Electronic supplementary material

Alternative (κ^1 -N: η^6 -arene vs κ^2 -N,N) coordination of

sterically demanding amidinate ligand:

size or electronic structure of Ln ion is a decisive factor?

Aleksei O. Tolpygin,^a Andrei S. Shavyrin,^a Anton V. Cherkasov,^a Georgy K. Fukin,^a Iker del Rosal,^c Laurent Maron,^c Alexander A. Trifonov^{*a,b}

Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, [a]630950, Nizhny Novgorod (Russia) Fax: 007831 4627497; Tel: 007 831 4623532.

^[b]Institute of Organoelement compounds of Russian Academy of Sciences, Vavilova str. 28,

119334, Moscow, Russia. E-mail: trif@iomc.ras.ru

^[c]Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO, Avenue de Rangueil 135,

31077 Toulouse, France.

Contents:

 Table 1. Crystallographic data and structure refinement details for 1–4.

 Figure 1S. ¹H NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]Yb(THF)$ (1).

 Figure 2S. ¹³C{¹H} NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]Yb(THF)$ (1).

 Figure 3S. IR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]Yb(THF)$ (1).

 Figure 4S. IR spectrum of $[\{(2,6-iPr_2C_6H_3)=NC(tBu)NH\}-C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]Yb(THF)$ (2).

 Figure 5S. ¹H NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

 Figure 6S. ¹³C{¹H} NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl)Li(THF)_2$ (3).

 Figure 7S. ⁷Li NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl)Li(THF)(\mu_2-Cl)Li(THF)_2$ (3).

Cl₂)Li(THF)₂ (**3**).

Figure 8S. IR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

Figure 9S. ¹H NMR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 10S. ¹³C{¹H} NMR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 11S. IR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 12S. HPLC of the by-products of complex 4.

Figure 13S. MS of the by-products of complex 4.

.

Table 1. Crystallographic data and structure refinement details for **1-4**.

Compound	1	2	3	4
Empirical formula	$C_{44}H_{64}N_4OYb$	$C_{48}H_{73}I_2N_4O_2Yb$	$C_{52}H_{80}Cl_3LaLi_2N_4O_3$	C ₈₂ H ₁₁₀ Cl ₅ La ₃ N ₈ O ₂ , ¹ / ₂ C ₇ H ₈ ,
				$1\frac{1}{2}C_{4}H_{10}O$
Formula weight	838.03	1164.94	1068.34	1991.00
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P-1	P21/n	P21/c	P21/c
a [Å]	10.58550(10)	10.0868(7)	19.7507(9)	13.8933(7)
<i>b</i> [Å]	11.98560(10)	27.7319(18)	13.1135(6)	16.1925(9)
c [Å]	16.2221(2)	17.9352(12)	20.8949(10)	41.208(2)
α [°]	81.5750(10)	90	90	90
β [°]	87.1400(10)	90.1840(10)	99.2743(10)	92.2340(10)
γ [°]	77.4170(10)	90	90	90
V[Å ³]	1986.70(4)	5016.9(6)	5341.1(4)	9263.4(9)
Z	2	4	4	4
$ ho_{calcd} [\mathrm{g} \mathrm{cm}^{-3}]$	1.401	1.542	1.329	1.428
$\mu [\mathrm{mm}^{-1}]$	2.392	3.133	0.993	1.554
F_{000}	868	2324	2232	4072

Crystal sizes [mm]	$0.39 \times 0.27 \times 0.21$	0.23 × 0.20 ×0.18	$0.45 \times 0.36 \times 0.31$	$0.24 \times 0.19 \times 0.18$
θ range for data collection	2.91-30.03	2.43-30.03	2.38–28.74	0.98–25.03
[°]				
Index ranges	$-14 \le h \le 14,$	$-14 \le h \le 14,$	$-26 \le h \le 26,$	$-16 \le h \le 16,$
	$-16 \le k \le 16,$	$-39 \le k \le 39,$	$-17 \le k \le 17,$	$-19 \le k \le 19,$
	$-22 \le l \le 22$	$-25 \le l \le 25$	$-28 \le l \le 28$	$-49 \le l \le 49$
Reflections collected	39966	68901	68286	68555
Independent reflections	11595	14647	13798	16367
R _{int}	0.0355	0.0355	0.0209	0.1044
Completeness to θ [%]	99.8	99.7	99.9	99.9
Data / restraints / parameters	11595 / 7 / 472	14647 / 8 / 537	13798 / 18 / 593	16367 / 1458 / 1095
$S(F^2)$	1.040	1.055	1.004	1.135
Final <i>R</i> índices	$R_1 = 0.0232,$	$R_1 = 0.0318,$	$R_1 = 0.0213,$	$R_I = 0.0875,$
$[I > 2\sigma(I)]$	$wR_2 = 0.0503$	$wR_2 = 0.0768$	$wR_2 = 0.0528$	$wR_2 = 0.1335$
<i>R</i> indices (all data)	$R_1 = 0.0272,$	$R_1 = 0.0390,$	$R_1 = 0.0238,$	$R_{I} = 0.1275,$
	$wR_2 = 0.0521$	$wR_2 = 0.0802$	$wR_2 = 0.0541$	$wR_2 = 0.1451$
Largest diff. peak and hole	1.11 / -1.05	2.87 / -0.53	0.86 / -0.27	1.79 / -0.85
[eÅ ⁻³]				

Figure 1S. ¹H NMR spectrum of $[C_6H_4-1,2-\{NC(tBu)N(2,6-iPr_2C_6H_3)\}_2]$ Yb(THF) (1).

