Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for Dalton Transactions

This journal is © The Royal Society of Chemistry 2019

Supporting Information For:

A recyclable post-synthetically modified Al(III) based metal-organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids

Soutick Nandi and Shyam Biswas*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

* Corresponding author. Tel: 91-3612583309, Fax: 91-3612582349.

E-mail address: sbiswas@iitg.ac.in.

Materials and Characterization Methods. All the required chemicals were purchased from commercial sources and used without purification. Fourier transform infrared (FT-IR) spectra were recorded with a Perkin Elmer Spectrum two FT-IR spectrometer in the range of 440-4000 cm⁻¹ with KBr pellet. The below mentioned indications were employed for the characterization of the absorption bands: medium (m), weak (w), broad (br), very strong (vs), strong (s) and shoulder (sh). Ambient temperature X-Ray powder diffraction (XRPD) patterns were collected on a Bruker D2 Phaser X-ray diffractometer (30 kV, 10 mA) using Cu-Ka ($\lambda = 1.5406$ Å) radiation. FE-SEM images were captured with a Zeiss (Zemini) scanning electron microscope. Thermogravimetric analyses (TGA) were collected under air atmosphere at a heating rate of 10 °C min⁻¹ in a temperature region of 25-800 °C by employing a Netzsch STA-409CD thermal analyzer. Fluorescence emission behavior was recorded by a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. The excitation wavelength (λ_{ex}) was 325 nm for all the fluorescence experiments. The nitrogen sorption isotherms were performed employing a Quantachrome Autosorb iQ-MP gas sorption analyzer at -196 °C. Prior to the sorption measurement, degassing of the material was performed at 120 °C for 12 h under dynamic vacuum. A Bruker Avance III 600 spectrometer was utilized for recording ¹H-NMR at 600 MHz. The mass spectrum (in ESI mode) was measured with an Agilent 6520 Q-TOF high-resolution mass spectrometer. Fluorescence lifetime measurements were performed by time correlated single-photon counting (TCSPC) method by an Edinburgh Instrument Life-Spec II instrument. The fluorescence decays were analyzed by reconvolution method using the FAST software provided by Edinburgh Instruments. Zeta potential was measured with a Zetasizer Nano ZS90 (model no. ZEN3690) instrument. X-ray photoelectron spectroscopy (XPS) measurement was carried out at room temperature using a custom-built near-ambient pressure photoelectron spectrometer (Prevac, Poland). It is equipped with an R3000HP analyser (Scienta) with a twin-anode source and a monochromatic (Al-Ka) X-ray source.

Figure S1. Digital images of 1-NH₂ (a) and 1-NH₂@THB (b) in solid state.

Figure S2. FT-IR spectra of 1-NH₂ (black) and 1-NH₂@THB (red).

Figure S3. ESI-MS spectrum of the digested framework of **1-NH₂@THB** showing m/z (positive ion mode) peaks at 182.0519 and 318.0697, which correspond to $(M+H)^+$ ion (M = mass of ligands) of H₂BDC-NH₂ ligand and the imine-functionalized ligand, respectively. This spectrum further confirms the formation of imine bond. *Digestion protocol of the MOF sample for recording ESI-MS spectrum:* 10 mg of MOF sample was added to 1.0 mL of DMSO. To this solution, 1.0 mL of saturated K₃PO₄ (in H₂O) was added. After sonication for 5 min, the MOF sample was totally dissolved. The organic phase was separated and diluted with HPLC grade methanol for ESI-MS analysis.

Figure S4. ¹H NMR spectra of (a) **1-NH**₂ and (b) **1-NH**₂**@THB** after framework digestion in K₃PO₄/D₂O. The assignment of the NMR peaks for **1-NH**₂**@THB** was interpreted according to the presence of the new peaks observed for the phenyl and imine moiety. To calculate the percent of conversion, the aromatic proton peaks corresponding to H₂BDC-NH₂ ligand were set to an integration of 1 and all new peaks were integrated accordingly. For **1-NH**₂**@THB**, new peaks are all approx. ~1.04 with respect to aromatic protons of H₂BDC-NH₂ ligand, corresponding to a conversion of ~51%. *Digestion protocol of the MOF sample for recording NMR spectra:* 10 mg of each MOF sample was added to 400 µL of DMSO-*d*₆. To this solution, 200 µL of saturated K₃PO₄ in D₂O was added. After shaking for 5 min, the MOF sample was totally dissolved and the organic phase was analyzed by ¹H NMR spectroscopy immediately.

