Electronic Supplementary Information (ESI) for:

Push-pull unsymmetrical substitution in nickel(II) complexes with tetradentate

 $\mathrm{N}_{2} \mathrm{O}_{2}$ Schiff base ligands: synthesis, structures and linear-nonlinear optical studies

 $\mathrm{N}_{2} \mathrm{O}_{2}$ Schiff base ligands: synthesis, structures and linear-nonlinear optical studies}

Luca Rigamonti, Alessandra Forni, Stefania Righetto and Alessandro Pasini

Index

page S2

Experimental section (cont.)

page S7 Table S1 Crystallographic and data collection parameters for $\mathbf{3 c} \cdot \mathrm{CHCl}_{3}, \mathbf{3 g} \cdot \mathrm{EtOH}$ and $\mathbf{3 j}$.
page S8 Table S2 Computed excitation energies, oscillator strengths and analysis of the most important contributions to the transitions for compounds 3 and selected analogue copper(II) complexes Cu3a and Cu3I.
Fig. S1 Isodensity surface plot of the PBE0/6-311++G(d,p) frontier orbitals of $\mathbf{3 c}$ and $\mathbf{3 j}$ mainly involved in the computed transitions.
page S11 Fig. S2 UV-visible absorption spectra of 3c: dilution studies from 10^{-3} down to 10^{-5} $\mathrm{mol} \mathrm{L}{ }^{-1} \mathrm{CHCl}_{3}$ solutions, solvatochromism at $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ solutions in solvents from low polar toluene to high polar methanol, and addition of increasing amount of DMSO to the $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CHCl}_{3}$ solution.
page S12 Fig. S3 UV-visible absorption spectra of $\mathbf{3 j}$: solvatochromism at $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ solutions in solvents from low polar toluene to high polar methanol, and addition of increasing amount of DMSO to the $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CHCl}_{3}$ solution.

[^0]
Experimental section (cont.)

Synthetic procedures for compounds 1

 $\mathrm{mmol})$, ethanolic $\mathrm{KOH}\left(14.0 \mathrm{~mL}\right.$ of a $0.1 \mathrm{~mol} \mathrm{~L}{ }^{-1}$ solution, 1.40 mmol$)$ and solid $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($174.2 \mathrm{mg}, 0.70 \mathrm{mmol}$) ($306.8 \mathrm{mg}, 89 \%$). Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{NiO}_{6}$ (494.74): C, 33.99 ; H, 2.44. Found: C, 34.09; H, 2.60. IR (KBr): $3445\left(v_{\mathrm{O}-\mathrm{H}}\right), 2906\left(v_{\mathrm{CHO}}\right), 1631\left(v_{\mathrm{C}=\mathrm{o}}\right) \mathrm{cm}^{-1}$. UV-vis $\left(\mathrm{CHCl}_{3}\right): 25060$ (4130), 28650 (4620).
$\left[\mathbf{N i}\left({ }^{(} \mathbf{H} \mathbf{s a l}\right)_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{2}}\right](\mathbf{1 c}) .{ }^{1-4}$ This light green solid was synthesized as above from salH (1220.4 mg, 10.00 mmol), ethanolic $\mathrm{KOH}\left(20.0 \mathrm{~mL}\right.$ of a $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ solution, 10.00 mmol) and solid $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad(1242.6 \mathrm{mg}, \quad 5.00 \mathrm{mmol})(1552.0 \mathrm{mg}, ~ 92 \%)$. Anal. Calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NiO}_{6} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ (341.46): C, 49.25; H, 4.28. Found: C, 49.41; H, 4.58. IR (KBr): 3452 ($\mathrm{v}_{\mathrm{O}-\mathrm{H}}$), $2790\left(v_{\text {СНО }}\right), 1653\left(v_{\mathrm{C}=\mathrm{O}}\right) \mathrm{cm}^{-1}$. UV-vis $\left(\mathrm{CHCl}_{3}\right): 25910$ (3280), 30210 (5510).
 ($500.2 \mathrm{mg}, 3.68 \mathrm{mmol}$), ethanolic $\mathrm{KOH}\left(7.4 \mathrm{~mL}\right.$ of a $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ solution, 3.70 mmol) and $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(456.9 \mathrm{mg}, 1.84 \mathrm{mmol})(518.6 \mathrm{mg}, 77 \%)$. Anal. Calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NiO}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (374.01): C, 51.38 ; H, 5.12. Found: C, 50.92 ; H, 4.93. IR (KBr): 3456 ($v_{\mathrm{O}-\mathrm{H}}$), $1633\left(\mathrm{v}_{\mathrm{C}=\mathrm{O}}\right) \mathrm{cm}^{-1}$. UV-vis (CHCl_{3}): 25060 (2300), 28990 (5620).
$\left[\mathrm{Ni}(\mathbf{5 - O M e}-\mathrm{sal})_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}}\right] \mathbf{(1 e)}$. This yellow-green compound was synthesized as above from 5-OMe-salH ($500.0 \mu \mathrm{~L}, 4.00 \mathrm{mmol}$), ethanolic $\mathrm{KOH}\left(8 \mathrm{~mL}\right.$ of a $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ solution, 4.00 mmol) and $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($497.6 \mathrm{mg}, 2.00 \mathrm{mmol}$) ($364.0 \mathrm{mg}, 46 \%$). Anal. Calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NiO}_{8}$ (397.00): C, 48.41; H, 4.57. Found: C, 48.39; H, 4.55. IR (KBr): 3457 ($v_{\mathrm{O}-\mathrm{H}}$), 2787 ($v_{\text {СНо }}$), 1659 $\left(v_{\mathrm{C}=0}\right) \mathrm{cm}^{-1}$. UV-vis $\left(\mathrm{CHCl}_{3}\right): 23700$ sh (2550), 27100 (6830).