Figure 2S. ${}^{13}C{}^{1}H$ NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]Yb(THF)$ (1).

Figure 3S. IR spectrum of $[C_6H_{4-1}, 2-\{NC(tBu)N(2, 6-iPr_2C_6H_3)\}_2]$ Yb(THF) (1).

Figure 4S. IR spectrum of $[{(2,6-iPr_2C_6H_3)=NC(tBu)NH}-C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}]YbI_2(THF)_2(2).$

Figure 5S. ¹H NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

Figure 6S. ${}^{13}C{}^{1}H$ NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

Figure 7S. ⁷Li NMR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

Figure 8S. IR spectrum of $[C_6H_4-1,2-{NC(tBu)N(2,6-iPr_2C_6H_3)}_2]La(\mu-Cl)Li(THF)(\mu_2-Cl_2)Li(THF)_2$ (3).

Figure 95. ¹H NMR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 10S. ¹³C{¹H} NMR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 11S. IR spectrum of $[(C_6H_4-1,2-\{NC(tBu)N(2,6-Me_2C_6H_3)\}_2)La)((tBu)C(2,6-Me_2C_6H_3)_2)La(THF)_2(\mu_2-Cl)_3(\mu_3-Cl)_2]$ (4).

Figure 12S. HPLC of the by-products of complex 4.

049_Tolpygin2 #133-157 RT: 1.46-1.71 AV: 25 NL: 1.63E6 T: + c Full ms [50.00-800.00]

Figure 13S. MS of the by-products of complex 4.

Computational details.

All DFT calculations were carried out with the Gaussian 09 suite of programs.¹ Geometries were fully optimized in gas phase without symmetry constraints, employing the B3PW91 functional.² The nature of the extrema was verified by analytical frequency calculations. The calculation of electronic energies and enthalpies of the extrema of the potential energy surface (minima and transition states) were performed at the same level of theory as the geometry optimizations. IRC calculations were performed to confirm the connections of the optimized transition states. Yb atoms were treated with stuttgart effective core potential (ECP28MWB), associated with its adapted basis set.³ The basis sets were augmented by a set of polarization functions ($\zeta f = 1.000$). For the other elements (H, C, O and N), Pople's double- ζ basis set 6-31G(d,p) was used.⁴

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., 2009, Wallingford CT.

2. (a) A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange., *J. Chem. Phys.*, 1993, **98**, 5648 and references therein; (b) K. Burke, J. P. Perdew and W. Yang, Electronic Density Functional Theory: Recent Progress and New Directions; Plenum: New York, 1998.

3. (a) M. Dolg, H. Stoll and H. Preuss, Energy-adjusted *ab initio* pseudopotentials for the rare earth elements, *J. Chem. Phys.*, 1989, **90**, 1730; (b) X. Cao and M. Dolg, Segmented contraction scheme for small-core lanthanide pseudopotential basis sets, *J. Molec. Struct. Theochem.*, 2002, **581**, 139.

4. (a) P. C. Hariharan and J. A. Pople, The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies, *Theor. Chem. Acc.*, 1973, **28**, 213; (b) W. J. Hehre, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, *J. Chem. Phys.*, 1972, **56**, 2257.

Structures

90

 κ^2 -N,N complex

С	9.20381	0.09839	3.76860
0	8.45022	0.66527	4.86750
С	8.10997	-0.37993	5.81504
С	8.66733	-1.68062	5.23230
С	8.79003	-1.36246	3.73880
Yb	6.87276	2.39928	4.24944
Ν	7.07078	2.57124	1.87175
С	7.96323	3.02623	0.90987
С	8.67543	4.22587	1.16724
С	9.65652	4.66019	0.27726
С	9.97415	3.92404	-0.86089
С	9.30845	2.72406	-1.09150
С	8.31804	2.25275	-0.22634
С	8.36964	5.02285	2.40370
С	7.67031	0.92075	-0.49095
С	4.68409	2.97293	6.04269
Ν	5.86091	3.60801	6.12191
С	6.31423	4.62314	6.97386
С	6.25622	5.97435	6.55846
С	6.82667	6.96282	7.36325
С	7.46815	6.64336	8.55641
С	7.55845	5.30931	8.94225
С	7.00276	4.29103	8.16435
С	5.59166	6.34255	5.26083
С	7.14899	2.85222	8.57635
Ν	4.70130	2.02220	5.09191
С	3.85655	1.09976	4.48794
С	4.29186	0.69812	3.17307
С	3.64600	-0.35507	2.51786
С	2.53061	-0.98498	3.06840
С	2.06729	-0.57155	4.31116