Figure S5. TG curves of **1-NH**₂ and **1-NH**₂**@THB** recorded in the temperature range of 25-800 °C with a heating rate of 10 °C min⁻¹.

Figure S6. N₂ adsorption and desorption isotherms of $1-NH_2$ (a) and $1-NH_2$ (b) recorded at -196 °C.

Figure S7. FE-SEM images of 1-NH₂ (a, b) and 1-NH₂@THB (c, d).

Figure S8. Fluorescence emission spectra of $1-NH_2$ (black) and $1-NH_2$ (model).

Figure S9. Fluorescence emission intensity of 1-NH₂ and 1-NH₂@THB before and after addition of bilirubin.

Figure S10. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM ascorbic acid solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S11. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon incremental addition of 1 mM creatine solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S12. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM creatinine solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S13. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM dopamine solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S14. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM glucose solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S15. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM urea solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S16. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM uric acid solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S17. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Ca²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S18. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Cd²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S19. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Co²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S20. Change in the fluorescence emission intensity of **1-NH₂** (*T***HB** upon incremental addition of 1 mM Cu²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S21. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Fe²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S22. Change in the fluorescence emission intensity of **1-NH₂** (*i*) **THB** upon incremental addition of 1 mM Fe³⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S23. Change in the fluorescence emission intensity of **1-NH₂** (*T***HB** upon incremental addition of 1 mM K⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S24. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Mg²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S25. Change in the fluorescence emission intensity of **1-NH₂** (*THB* upon incremental addition of 1 mM Na⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S26. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon incremental addition of 1 mM Zn²⁺ solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S27. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of ascorbic acid (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S28. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of creatine (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S29. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of creatinine (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S30. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of dopamine (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S31. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of glucose (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S32. Change in the fluorescence emission intensity of **1-NH₂**(*a***THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of urea (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S33. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of uric acid (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S34. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of Ca²⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S35. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 µL) in presence of Cd²⁺ (200 µL) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S36. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of Co²⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S37. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 µL) in presence of Cu²⁺ (200 µL) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S38. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 µL) in presence of Fe²⁺ (200 µL) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S39. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 µL) in presence of Fe³⁺ (200 µL) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S40. Change in the fluorescence emission intensity of **1-NH₂**(*a*)**THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of K⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S41. Change in the fluorescence emission intensity of **1-NH₂** (*T***HB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of Mg²⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S42. Change in the fluorescence emission intensity of **1-NH₂** (*T***HB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of Na⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S43. Change in the fluorescence emission intensity of **1-NH₂@THB** upon addition of 1 mM bilirubin solution (200 μ L) in presence of Zn²⁺ (200 μ L) solution (λ_{ex} = 325 nm and λ_{em} = 429 nm).

Figure S44. Variation of the fluorescence quenching efficiencies upon incremental addition of 1 mM solution of different competitive analytes to a 3 mL suspension of $1-NH_2@THB$.

Figure S45. Stern-Volmer plot for the fluorescence emission quenching of $1-NH_2$ (a) THB in presence of bilirubin solution.

Figure S46. Relationships between I_0/I and concentrations of bilirubin in mili- (a), micro- (b), nano- (c), and picomolar (d) levels.

Figure S47. Change in the fluorescence emission intensity of **1-NH₂**@**THB** in HEPES buffer as a function of bilirubin concentration.

Figure S48. Recyclability of the quenching efficiency of the HEPES buffer suspension of 1-NH₂@THB towards 1 mM bilirubin solution.

Figure S49. XRPD patterns of 1-NH₂@THB before (a) and after sensing of bilirubin (b).

Figure S50. Effect of pH on fluorescence emission intensity of $1-NH_2@THB$ before and after addition of 1 mM bilirubin solution (200 µL).

Figure S51. Lifetime decay profile of **1-NH₂@THB** in the absence and presence of bilirubin solution ($\lambda_{ex} = 336$ nm, monitored at 429 nm).

Table S1. Fluorescence lifetimes of **1-NH₂** (*THB* before and after the addition of bilirubin ((λ_{ex} = 336 nm, pulsed diode laser).

Volume of bilirubin (µL)	a ₁	a ₂	τ_1 (ns)	τ_2 (ns)	<\alpha >* (ns)	χ ²
0	0.985	0.014	7.852	0.019	7.734	1.012
200	0.990	0.009	7.675	0.028	7.598	1.013

Average lifetime $<\tau>*=a_1 \tau_1 + a_2 \tau_2$

Figure S52. Normalized UV-vis spectrum of bilirubin overlapped with the normalized emission/excitation spectra of $1-NH_2(a)$ THB in HEPES buffer.

