## **Electronic Supplementary Information**

## for

## The ladder-like [CrCu] coordination polymers containing unique bridging modes of $[Cr(C_2O_4)_3]^{3-}$ and $Cr_2O_7^{2-}$

Lidija Kanižaj,<sup>a</sup> Krešimir Molčanov,<sup>a</sup> Filip Torić,<sup>b</sup> Damir Pajić,<sup>b</sup> Ivor Lončarić,<sup>a</sup>

Ana Šantić<sup>a</sup> and Marijana Jurić<sup>a</sup>\*

<sup>a</sup>Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia

<sup>b</sup>Department of Physics, Faculty of Science, University of Zagreb Bijenička cesta 32,

10000 Zagreb, Croatia

| Compounds            | 1        | 2          | 3                    |          |
|----------------------|----------|------------|----------------------|----------|
| Cr1-01               | 1.973(3) | 1.9816(18) | Cr1–01               | 1.623(3) |
| Cr1–02               | 1.966(3) | 1.971(2)   | Cr1–02               | 1.602(5) |
| Cr1-05               | 1.967(3) | 1.9685(18) | Cr1–O3               | 1.783(9) |
| Cr1-06               | 1.970(3) | 1.9637(18) | Cr1–04A              | 1.702(9) |
| Cr1-09               | 1.966(3) | 1.980(2)   | Cr1–O4B              | 1.516(9) |
| Cr1-010              | 1.989(3) | 1.9939(18) | Cu1–N1               | 2.005(4) |
| Cu1-01               | 2.760(4) | 2.7166(19) | Cu1–N2               | 1.983(4) |
| Cu1–O10 <sup>a</sup> | 2.602(3) | 2.6351(19) | Cu1–O1               | 2.244(3) |
| Cu1-013              | 1.963(3) | 1.9596(19) | Cu1–O4A <sup>c</sup> | 2.571(9) |
| Cu1-014              | 1.986(3) | 1.9760(18) | Cu1–O4B <sup>c</sup> | 2.584(4) |
| Cu1–N1               | 1.973(5) | 1.958(3)   | Cu1–O5               | 1.978(4) |
| Cu1–N2               | 1.980(5) | 1.976(3)   | Cu1-06               | 1.982(3) |
| Cu2–07               | 2.465(4) | 2.471(2)   |                      |          |
| Cu2–O8 <sup>a</sup>  | 2.597(4) | 2.584(2)   |                      |          |
| Cu2–O15              | 1.989(3) | 1.9722(19) |                      |          |
| Cu2–O16              | 1.976(3) | 1.9887(18) |                      |          |
| Cu2–N3               | 1.986(4) | 1.973(2)   |                      |          |
| Cu2–N4               | 1.988(4) | 1.988(2)   |                      |          |

Table S1. Selected bond lengths (Å) and angles (°) in compounds 1–3

| K1–O1                           | 2.750(4)                      |
|---------------------------------|-------------------------------|
| K1–O3 <sup>b</sup>              | 2.627(4)                      |
| K1–O4 <sup>b</sup>              | 2.929(4)                      |
| K1–O11                          | 2.888(5)                      |
| K1–O14                          | 2.955(4)                      |
| K1–O16                          | 2.912(3)                      |
| K1–O17                          | 3.048(12)                     |
| <sup>a</sup> Symmetry operation | tor: ( <i>i</i> ) 1 + x, y, z |

<sup>b</sup>Symmetry operator: (*ii*) x, 1 + y, z

<sup>c</sup>Symmetry operator: (*iii*) -1 + x, y, z



**Fig. S1** ORTEP-3<sup>1</sup> drawings of  $[Cr(C_2O_4)_3]^{3-}$  (left) and  $[Cu(C_2O_4)(bpy)_2]^{2+}$  (right) moieties in a) compound **1** and b) compound **2** with atom numbering scheme. Displacement ellipsoids have been drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.







**Fig. S3** Disorder of dichromate moieties in **3**: the dichromates are disordered about an inversion center (shown as black circles). Thus, occupancy of atom O3 disordered over two symmetry-equivalent positions, O3 and O3<sup>*i*</sup>, which have occupancies of 0.5; O4 is disordered over two symmetry-independent positions, O4A and O4B, with respective occupancies of 0.5. At RT, the two positions could not be resolved, so ellipsoids of O3 and O4 were unrealistically elongated. Symmetry operator: (*i*) 1-x, -y, 1-z.