С	2.72459	0.44261	5.00872
Ν	5.50227	1.22375	2.70805
С	5.79976	2.11063	1.76489
С	4.73753	2.77785	0.83646
С	3.75686	3.53335	1.75992
С	3.44444	3.28299	6.92656
С	3.24338	2.09860	7.90172
С	3.54274	4.54076	7.80629
С	2.22683	3.51268	6.00687
С	5.33698	3.81054	-0.12894
С	3.94492	1.75436	0.00439
Η	4.05314	-0.69569	1.57062
Н	2.04385	-1.79606	2.53397
Н	1.20098	-1.04802	4.76269
Н	2.34753	0.70431	5.98696
Н	2.03604	2.70052	5.30715
Н	2.37173	4.42776	5.42250
Н	1.32799	3.65188	6.61824
Н	3.93106	2.19190	8.74833
Н	3.42299	1.12331	7.44878
Н	2.22487	2.10980	8.30655
Η	4.35106	4.49179	8.53709
Н	2.60126	4.63465	8.36101
Н	3.66840	5.45484	7.22226
Н	6.76604	8.00063	7.04232
Η	7.90540	7.42452	9.17180
Н	8.07671	5.04506	9.86176
Н	5.63974	7.42119	5.08735
Н	4.53802	6.04296	5.23240
Н	6.07279	5.84510	4.40997
Н	6.18160	2.36815	8.74736
Н	7.73629	2.76475	9.49486
Н	7.65028	2.26767	7.79462
Н	3.30493	2.29053	-0.70574
Н	3.30244	1.13118	0.62554

Η	4.60328	1.10050	-0.57616
Н	4.27616	4.31135	2.33085
Н	3.25529	2.86531	2.46295
Н	2.98919	4.02530	1.15174
Н	5.91311	4.57938	0.39128
Н	4.51446	4.30869	-0.65453
Н	5.98620	3.35993	-0.88269
Н	10.17949	5.59155	0.48483
Н	10.74055	4.27125	-1.54774
Н	9.56957	2.12155	-1.95960
Н	8.88931	5.98517	2.39917
Н	8.69574	4.50187	3.31954
Н	7.29557	5.21956	2.50526
Н	6.69265	1.02102	-0.97775
Н	7.50193	0.36615	0.43771
Η	8.29422	0.31142	-1.15177
Н	7.01883	-0.40230	5.90902
Н	8.54393	-0.12305	6.78616
Н	8.01441	-2.53235	5.43774
Η	9.65268	-1.90037	5.65675
Н	7.82219	-1.46379	3.23737
Н	9.51792	-1.99441	3.22360
Η	10.27549	0.21833	3.97521
Н	8.94311	0.65835	2.86594
90			
TS 1	x^2 -N,N $\rightarrow \eta^2$	¹ -N:η ⁶ -arene	e
С	1.46069	-3.17751	0.69334

C	1.46069	-3.1//51	0.69334
0	1.86888	-1.91100	0.11867
С	2.87985	-2.12503	-0.89749
С	2.80291	-3.60869	-1.22324
С	2.43267	-4.21112	0.13478
Yb	0.50558	0.08260	0.14589
Ν	-0.03644	0.53409	2.56966
С	0.95642	1.47602	2.60316
С	0.95797	2.70819	1.87255

С	2.11555	3.50224	1.87135
С	3.26677	3.13966	2.55437
С	3.26762	1.93953	3.27007
С	2.15307	1.11252	3.30537
С	-0.26315	3.24158	1.15832
С	2.16524	-0.17068	4.08523
N	-1.67981	-0.01934	1.17423
С	-2.78240	-0.53096	0.50252
С	-2.54773	-0.72479	-0.90396
С	-3.48853	-1.44537	-1.65082
С	-4.68171	-1.89317	-1.08600
С	-4.93823	-1.65462	0.25984
С	-3.99138	-0.99617	1.04319
N	-1.27730	-0.39904	-1.37862
С	-0.81676	0.45815	-2.28252
С	-1.72297	1.40321	-3.13445
С	-0.91567	2.34567	-4.03883
С	-1.36510	0.57608	2.31435
С	-2.31847	1.14869	3.38783
С	-3.51990	1.87476	2.76355
N	0.52807	0.61440	-2.21232
С	1.45590	0.84972	-3.22265
С	2.42800	1.86753	-3.04246
С	3.43438	2.04246	-3.99211
С	3.52167	1.22491	-5.11566
С	2.59073	0.20392	-5.27593
С	1.56665	-0.00856	-4.34923
С	2.36868	2.75976	-1.83526
С	0.61757	-1.16007	-4.54529
С	-2.76431	-0.03448	4.27683
С	-1.58752	2.13427	4.31364
С	-2.50915	2.28146	-2.13819
С	-2.73251	0.65220	-4.02329
Η	-4.18735	-0.87463	2.10043
Н	-5.86007	-2.00439	0.71650

