectra of the free DY at pH = 1.87 and Hg<sup>2+</sup>:DY 0.5:1 at pH = 1.83, respectively.
- Difference UV absorption spectra for the Hg<sup>2+</sup>:DY 1:1 (pH = 6.0, continuous line) and 0.5:1 (pH = 9.5, dashed line) systems calculated by subtracting the spectra of the free ligand recorded at the same pH and concentration as those of the relevant Hg<sup>2+</sup>:DY samples. The calculated difference spectra are normalized for the metal ion concentration.
- Figure S4. UV absorption spectra recorded in the Cd<sup>2+</sup>:DY 0.5:1 (A) and 1:1 (B) systems as a function of pH, in the ranges of pH = 2.00 to 11.07 (A) and pH = 2.01 to 10.97 (B) (c<sub>DY</sub> = 5×10<sup>-5</sup> M, T = 298 K).
- Figure S5. Assignment of the various <sup>1</sup>H NMR resonances of DY at pH = 5.7 ( $H_2O:D_2O = 90:10 \% v/v, c_{DY} = 1.0 \times 10^{-3} M, T = 298 K$ ).
- Figure S6. Part of the <sup>1</sup>H NMR spectra of DY, recorded as a function of pH, displaying resonances of the  $C_{\beta}H_2$  hydrogen atoms of the Asp, Cys and Tyr residues (A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY} = 1.0 \times 10^{-3}$  M, T = 298 K).
- Figure S7. Part of the <sup>1</sup>H NMR spectra, recorded in the Hg<sup>2+</sup>:DY 0.5:1 system as a function of pH, displaying resonances of the C<sub>β</sub>H<sub>2</sub> hydrogen atoms of the Asp, Cys and Tyr residues

(A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{\text{DY}} = 1.0 \times 10^{-3}$  M, T = 298 K).

- Figure S8. Part of the <sup>1</sup>H NMR spectra, recorded in the Hg<sup>2+</sup>:DY 1:1 system as a function of pH, displaying resonances of the C<sub>β</sub>H<sub>2</sub> hydrogen atoms of the Asp, Cys and Tyr residues (A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v, c<sub>DY</sub> = 1.0×10<sup>-3</sup> M, T = 298 K).
- Figure S9. Part of the <sup>1</sup>H NMR spectra recorded at pH = 7.0 in the Cd<sup>2+</sup>:DY system as a function of the Cd<sup>2+</sup>:DY ratio (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY}$  = 1.0×10<sup>-3</sup> M, T = 298 K).
- Figure S10. Fluorescence titration of DY by Cd<sup>2+</sup> at pH = 7.1 ( $c_{DY}$  = 3.0×10<sup>-5</sup> M,  $\lambda_{EM}$  = 308 nm,  $\lambda_{EX}$  = 278 nm). The inset represent the change of the recorded spectra as a function of increasing Cd<sup>2+</sup>:DY ratio.
- Figure S11. Hg<sup>2+</sup> binding to the immobilized ligand (µmol) as a function of pH ( $V_{sample} = 10.0 \text{ mL}$ , containing  $n = 2.27 \text{ µmol Hg}^{2+}$ ;  $m_{DY-NTG} = 10.0 \text{ mg}$ ;  $c_{Ac/NaOAc} = 0.02 \text{ M}$  (pH = 4.0),  $c_{MES} = 0.02 \text{ M}$  (pH = 6.0).
- Scheme S1. Proposed schematic structures for the Hg<sup>2+</sup>:DY complexes.
- Scheme S2. Proposed schematic structures for the Cd<sup>2+</sup>:DY complexes.

Table S1:  $pK_a$  values for the deprotonation processes leading to the various mono and bis complexes formed in the Hg<sup>2+</sup>:DY system (with their errors in parentheses, last digit) (I = 0.1 M NaClO<sub>4</sub>, T = 298 K, number of data points used in the fitting = 164, fitting parameter = 0.005 cm<sup>3</sup>). The log $\beta$  of the HgH<sub>2</sub>L complex (log $\beta_{HgH_2L}$ ) was estimated from the stability constant determined by Iranzo et al.<sup>1</sup> for the parent mono complex (HgL) of the terminally protected CDPPC peptide (logK = 40.0). We assumed the same stability constant for the Hg<sup>2+</sup> + [H<sub>2</sub>L]<sup>2-</sup> = [HgH<sub>2</sub>L] process of DY, allowing to set a value for log $\beta_{HgH_2L}$  according to the equation given in the footnote of the Table. Please also note that data evaluation required the fixing of this estimated formation constant.