Synthetic procedures for compounds 2

$\left.\left[\mathbf{N i}\left({ }^{\mathrm{Br}} \mathbf{L}\right)_{\mathbf{2}}\right] \mathbf{(2 b}\right) .{ }^{5} 5-\mathrm{Br}-\mathrm{salH}(214.2 \mathrm{mg}, 1.07 \mathrm{mmol})$ was dissolved in ethanolic $\mathrm{KOH}(10.7 \mathrm{~mL}$ of a $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ solution, 1.07 mmol) and $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(132.2 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added under stirring, with the formation of a green precipitate. The slurry was refluxed for 1 h , then $\mathrm{tn}(134 \mu \mathrm{~L}$, 1.61 mmol) was added, with the formation of a brown solution and after few minutes of a yellow precipitate. The mixture was refluxed for 3 h , cooled with an ice bath, and $\mathbf{2 b}$ was recovered by filtration as brownish-yellow solid, washed with $\mathrm{EtOH}, \mathrm{ir}_{2} \mathrm{O}$ and dried under vacuum (225.3 mg , 87\%). Anal. Calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{NiO}_{2}$ (570.93): C, 42.07 ; H, 4.24; N, 9.81. Found: C, 42.41; H, 4.37; N, 9.63. MS (ESI): m/z 571 ([M + H] ${ }^{+}$, 25\%), 593 ([M + Na] ${ }^{+}$, 15), 885 ([M + Ni(${ }^{\text {BrL }}$) $]^{+}$, 80), 1165 ([2M + Na] ${ }^{+}$, 100). UV-vis: 26110 (7490). IR (KBr): 3326, $3257\left(v_{\mathrm{NH} 2}\right), 1627\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right)$.
$\left[\mathbf{N i}\left({ }^{H} \mathbf{L}\right)_{2}\right](2 \mathbf{c}) .{ }^{6}$ salH $(1.50 \mathrm{~mL}, 20.40 \mathrm{mmol})$ was dissolved in ethanolic $\mathrm{KOH}(40.8 \mathrm{~mL}$ of a 0.5 mol L-1 solution, 20.40 mmol) and $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2540.0 \mathrm{mg}, 10.20 \mathrm{mmol})$ was added under stirring. The yellow mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h , with the formation of a light green precipitate, and then tn $(2.1 \mathrm{~mL}, 25.20 \mathrm{mmol})$ was added. The brown solution was refluxed for 3 h . The mixture was cooled with an ice bath, and $\mathbf{2 c}$ was recovered by filtration as pale yellow solid, washed with EtOH , acetone and dried under vacuum ($2640.0 \mathrm{mg}, 61 \%$). Anal. Calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{NiO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (422.15): C, $56.90 ; \mathrm{H}, 6.45$; N, 13.27. Found: C, $56.51 ; \mathrm{H}, 6.47 ; \mathrm{N}, 13.07$. MS (ESI): $m / z 235\left(\left[N i\left({ }^{H} \mathrm{~L}\right)\right]^{+}, 45 \%\right), 267\left(\left[\mathrm{Ni}\left({ }^{H} \mathrm{~L}\right)(\mathrm{MeOH})\right]^{+}, 100\right), 413\left([\mathrm{M}+\mathrm{H}]^{+}, 25\right), 435([\mathrm{M}+$ $\left.