Η	-5.39305	-2.44474	-1.69464
Η	-3.25234	-1.69333	-2.67973
Η	-3.54814	0.22276	-3.44269
Η	-2.26144	-0.14767	-4.60266
Η	-0.39438	1.81755	-4.84053
Η	-0.17437	2.92066	-3.47945
Η	-1.60807	3.05702	-4.50337
Η	-3.17225	1.35749	-4.73761
Η	-3.12342	1.68299	-1.46094
Η	-1.83039	2.89952	-1.54143
Η	-3.17365	2.95552	-2.69072
Η	-0.74059	1.66249	4.81711
Η	-1.21398	3.00965	3.77742
Η	-2.28530	2.48855	5.08069
Η	-3.19181	2.76675	2.22012
Η	-4.20372	2.20368	3.55407
Η	-4.08476	1.25352	2.06794
Η	-3.44989	0.32414	5.05314
Η	-3.26823	-0.82739	3.72129
Η	-1.89354	-0.47950	4.76807
Η	1.49119	-3.08440	1.78227
Η	0.42879	-3.37835	0.38235
Η	1.97961	-5.20286	0.06004
Η	3.31941	-4.28934	0.77321
Η	3.74315	-3.99345	-1.62612
Η	2.01246	-3.79630	-1.95746
Η	2.65531	-1.46959	-1.74344
Η	3.85598	-1.85238	-0.47701
Η	2.66095	-0.46036	-6.13536
Η	4.31035	1.37361	-5.84764
Η	4.16056	2.83926	-3.84397
Η	1.05139	-1.90936	-5.21472
Η	-0.33205	-0.84518	-4.99489
Η	0.36817	-1.64188	-3.59459
Н	2.61606	2.22690	-0.90586

Η	1.36839	3.18383	-1.69322
Η	3.08101	3.58542	-1.92105
Η	4.15736	1.63919	3.82022
Н	4.14720	3.77458	2.53291
Н	2.09352	4.43640	1.31299
Н	-0.89483	2.46929	0.70642
Н	-0.92445	3.79738	1.83604
Н	0.03206	3.93679	0.36694
Н	2.00633	-1.03899	3.43337
Н	3.11456	-0.30348	4.61242
Н	1.35076	-0.19807	4.81818
90			
η^1 -N	J:η ⁶ -arene co	ompex	
С	2.23875	2.44120	-2.46160
С	1.57494	1.21626	-2.71161
С	1.95183	0.44928	-3.84319
С	2.93257	0.93809	-4.70926
С	3.56544	2.15561	-4.47741
С	3.21662	2.89246	-3.34924
Yb	0.69447	-0.25378	0.46713
Ν	0.67701	0.70811	-1.76925
С	-0.61838	0.35842	-1.93019
С	-1.63151	1.15750	-2.79718
С	-0.98437	2.20371	-3.71423
С	1.32620	-0.89500	-4.09552
С	1.87863	3.25512	-1.25218
0	1.45149	-2.54429	0.03216
С	2.79965	-3.00893	-0.18123
С	2.67339	-4.24453	-1.06471
С	1.31567	-4.80514	-0.63459
С	0.49949	-3.53604	-0.43689
С	0.43788	0.72205	3.03701
С	1.35662	1.66685	2.49452
С	2.64467	1.24881	2.13210
С	3.05679	-0.07446	2.32262

С	2.18344	-0.97644	2.94123
С	0.88428	-0.60472	3.30560
Ν	-0.84049	1.14002	3.32374
С	-1.82276	0.77165	2.52734
Ν	-1.56070	0.03264	1.41702
С	-2.44247	-0.83321	0.76940
С	-2.18627	-1.12210	-0.61312
С	-2.95554	-2.09645	-1.26184
С	-3.98183	-2.77988	-0.60869
С	-4.21195	-2.53072	0.74077
С	-3.43483	-1.59166	1.41671
С	0.92514	3.09865	2.33753
С	-0.04483	-1.58036	3.97082
N	-0.98188	-0.64527	-1.14152
С	-3.18769	1.41114	2.93449
С	-4.27452	1.39578	1.85027
С	-3.70515	0.75181	4.22673
С	-2.91469	2.89812	3.25451
С	-2.55773	1.90282	-1.81407
С	-2.48476	0.22469	-3.67289
Η	-3.57588	-1.45454	2.48380
Η	-4.97595	-3.08350	1.28147
Η	-4.56475	-3.52469	-1.14343
Η	-2.70752	-2.34592	-2.28952
Η	-3.13325	-0.41552	-3.07558
Η	-1.86559	-0.41087	-4.31490
Η	-0.35475	1.75460	-4.48582
Η	-0.37564	2.92241	-3.16231
Н	-1.78234	2.76156	-4.21802
Η	-3.12373	0.82875	-4.32700
Η	-3.09273	1.21000	-1.16085
Η	-1.98710	2.59750	-1.18860
Η	-3.29834	2.48489	-2.37468
Η	-2.16694	2.99853	4.04189
Н	-2.55152	3.42925	2.36777