| Species                            | $p\mathit{K}_{a}^{HgH_{y}L_{z}}$ a |
|------------------------------------|------------------------------------|
| HgH <sub>2</sub> L                 | 4.1(1)                             |
| [HgHL] <sup>_</sup>                | 9.6(1)                             |
| [HgL] <sup>2–</sup>                | -                                  |
| $[HgH_{3}L_{2}]^{3-}$              | 7.9(3)                             |
| $[HgH_2L_2]^{4-}$                  | 10.0(2)                            |
| [HgHL <sub>2</sub> ] <sup>5–</sup> | 11.2(3)                            |
| [HgL <sub>2</sub> ] <sup>6-</sup>  | -                                  |
| $\log \beta_{HgH_2L}$              | 53.85 <sup>b</sup>                 |

<sup>*a*</sup> Data refer to the following deprotonation processes:  $HgH_yL_z = HgH_{y-1}L_z + H^+$ ; <sup>*b*</sup> For estimating the  $\log\beta$  value of  $HgH_2L$  the following equation was used:  $\log K_{Hg(CDPPC)} = \log K_{HgH_2L} = \log \beta_{HgH_2L} - \log \beta_{[H_2L]^{2-}}$  where L stands for the fully deprotonated DY ligand.

1, S. Pires, J. Habjanič, M. Sezer, C. M. Soares, L. Hemmingsen and O. Iranzo, *Inorg. Chem.*, 2012, **51**, 11339–11348.

Table S2: Overall formation constants (log $\beta$ ) of the species formed in the Hg<sup>2+</sup>:DY system calculated by using different, fixed "arbitrary" log $\beta$  values for the HgH<sub>2</sub>L complex and pK<sub>a</sub> values characterizing the deprotonation processes of the various mono and bis complexes. The first model is the same as presented in Table S1. The log $\beta_{HgH_{2L}}$  value, used in the first model, was decreased and increased by 5 log units in the calculations of models 2 and 3, respectively. log $\beta_{HgH_{2L}}$  in model 4 was set to a value that resulted in free Hg<sup>2+</sup> ions appearing in a notable amount (ca. 0.16 mole fraction [Hg<sup>2+</sup>]<sub>freel</sub>) at pH = 2.0 and 1:1 Hg<sup>2+</sup>:DY ratio.

|                                    |                    | 1                                   |                    | 2                   |                    | 3                      |                    | 4                   |  |
|------------------------------------|--------------------|-------------------------------------|--------------------|---------------------|--------------------|------------------------|--------------------|---------------------|--|
| Species                            | logeta             | рК <sub>а</sub> <sup>нgНyLz а</sup> | $\log\!eta$        | $pK_{a}^{HgHyLz}$ a | $\log\!eta$        | $pK_{a}^{HgHyL_{Z}}$ a | $\log\!eta$        | $pK_{a}^{HgHyLz}$ a |  |
| HgH <sub>2</sub> L                 | 53.85 <sup>b</sup> | 4.1                                 | 48.85 <sup>b</sup> | 4.1                 | 58.85 <sup>b</sup> | 4.1                    | 31.85 <sup>b</sup> | 4.1                 |  |
| [HgHL] <sup>_</sup>                | 49.7(1)            | 9.6                                 | 44.7(1)            | 9.6                 | 54.7(1)            | 9.6                    | 27.8(1)            | 9.6                 |  |
| [HgL] <sup>2–</sup>                | 40.1(1)            | -                                   | 35.1(1)            | -                   | 45.1(1)            | _                      | 18.2(1)            | _                   |  |
| $[HgH_{3}L_{2}]^{3-}$              | 72.7(3)            | 7.9                                 | 67.7(3)            | 7.9                 | 77.7(3)            | 7.9                    | 50.7(2)            | 7.8                 |  |
| $[HgH_2L_2]^{4-}$                  | 64.8(2)            | 10.0                                | 59.8(2)            | 10.0                | 69.8(2)            | 10.0                   | 42.9(1)            | 10.0                |  |
| [HgHL <sub>2</sub> ] <sup>5–</sup> | 54.8(1)            | 11.2                                | 49.8(1)            | 11.2                | 59.8(1)            | 11.2                   | 32.9(1)            | 11.2                |  |
| [HgL <sub>2</sub> ] <sup>6–</sup>  | 43.6(3)            | _                                   | 38.6(3)            | _                   | 48.6(3)            | _                      | 21.7(2)            | _                   |  |

<sup>*a*</sup> Data refer to the following deprotonation processes:  $HgH_yL_z = HgH_{y-1}L_z + H^+$ ; <sup>*b*</sup> For estimating the  $\log\beta$  value of  $HgH_2L$  the following equation was used:  $\log K_{Hg(CoPPC)} = \log K_{HgH_2L} = \log \beta_{HgH_2L} - \log \beta_{[H_2L]^{2-}}$  where L stands for the fully deprotonated DY ligand – see the reference for  $\log K_{Hg(CoPPC)}$  under Table S1.