Figure S53. Zeta potential distribution of $1-NH_2$ (*THB* in HEPES buffer medium (pH = 7.4) before and after addition of bilirubin.

S30

Figure S54. (A) XPS spectra of **1-NH₂@THB** (a) and bilirubin-treated **1-NH₂@THB** (b). High resolution XPS spectra of (B) Al 2p, (C) N 1s and (D) O 1s of **1-NH₂@THB** (a) and bilirubin-treated **1-NH₂@THB** (b).

Figure S55. $\log[(I_0-I)/I]$ vs $\log[Q]$ plot at different temperatures.

Figure S56. van't Hoff plot for the interactions between 1-NH₂@THB and bilirubin.

A.	Fluorescent sense	ors									
Sl.	Sensor Material Type of					Response Line			Detection	Ref.	
No.	Mater		al Used					ange Limit			
1	Al-MIL-53-	- MOF		HEPES		30	(M) 10 ⁻¹	2	1.26 pM	This	
1	NH ₂ @THB		buffer					10 ⁻⁵	1.20 pm	work	
2	UIO-66-PSM	MOF		PBS buffer		30	10 ⁻¹ 5×10		0.59 pM	1	
3	PDPPF-co-Ph	polym				-	10^{-6} - 10^{-5}		-	2	
4	BAMD	organic molecule		phosphate buffer	e	e 600		² _) ⁻⁴	2.8 pM (pH=7.4) 3.3 pM (pH=9.0)	3	
5	PF-Ph-GlcA	polymer		PBS buffer		-	-		150 nm	4	
6	HSA-AuNCs	nanoclusters		phosphat buffer	e -		10 ⁻⁶ 5×10		248 nM	5	
B.	Electrochemical	Electrochemical sensors									
Sl.	Sensor Material		Type of		L	Linear Range		Detection Limit		Ref.	
No.			Material								
7	SiO ₂ @ZrONPs/ CHIT		nanoparticles		0.	0.02- 250 μM		0.1 nM		6	
8	CuO-CdO NCs		-			10.0 pM -10.0 mM		$1.0 \pm 0.1 \text{ pM}$		7	
9	HSA-AuNCs		nanomaterial		0.	0.2-7.0µM		86.32 nM		8	
10	BOx/nano Au		nanorods		0.	0.01 -500 μM		0.005 µM		9	
11	RGO-PSS composite electrode		carbon electrode		0	0 - 450 μΜ		2.0 μM		10	
12	BOx/GONP@Ppy/FTO				0.	0.01 – 500 mM		0.1 nM		11	
13	MWCNT		nanotubes		0.	0.5–500 μM		0.3 ±	0.022 nM	12	

Table S2. Comparison of the results of various bilirubin sensors.

References:

- 1. Y. Du, X. Li, X. Lv and Q. Jia, ACS Appl. Mater. Interfaces, 2017, 9, 30925-30932.
- 2. T. Senthilkumar and S. K. Asha, *Macromolecules*, 2013, 46, 2159–2171.
- 3. S. Ellairaja, K. Shenbagavalli, S. Ponmariappan and V. S. Vasantha, *Biosens. Bioelectron.*, 2017, **91**, 82-88.
- 4. T. Senthilkumar and S. K. Asha, *Macromolecules*, 2015, 48, 3449-3461.
- 5. M. Santhosh, S. R. Chinnadayyala, A. Kakoti and P. Goswami, *Biosens. Bioelectron.*, 2014, **59**, 370-376.

- 6. B. Batra, S. Lata, Sunny, J. S. Rana and C. S. Pundir, *Biosens. Bioelectron.*, 2013, 44, 64-69.
- 7. M. M. Rahmana, M. M. Hussain and A. M. Asiri, *Prog. Nat. Sci.: Mater. Int.*, 2017, **27**, 566-573.
- 8. M. Santhosh, S. R. Chinnadayyala, N. K. Singh and P. Goswami, *Bioelectrochemistry*, 2016, **111**, 7-14.
- 9. J. Narang, N. Chauhan, A. Mathur, V. Chaturvedi and C. S. Pundir, *Adv. Mater. Lett.*, 2015, 6, 1012-1017.
- 10. T. Balamurugan and S. Berchmans, RSC Adv., 2015, 5, 50470-50477
- 11. N. Chauhan, R. Rawal, V. Hooda and U. Jain, RSC Adv., 2016, 6, 63624-63633.
- 12. M. Thangamuthu, W. E. Gabriel, C. Santschi and O. J. F. Martin, Sensors, 2018, 18, E800.