**Fig. S4** The ladder-like hydrogen bonding pattern along *b* axis in compound **2**. Molecules of 2,2'-bipyridine are omitted for clarity.

| D–H…A        | <i>D</i> –H (Å)                                                                                                                                                                            | H…A (Å)                                                                                                                                                                                                                                                                                                                                                                                | <i>D</i> …A (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>D</i> –H…A (°)                                                                                                                                                                                                                                                                                                                                                                  | Symm. op. on                                           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 017–H17A…011 | 0.84                                                                                                                                                                                       | 2.28                                                                                                                                                                                                                                                                                                                                                                                   | 2.9719(19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140                                                                                                                                                                                                                                                                                                                                                                                | 1 - x, 1 - y, 1 -                                      |
| N5–H1N…O3    | 0.94(3)                                                                                                                                                                                    | 1.93(3)                                                                                                                                                                                                                                                                                                                                                                                | 2.776(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150(4)                                                                                                                                                                                                                                                                                                                                                                             | x, y, z                                                |
| N5–H1N…O4    | 0.94(3)                                                                                                                                                                                    | 2.50(4)                                                                                                                                                                                                                                                                                                                                                                                | 3.220(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 134(3)                                                                                                                                                                                                                                                                                                                                                                             | x, y, z                                                |
| N5–H2N…O14   | 0.92(5)                                                                                                                                                                                    | 2.43(5)                                                                                                                                                                                                                                                                                                                                                                                | 3.054(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125(4)                                                                                                                                                                                                                                                                                                                                                                             | <i>x</i> , −1 + y, z                                   |
| N5–H2N…O16   | 0.92(5)                                                                                                                                                                                    | 2.15(5)                                                                                                                                                                                                                                                                                                                                                                                | 3.065(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168(5)                                                                                                                                                                                                                                                                                                                                                                             | <i>x</i> , −1 + y, z                                   |
| N5–H3N…O9    | 0.93(5)                                                                                                                                                                                    | 2.12(6)                                                                                                                                                                                                                                                                                                                                                                                | 2.962(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149(5)                                                                                                                                                                                                                                                                                                                                                                             | <i>x</i> , −1 + y, z                                   |
| N5–H3N…O11   | 0.93(5)                                                                                                                                                                                    | 2.32(7)                                                                                                                                                                                                                                                                                                                                                                                | 3.024(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132(7)                                                                                                                                                                                                                                                                                                                                                                             | x, −1 + y, z                                           |
| N5–H4N…O17   | 0.92(5)                                                                                                                                                                                    | 2.19(6)                                                                                                                                                                                                                                                                                                                                                                                | 3.076(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161(6)                                                                                                                                                                                                                                                                                                                                                                             | <i>−x, −y, −z</i>                                      |
| 017–H17B…011 | 0.96(5)                                                                                                                                                                                    | 2.04(7)                                                                                                                                                                                                                                                                                                                                                                                | 2.906(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149(14)                                                                                                                                                                                                                                                                                                                                                                            | x, y, z                                                |
| O17–H17B…O12 | 0.96(5)                                                                                                                                                                                    | 2.5(3)                                                                                                                                                                                                                                                                                                                                                                                 | 3.238(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133(1)                                                                                                                                                                                                                                                                                                                                                                             | x, y, z                                                |
|              | <i>D</i> –H··· <i>A</i><br>017–H17A···011<br>N5–H1N···03<br>N5–H1N···04<br>N5–H2N···014<br>N5–H2N···016<br>N5–H3N···09<br>N5–H3N···011<br>N5–H4N···017<br>017–H17B···011<br>017–H17B···012 | D-H···A         D-H (Å)           O17-H17A···O11         0.84           N5-H1N···O3         0.94(3)           N5-H1N···O4         0.94(3)           N5-H2N···O14         0.92(5)           N5-H3N···O9         0.93(5)           N5-H3N···O11         0.93(5)           N5-H4N···O17         0.92(5)           O17-H17B···O11         0.96(5)           O17-H17B···O12         0.96(5) | D-H···A         D-H (Å)         H···A (Å)           O17-H17A···O11         0.84         2.28           N5-H1N···O3         0.94(3)         1.93(3)           N5-H1N···O4         0.94(3)         2.50(4)           N5-H2N···O14         0.92(5)         2.43(5)           N5-H3N···O16         0.92(5)         2.12(6)           N5-H3N···O11         0.93(5)         2.32(7)           N5-H4N···O17         0.92(5)         2.19(6)           O17-H17B···O11         0.96(5)         2.04(7)           O17-H17B···O12         0.96(5)         2.5(3) | D-H···AD-H (Å)H···A (Å)D···A (Å)O17-H17A···O110.842.282.9719(19)N5-H1N···O30.94(3)1.93(3)2.776(4)N5-H1N···O40.94(3)2.50(4)3.220(4)N5-H2N···O140.92(5)2.43(5)3.054(4)N5-H2N···O160.92(5)2.15(5)3.065(4)N5-H3N···O90.93(5)2.12(6)2.962(4)N5-H3N···O110.93(5)2.32(7)3.024(5)N5-H4N···O170.92(5)2.19(6)3.076(6)O17-H17B···O110.96(5)2.04(7)2.906(5)O17-H17B···O120.96(5)2.5(3)3.238(5) | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Table S2Hydrogen-bonding geometry in compounds 1 and 2