Figure S1. UV absorption spectra of DY as a function of pH, in the range of pH = 1.87 to 10.89 ( $c_{\text{DY}} = 1 \times 10^{-4}$  M, T = 298 K).



Figure S2. UV absorption spectra recorded in the Hg<sup>2+</sup>:DY 0.5:1 (A) and 1:1 (B) systems as a function of pH, in the ranges of pH = 1.83 to 10.87 (A) and pH = 1.83 to 10.95 (B) ( $c_{DY}$  =  $1 \times 10^{-4}$  M, T = 298 K). Dashed and dotted lines show the spectra of the free DY at pH = 1.87 and Hg<sup>2+</sup>:DY 0.5:1 at pH = 1.83, respectively.



Figure S3. Difference UV absorption spectra for the  $Hg^{2+}:DY 1:1$  (pH = 6.0, continuous line) and 0.5:1 (pH = 9.5, dashed line) systems calculated by subtracting the spectra of the free ligand recorded at the same pH and concentration as those of the relevant  $Hg^{2+}:DY$  samples. The calculated difference spectra are normalized for the metal ion concentration.



Figure S4. UV absorption spectra recorded in the Cd<sup>2+</sup>:DY 0.5:1 (A) and 1:1 (B) systems as a function of pH, in the ranges of pH = 2.00 to 11.07 (A) and pH = 2.01 to 10.97 (B) ( $c_{DY} = 5 \times 10^{-5}$  M, T = 298 K).



Figure S5. Assignment of the various <sup>1</sup>H NMR resonances of DY at pH = 5.7 (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY} = 1.0 \times 10^{-3}$  M, T = 298 K).



Figure S6. Part of the <sup>1</sup>H NMR spectra of DY, recorded as a function of pH, displaying resonances of the  $C_{\beta}H_2$  hydrogen atoms of the Asp, Cys and Tyr residues (A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY}$  = 1.0×10<sup>-3</sup> M, T = 298 K).



Figure S7. Part of the <sup>1</sup>H NMR spectra, recorded in the Hg<sup>2+</sup>:DY 0.5:1 system as a function of pH, displaying resonances of the C<sub>β</sub>H<sub>2</sub> hydrogen atoms of the Asp, Cys and Tyr residues (A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY}$  =  $1.0 \times 10^{-3}$  M, T = 298 K).

7.5

 $\delta$  (ppm)

7.0

6.75

7.25

2.3

8.5

8.25

8.0

7.75



Figure S8. Part of the <sup>1</sup>H NMR spectra, recorded in the Hg<sup>2+</sup>:DY 1:1 system as a function of pH, displaying resonances of the C<sub>β</sub>H<sub>2</sub> hydrogen atoms of the Asp, Cys and Tyr residues (A) and those of the amide groups and the aromatic ring of Tyr (B) (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY}$  =  $1.0 \times 10^{-3}$  M, T = 298 K).



Figure S9. Part of the <sup>1</sup>H NMR spectra recorded at pH = 7.0 in the Cd<sup>2+</sup>:DY system as a function of the Cd<sup>2+</sup>:DY ratio (H<sub>2</sub>O:D<sub>2</sub>O = 90:10 % v/v,  $c_{DY}$  = 1.0×10<sup>-3</sup> M, T = 298 K).



Figure S10. Fluorescence titration of DY by  $Cd^{2+}$  at pH = 7.1 ( $c_{DY}$  = 3.0×10<sup>-5</sup> M,  $\lambda_{EM}$  = 308 nm,  $\lambda_{EX}$  = 278 nm). The inset shows the change of the recorded spectra as a function of increasing  $Cd^{2+}$ :DY ratio.



Figure S11. Hg<sup>2+</sup> binding to the immobilized ligand ( $\mu$ mol) as a function of pH ( $V_{sample} = 10.0$  mL, containing  $n = 2.2 \mu$ mol Hg<sup>2+</sup>;  $m_{DY-NTG} = 10.0 \text{ mg}$ ;  $c_{AcOH/NaOAc} = 0.02 \text{ M}$  (pH = 4.0),  $c_{MES} = 0.02 \text{ M}$  (pH = 6.0).



Scheme S1. Proposed schematic structures for the  $Hg^{2+}$ :DY complexes.



Scheme S2. Proposed schematic structures for the  $Cd^{2+}$ :DY complexes. X stands for an oxygen donor from either a  $H_2O$  molecule or a possibly coordinating amide carbonyl moiety.