\mathrm{Na}]^{+}, 25\right), 647\left(\left[\mathrm{M}+\mathrm{Ni}\left({ }^{\mathrm{H}} \mathrm{L}\right)\right]^{+}, 30\right) . \operatorname{IR}(\mathrm{KBr}): 3456\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 3326,3255\left(\mathrm{v}_{\mathrm{NH} 2}\right), 1629\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1}$. UV-vis: 27250 (7450).
[$\mathbf{N i}\left({ }^{\text {Me }} \mathbf{L}\right)_{\mathbf{2}}$] (2d). $5-\mathrm{Me}-\mathrm{salH}(408.3 \mathrm{mg}, 3.00 \mathrm{mmol})$ was dissolved in ethanolic $\mathrm{KOH}(6.0 \mathrm{~mL}$ of a $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$ solution, 3.00 mmol) and $\mathrm{Ni}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(373.3 \mathrm{mg}, 1.50 \mathrm{mmol})$ was added under stirring. The reaction mixture was refluxed for 1 h , then $\operatorname{tn}(335 \mu \mathrm{~L}, 4.00 \mathrm{mmol})$ was added with the formation of a brown solution, which was refluxed for 3 h . The dark brown solution was left at slow evaporation for few days, yielding 2d as light green solid that filtered, washed with EtOH, ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum. Further product was recovered treating the reaction solution with water ($691.1 \mathrm{mg}, 92 \%$). Anal. Calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{NiO}_{2} \cdot 0.5 \mathrm{EtOH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (500.26): C, $55.22 ; \mathrm{H}$, 7.45; N, 11.20. Found: C, 55.09; H, 7.43; N, 11.10. MS (ESI): m/z 249 ($\left[\mathrm{Ni}\left({ }^{\mathrm{Me}} \mathrm{L}\right)\right]^{+}, 20 \%$), 267 ($\left.\left[\mathrm{Ni}\left({ }^{\mathrm{Me}} \mathrm{L}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}, 100\right), 441\left([\mathrm{M}+\mathrm{H}]^{+}, 10\right), 463\left([\mathrm{M}+\mathrm{Na}]^{+}, 20\right), 689\left(\left[\mathrm{M}+\mathrm{Ni}\left({ }^{\mathrm{Me}} \mathrm{L}\right)\right]^{+}, 40\right)$. IR (KBr): $3449\left(v_{\mathrm{O}-\mathrm{H}}\right), 3317,3276\left(\mathrm{v}_{\mathrm{NH} 2}\right), 1639\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1}$. UV-vis: 26180 (7240).