-3.89449	1.79590	0.90585
-5.10034	2.04000	2.17329
-4.68566	0.40632	1.65293
-4.59718	1.28006	4.58309
-3.98380	-0.29667	4.08225
-2.94078	0.79884	5.00754
-0.29293	-3.62335	0.31051
0.05761	-3.16921	-1.36839
0.86846	-5.47099	-1.37693
1.40873	-5.35792	0.30692
3.50065	-4.94412	-0.91966
2.65052	-3.95647	-2.12098
3.37800	-2.20215	-0.64206
3.24398	-3.25046	0.79278
3.33699	1.97302	1.70936
4.06061	-0.38180	2.04515
2.51318	-1.99329	3.14155
1.75391	3.72617	1.99962
0.55303	3.48221	3.29250
0.09965	3.20330	1.62595
-0.50523	-1.12391	4.85267
0.48653	-2.48601	4.27646
-0.86439	-1.86706	3.30297
3.21058	0.34059	-5.57554
4.32704	2.52021	-5.16093
3.70703	3.84322	-3.14993
1.89416	-1.45471	-4.84485
0.29537	-0.81613	-4.46147
1.27898	-1.48436	-3.17316
2.12512	2.72464	-0.32441
0.80407	3.46572	-1.20718
2.41518	4.20846	-1.24282
	-3.89449 -5.10034 -4.68566 -4.59718 -3.98380 -2.94078 -0.29293 0.05761 0.86846 1.40873 3.50065 2.65052 3.37800 3.24398 3.33699 4.06061 2.51318 1.75391 0.55303 0.09965 -0.50523 0.48653 -0.86439 3.21058 4.32704 3.70703 1.89416 0.29537 1.27898 2.12512 0.80407 2.41518	-3.894491.79590-5.100342.04000-4.685660.40632-4.597181.28006-3.98380-0.29667-2.940780.79884-0.29293-3.623350.05761-3.169210.86846-5.470991.40873-5.357923.50065-4.944122.65052-3.956473.37800-2.202153.24398-3.250463.336991.973024.06061-0.381802.51318-1.993291.753913.726170.553033.482210.099653.20330-0.50523-1.123910.48653-2.48601-0.86439-1.867063.210580.340594.327042.520213.707033.843221.89416-1.454710.29537-0.816131.27898-1.484362.125122.724640.804073.465722.415184.20846

 $TS \; \eta^1 \text{-} N \text{:} \eta^6 \text{-} arene \rightarrow \eta^6 \text{-} arene \text{:} \eta^6 \text{-} arene$

С	1.49368	2.32089	-1.70465
С	1.73796	1.04931	-2.33062
С	3.09776	0.72649	-2.67434
С	4.12197	1.63111	-2.42967
С	3.87766	2.87600	-1.84320
С	2.57094	3.19573	-1.49952
Yb	1.13476	-0.24845	0.04319
N	0.81174	0.08309	-2.57407
С	-0.53439	0.02604	-2.38164
С	-1.42901	0.24853	-3.62605
С	-0.73851	1.20092	-4.61644
С	3.36902	-0.58708	-3.34972
С	0.10381	2.80191	-1.35492
0	1.46272	-2.63248	-0.52689
С	2.53951	-3.55094	-0.25202
С	2.49598	-4.57892	-1.37321
С	0.99422	-4.67274	-1.64673
С	0.54648	-3.22479	-1.49262
С	1.36474	0.61015	2.69681
С	2.28069	1.47158	2.02781
С	3.43369	0.93343	1.43979
С	3.72931	-0.42818	1.55003
С	2.88117	-1.25232	2.29936
С	1.70160	-0.76254	2.87066
Ν	0.19809	1.15266	3.19001
С	-0.92055	0.91059	2.54258
Ν	-0.90795	0.17324	1.39941
С	-1.96512	-0.58692	0.91408
С	-2.01595	-0.83555	-0.50070
С	-3.01138	-1.67912	-1.01189
С	-3.95110	-2.29145	-0.18179
С	-3.87837	-2.09207	1.19323
С	-2.88802	-1.26991	1.72611
С	2.00699	2.94892	1.99098
С	0.79326	-1.65699	3.66603