 Table S3
 Geometric parameters of the aromatic stacking interactions for compound 3

| Cg( <i>i</i> )…Cg( <i>j</i> ) | Cg( <i>i</i> )…Cg( <i>j</i> ) (Å) <sup>b</sup> | α (°) <sup>ь</sup> | β (°) <sup>c</sup> | Cg(i)…plane [Cg(j)] (Å) | Symmetry operator   |
|-------------------------------|------------------------------------------------|--------------------|--------------------|-------------------------|---------------------|
| (N2→C7)…(C5→C12)              | 3.707(3)                                       | 0.1(2)             | 18.9               | 3.506(2)                | 1 - x, 1 - y, 2 - z |
| (C5→C12)…(C5→C12)             | 3.610(3)                                       | 0.0(2)             | 19.6               | 3.401(3)                | x, 1 + y, z         |
| (C5→C12)…(C5→C12)             | 3.707(3)                                       | 0.0(2)             | 19.3               | 3.500(2)                | 1 - x, 1 - y, 2 - z |

<sup>a</sup>Cg = center of gravity of the aromatic ring; <sup>b</sup> $\alpha$  = angle between the planes of two aromatic rings. <sup>c</sup> $\beta$  = angle between the Cg…Cg line and the normal to the plane of the first aromatic ring.



Fig. S5 Complex impedance plot and corresponding equivalent circuit for compound 2 at 20 °C.



**Fig. S6** The M(H) curves for compound **1** measured at 2, 5, 10 and 20 K.



**Fig. S7** The M(H) curves for compound **2** measured at 2, 5, 10 and 20 K.





**Fig. S9** Graphical results of the final Rietveld refinement for powder sample **3** used for magnetic measurements. The experimental data are given in red, the calculated pattern in blue. The green vertical marks represent the diffraction lines of  $[(Cr_2O_7)Cu_2(C_2O_4)(phen)_2]_n$  (**3**). Inset: Diffraction lines of unidentified phases are indicated by asterisks.

| La                | Donor set    | $oldsymbol{arphi}^{b}$ | h <sub>Cu</sub> <sup>c</sup> | $d_{Cu\cdots Cu}^{d}$ | J <sup>e</sup>  | Ref.      |
|-------------------|--------------|------------------------|------------------------------|-----------------------|-----------------|-----------|
| bpy               | $O_2N_2/O_2$ | 4.6                    | 0.11                         | 5.143                 | -382            | 3         |
| bpy               | $O_2N_2/O$   | 3.2                    | 0.16                         | 5.154(1)              | -386            | 4         |
| bpy               | $O_2N_2/O$   | 12.0                   | 0.18                         | 5.150(1)              | -376            | 4b        |
| bpy               | $O_2N_2/O$   | 10.4                   | 0.16                         | 5.144(1)              | -378            | 4b        |
| phen              | $O_2N_2/O$   | 16.9                   | 0.27                         | 5.158(1)              | -330            | 5         |
| bpy               | $O_2N_2/CI$  | 16.9                   | 0.40                         | 5.227(2)              | -295            | 6         |
| bpy ( <b>1</b> )  | $O_2N_2/O_2$ | 5.88/2.81              | 0.0737(8)/0.0256(7)          | 5.1392(14)            | -343            | This work |
| bpy ( <b>2</b> )  | $O_2N_2/O_2$ | 6.21/2.04              | 0.0572(5)/0.0248(5)          | 5.1350(6)             | -371            | This work |
| phen ( <b>3</b> ) | $O_2N_2/O_2$ | 12.53                  | 0.1373(8)                    | 5.1315(14)            | –340 (from DFT) | This work |

**Table S4** Selected magneto-structural parameters for oxalate-bridged copper(II) complexes of the type  $[Cu(L)(\mu-C_2O_4)Cu(L)]^{2+}$ 

<sup>*a*</sup>Abbreviations: bpy = 2,2-bipyridine; phen = 1,10-phenanthroline; <sup>*b*</sup>Dihedral angle (°) angle between the plane of the oxalate ligand and the mean basal plane; <sup>*c*</sup>Amount of the out-of-plane displacement of the copper(II) ions (Å); <sup>*d*</sup>Cu…Cu separation across the bridging oxalate (Å). <sup>*e*</sup>Magnetic coupling in cm<sup>-1</sup>.

## References

- 1 L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849–854.
- 2 V. A. Blatov, *Crystallogr. Rev.*, 2004, **10**, 249–318.
- 3 O. Castillo, I. Muga, A. Luque, J. M. Gutiérrez-Zorrilla, J. Sertucha, P. Vitoria and P. Román, *Polyhedron*, 1999, **18**, 1235–1245.
- 4 (a) M. Julve, J. Faus, M. Verdaguer and A. Gleizes, *J. Am. Chem. Soc.*, 1984, **106**, 8306–8308; (b)
   A. Gleizes, M. Julve, M. Verdaguer, J. A. Real, J. Faus and X. Solans, *J. Chem. Soc., Dalton Trans.*, 1992, 3209–3216.
- 5 A. Bencini, A. C. Fabretti, C. Zanchini and P. Zannini, *Inorg. Chem.*, 1987, **26**, 1445–1449.
- 6 M. Jurić, D. Pajić, Dijana Žilić, B. Rakvin, D. Milić and P. Planinić, *Polyhedron*, 2015, **98**, 26–34.