Ν	-0.90182	-0.35964	-1.18516
С	-2.13866	1.69814	3.11911
С	-3.35626	1.79069	2.18710
С	-2.54314	1.11152	4.48357
С	-1.66298	3.14800	3.36219
С	-2.79512	0.84349	-3.25487
С	-1.58555	-1.10650	-4.34861
Н	-2.80533	-1.16338	2.80277
Н	-4.57637	-2.59223	1.85967
Н	-4.70875	-2.94134	-0.61031
Н	-3.03410	-1.88556	-2.07531
Н	-2.05558	-1.87133	-3.72559
Н	-0.60561	-1.48081	-4.66138
Н	0.24408	0.82418	-4.90763
Н	-0.60271	2.20269	-4.19897
Н	-1.35736	1.29915	-5.51544
Н	-2.20341	-0.97989	-5.24493
Н	-3.36821	0.21634	-2.57132
Н	-2.67590	1.82383	-2.78208
Н	-3.39160	0.98488	-4.16321
Η	-0.80050	3.17057	4.02918
Н	-1.37991	3.62996	2.41985
Н	-2.47827	3.73257	3.80422
Н	-3.06178	2.09106	1.17651
Н	-4.03814	2.55595	2.57525
Н	-3.91727	0.85983	2.10662
Н	-3.31557	1.73707	4.94608
Н	-2.95020	0.09912	4.40005
Н	-1.67828	1.07959	5.15232
Н	-0.47007	-3.11553	-1.10845
Н	0.64343	-2.65468	-2.42173
Н	0.75882	-5.07086	-2.63705
Н	0.50846	-5.31063	-0.90014
Н	2.94784	-5.53062	-1.08125
Н	3.02516	-4.20400	-2.25597

Η	3.47336	-2.98465	-0.21029
Η	2.36514	-4.01941	0.72531
Η	4.09688	1.58964	0.88230
Н	4.63333	-0.82848	1.10078
Η	3.13731	-2.29896	2.44493
Η	2.79280	3.47742	1.44741
Η	1.95122	3.33958	3.01268
Η	1.04477	3.17787	1.52522
Η	0.49246	-1.16194	4.59439
Η	1.28554	-2.60237	3.91119
Н	-0.12718	-1.87922	3.11545
Η	5.13533	1.35995	-2.72078
Η	4.68524	3.58244	-1.67695
Н	2.35642	4.16858	-1.06130
Н	4.43206	-0.69956	-3.58319
Н	2.79339	-0.67586	-4.27875
Н	3.05623	-1.43473	-2.72691
Н	-0.41508	2.18506	-0.61080
Н	-0.55270	2.83097	-2.23182
Н	0.15322	3.82019	-0.95857
90			

η^6 -arene: η^6 -arene complex

С	2.17428	1.74946	-2.11043
С	1.32474	0.83445	-2.79017
С	1.79916	-0.47880	-3.06334
С	3.07613	-0.84962	-2.63631
С	3.90127	0.03861	-1.94262
С	3.44753	1.33351	-1.69761
Yb	0.87119	0.12317	0.10526
Ν	0.10926	1.27563	-3.27604
С	-0.99187	0.94657	-2.64401
С	-2.28438	1.50625	-3.30469
С	-2.01722	2.98861	-3.64162
С	0.94513	-1.41900	-3.86511
С	1.72167	3.17505	-1.93777

0	1.30492	-2.29057	0.14042
С	2.57486	-2.92439	0.40425
С	2.45360	-4.33829	-0.14888
С	0.96491	-4.62716	0.05485
С	0.33395	-3.28690	-0.28885
С	0.66901	1.14857	2.76281
С	1.28929	2.20772	2.03978
С	2.60924	2.05802	1.59748
С	3.33411	0.89137	1.85812
С	2.73999	-0.12417	2.61192
С	1.42039	-0.02022	3.06524
N	-0.62878	1.29896	3.18987
С	-1.57760	0.81121	2.41772
N	-1.24302	0.20680	1.25449
С	-2.01043	-0.67029	0.48755
С	-1.86411	-0.59760	-0.93817
С	-2.51837	-1.56639	-1.72254
С	-3.30885	-2.56767	-1.16295
С	-3.42445	-2.65770	0.22330
С	-2.75890	-1.73213	1.02638
С	0.51549	3.47330	1.79226
С	0.78236	-1.10973	3.87849
N	-0.93662	0.30577	-1.45055
С	-3.01262	1.11792	2.93714
С	-4.11679	1.02927	1.87336
С	-3.33650	0.19342	4.12575
С	-3.01600	2.56884	3.46360
С	-3.52560	1.46106	-2.40433
С	-2.55631	0.76617	-4.62662
Η	-2.81147	-1.82326	2.10709
Η	-4.01023	-3.45042	0.68108
Η	-3.80659	-3.28725	-1.80781
Η	-2.38259	-1.52905	-2.79960
Η	-2.81104	-0.28617	-4.46589
Н	-1.67831	0.81391	-5.27698

Η	-1.14409	3.08844	-4.28817
Η	-1.83643	3.57121	-2.73143
Η	-2.89145	3.41668	-4.14605
Н	-3.40052	1.23067	-5.14978
Η	-3.90558	0.45125	-2.24476
Η	-3.31567	1.89918	-1.42371
Η	-4.32531	2.04861	-2.86951
Η	-2.25769	2.70875	4.23498
Η	-2.81378	3.27949	2.65490
Η	-4.00261	2.80557	3.87889
Н	-3.84698	1.59016	0.97336
Η	-5.03325	1.47349	2.27858
Н	-4.34975	0.00845	1.57112
Η	-4.30124	0.47294	4.56513
Η	-3.40443	-0.85811	3.83054
Н	-2.56653	0.28438	4.89736
Η	-0.61033	-3.08405	0.22019
Η	0.18354	-3.17522	-1.36735
Н	0.58844	-5.43333	-0.57986
Η	0.76361	-4.89298	1.09856
Η	3.11147	-5.04195	0.36800
Н	2.70388	-4.35647	-1.21521
Η	3.35966	-2.32910	-0.07117
Η	2.73972	-2.93304	1.48826
Η	3.07666	2.87291	1.05110
Η	4.35726	0.79173	1.51024
Η	3.31487	-1.01265	2.86276
Η	1.12568	4.21667	1.27244
Η	0.17249	3.89493	2.74236
Η	-0.38585	3.28492	1.19927
Η	0.37198	-0.69993	4.80697
Η	1.50233	-1.89512	4.12598
Η	-0.05677	-1.56279	3.34022
Η	3.43814	-1.84858	-2.87226
Η	4.89818	-0.26245	-1.63330

Н	4.09910	2.04904	-1.20150
Η	1.48579	-2.33920	-4.10574
Н	0.62966	-0.94253	-4.79941
Н	0.02827	-1.68443	-3.32916
Η	0.76701	3.24841	-1.40636
Η	1.55327	3.63546	-2.91729
Η	2.46753	3.76597	-1.39836
94			
κ ² -N	,N Cl comp	olex	
С	7.57243	1.18372	6.54039
С	7.80874	1.83227	5.27556
С	8.92940	1.40469	4.53972
С	9.73698	0.35031	4.96753
С	9.44128	-0.32917	6.14232
С	8.35882	0.08637	6.91295
Ν	6.83547	2.78196	4.96924
С	6.47670	3.58267	3.93961
С	7.32922	3.79405	2.66872
С	6.78441	4.81348	1.65464
N	6.43521	1.60692	7.20731
Yb	5.15018	3.28851	6.42804
Cl	6.12780	5.28072	7.63873
N	4.71153	2.07550	8.48770
С	5.99891	1.68906	8.47545
С	6.88773	1.59645	9.74915
С	6.34691	2.52358	10.85379
С	3.74697	1.81612	9.47760
С	3.06311	2.86720	10.14240
С	2.02473	2.56414	11.02627
С	1.63595	1.25403	11.28001
С	2.29288	0.22439	10.61889
С	3.32756	0.47666	9.71271
С	3.44371	4.31256	9.96874
С	3.90708	-0.71045	8.98004
С	6.93227	0.16458	10.31567

С	8.31214	2.10146	9.44129
0	2.87444	4.15225	6.53477
С	1.85737	3.39580	5.88664
С	2.20094	1.93104	6.01888
0	3.51533	1.74390	5.49523
С	3.85928	0.37276	5.28860
Ν	5.30793	4.16920	4.20239
С	4.50819	5.03941	3.43512
С	3.50699	4.50372	2.58909
С	2.60176	5.36774	1.96546
С	2.66862	6.74379	2.15695
С	3.66527	7.26617	2.97521
С	4.59042	6.44018	3.62182
С	3.43304	3.02464	2.32170
С	5.66950	7.04945	4.47201
С	2.58886	5.55530	6.56906
С	8.70362	4.34376	3.11682
С	7.40992	2.44864	1.90771
Н	9.19394	1.88373	3.60998
Н	10.58927	0.05820	4.36024
Н	10.04215	-1.17534	6.46331
Н	8.10936	-0.45169	7.82005
Н	7.23284	-0.58342	9.57739
Н	5.95943	-0.12784	10.71868
Н	7.65738	0.12856	11.13643
Н	8.27964	3.10506	9.00631
Н	8.87220	1.45692	8.76572
Н	8.86950	2.16102	10.38232
Н	6.27500	3.55523	10.49893
Η	7.04734	2.50474	11.69601
Η	5.37136	2.21279	11.22900
Н	1.99295	-0.80781	10.79078
Н	0.83272	1.03954	11.97939
Η	1.52426	3.38513	11.53633
Н	3.13206	-1.20068	8.37667

Η	4.27788	-1.46842	9.67864
Н	4.72966	-0.44349	8.31692
Н	3.72092	4.75500	10.93273
Н	2.59881	4.89697	9.58602
Н	4.28799	4.44983	9.29387
Н	9.40647	4.32056	2.27636
Н	9.14777	3.80686	3.95367
Н	8.59463	5.38730	3.42891
Н	6.48245	2.28685	1.34921
Н	7.55786	1.58095	2.54988
Н	8.22800	2.47809	1.17917
Н	5.81565	4.52983	1.24006
Н	7.49555	4.86436	0.82134
Н	6.69686	5.81906	2.06914
Н	1.83734	4.94670	1.31565
Н	1.95630	7.40276	1.66830
Н	3.73726	8.34173	3.12077
Н	2.49444	2.76502	1.82265
Н	3.51863	2.44577	3.24453
Н	4.24909	2.69499	1.66672
Н	6.66339	6.88278	4.03914
Н	5.70536	6.61931	5.47720
Н	5.52856	8.13028	4.56069
Н	2.17529	1.61168	7.06868
Н	1.48061	1.33668	5.44087
Н	1.79833	3.69625	4.83224
Η	0.88785	3.58558	6.36744
Η	4.89946	0.35054	4.96418
Н	3.75573	-0.19407	6.21780
Н	3.21412	-0.05504	4.51170
Н	3.42601	6.03128	7.08056
Н	2.49751	5.95054	5.55177
Н	1.66182	5.72779	7.12823
94			

 $\eta^1\text{-}N$ Cl Complex

С	-2.99327	-1.59993	1.04908
С	-2.14057	-0.62232	0.49082
С	-1.96175	-0.61092	-0.94099
С	-2.71832	-1.52329	-1.70932
С	-3.59120	-2.43168	-1.13062
С	-3.71898	-2.48183	0.26255
Yb	0.46674	0.83799	0.10915
Ν	-1.01285	0.23216	-1.49411
С	-1.11388	0.66414	-2.81962
С	-2.33990	1.50441	-3.28984
С	-2.97259	0.85868	-4.53340
Ν	-1.40139	0.26195	1.25677
С	-1.78745	0.69132	2.51832
С	-3.19703	1.28622	2.81859
С	-2.96020	2.76293	3.20736
С	1.05783	-0.07223	-3.59349
С	2.22289	0.73143	-3.50529
С	3.47879	0.12657	-3.60352
С	3.61047	-1.24396	-3.81511
С	2.46112	-2.02287	-3.93563
С	1.18399	-1.46380	-3.83227
С	2.09612	2.22676	-3.41283
Ν	-0.17480	0.56692	-3.69086
С	-0.03508	-2.31425	-4.05765
0	1.48998	-1.36392	0.17041
С	2.84619	-1.44747	-0.27648
С	0.37915	0.40020	3.47939
С	1.38375	1.39899	3.58995
С	2.71535	1.00797	3.76704
С	3.06961	-0.33547	3.86967
С	2.07528	-1.30880	3.79318
С	0.73470	-0.96891	3.60135
Ν	-0.95094	0.81366	3.49418
С	0.99595	2.85184	3.64382
С	-0.32743	-2.03157	3.62384

С	-1.78829	2.89189	-3.68316
С	-3.40469	1.72290	-2.21097
С	-4.18231	1.28266	1.64438
С	-3.81582	0.55866	4.02390
Η	-3.08251	-1.64065	2.13057
Η	-4.37586	-3.20957	0.73033
Η	-4.15380	-3.11536	-1.76002
Η	-2.59341	-1.50796	-2.78716
Η	-3.45053	-0.09813	-4.29753
Η	-2.21621	0.69029	-5.30445
Η	-1.05814	2.80193	-4.49004
Η	-1.30613	3.37902	-2.82922
Η	-2.61049	3.53290	-4.02108
Η	-3.74523	1.51936	-4.94265
Η	-3.91725	0.80253	-1.92394
Η	-2.96605	2.17026	-1.31460
Η	-4.16010	2.41729	-2.59459
Η	-2.30077	2.83366	4.07402
Η	-2.50598	3.31900	2.38040
Η	-3.91778	3.23765	3.44914
Η	-3.74200	1.73007	0.75002
Η	-5.05465	1.88556	1.92022
Η	-4.54144	0.28589	1.38423
Η	-4.75001	1.05111	4.31664
Η	-4.05421	-0.48528	3.79194
Η	-3.12992	0.57609	4.87454
Η	3.47416	1.77977	3.87926
Η	4.10360	-0.61926	4.04860
Η	2.33568	-2.35847	3.91327
Η	1.87084	3.48107	3.83046
Η	0.27232	3.01134	4.45073
Η	0.52316	3.20221	2.72114
Η	-1.12394	-1.76575	4.32764
Η	0.09071	-2.99577	3.92649
Н	-0.80157	-2.16080	2.64625

Н	2.54879	-3.08823	-4.13931
Η	4.59386	-1.69524	-3.91537
Η	4.36560	0.75506	-3.55103
Н	0.24192	-3.29895	-4.44494
Н	-0.70963	-1.83853	-4.77822
Η	-0.61161	-2.46486	-3.13902
Η	1.56782	2.56573	-2.51483
Η	1.51938	2.60689	-4.26354
Η	3.08013	2.70435	-3.42285
Cl	0.44471	3.36188	-0.04485
С	3.61151	-0.28581	0.30075
0	2.89679	0.91771	0.01311
С	3.70583	2.08446	0.20849
Η	3.07351	2.94939	0.01114
Н	4.07340	2.11813	1.23967
Н	4.55065	2.06212	-0.48918
С	0.77117	-2.57372	-0.08610
Н	-0.26581	-2.40978	0.20485
Н	0.82022	-2.82151	-1.15091
Н	1.20020	-3.38747	0.50974
Н	2.86991	-1.43822	-1.37201
Н	3.29442	-2.38283	0.08469
Н	3.72359	-0.37943	1.38752
Η	4.60287	-0.24785	-0.16903