Synthetic procedures for compounds 3 and 4

[$\mathbf{N i} \mathbf{(5 ' - O M e - s a l t n)]} \mathbf{(3 c})$. First method $\mathbf{1 e}+\mathbf{2 c}$: $\mathbf{1 e}(172.5 \mathrm{mg}, 0.43 \mathrm{mmol})$ and $\mathbf{2 c}(172.5 \mathrm{mg}, 0.43$ mmol) were dissolved in $\mathrm{EtOH}(30 \mathrm{~mL}$) and refluxed for 5 h . The mixture was cooled with an ice bath and $3 \mathbf{c}$ was filtered as green solid, washed with cold $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum (231.0 mg, 68\%). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NiO}_{3} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (396.06): C, 54.59; H, 5.34; N, 7.07. Found: C, 54.65; H, 5.22; N, 6.81. MS (ESI): $m / z 369$ ($[\mathrm{M}+1]^{+}, 100 \%$), 737 ($[2 \mathrm{M}+1]^{+}, 20$), 759 ($[2 \mathrm{M}+\mathrm{Na}]^{+}, 25$). IR (KBr): $3457\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 1626\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 1.31$ $\left(3 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 1.89\left(2 \mathrm{H}\right.$, tn central $\left.\mathrm{CH}_{2}\right), 3.55\left(4 \mathrm{H}\right.$, tn lateral $\left.\mathrm{CH}_{2}\right), 3.74(3 \mathrm{H}, \mathrm{OMe}), 6.5-7.2(9 \mathrm{H}$, aromatic and $\mathrm{N}=\mathrm{CH}) \mathrm{ppm}$.
[$\mathbf{N i} \mathbf{(5 , 5},-\mathbf{B r}_{2}$-saltn)] (3d). This compound was synthesized with a modification of literature procedures. ${ }^{7,8} 5-\mathrm{Br}-\mathrm{salH}(200.0 \mathrm{mg}, 0.99 \mathrm{mmol})$ and tn $(42 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ were dissolved in EtOH $(15 \mathrm{~mL})$ and the yellow mixture was refluxed for 30 minutes. $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(122.3 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ were then added and the mixture was refluxed for 4 h . The green solid was
filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum (186.6 mg, 70\%). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (532.84): C, 38.32; H, 3.40; N, 5.26. Found: C, 37.97; H, 3.42; N, 5.27. MS (ESI): m/z 497 ([M + 1] ${ }^{+}, 100 \%$). IR (KBr): $3454\left(v_{\mathrm{O}-\mathrm{H}}\right), 1626\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: not soluble.
[$\mathrm{Ni}(5-\mathrm{Br}-\mathrm{saltn})]$ (3e) and isolation of the intermediates $\left[\mathrm{Ni}_{2}\left(\mu-{ }^{\mathrm{Br}} \mathrm{L}\right)_{2}\left({ }^{\left({ }^{H} \mathrm{sal}\right.}\right)_{2}\right](4 \mathrm{e})$ and $\left[\mathrm{Ni}_{2}(\mu-\right.$
 were suspended in EtOH $(10 \mathrm{~mL})$ and refluxed for 12 h . The intermediate $\mathbf{4 e}$ was filtered as light green solid, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum (117.0 mg, 80\%). Anal. Calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{O}_{6}$ (871.85): C, 46.84; H, 3.93; N, 6.43. Found: C, 47.17; H, 4.10; N, 6.13. MS (ESI): $m / z 313$ ([$\left.\left.\mathrm{Ni}\left({ }^{\mathrm{Br}} \mathrm{L}\right)\right]^{+}, 10 \%\right), 356\left(\left[\mathrm{Ni}\left({ }^{\mathrm{Br}} \mathrm{L}\right)(\mathrm{MeOH})\right]^{+}, 100\right)$. IR (KBr): 3342, $3293\left(\mathrm{v}_{\mathrm{NH} 2}\right), 1652$ sh, $1631\left(v_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1}$. Further refluxing in EtOH or drying under vacuum of $4 \mathbf{e}$ did not yield $3 \mathbf{e}$. Second method $\mathbf{1 b}+\mathbf{2 c}$: $\mathbf{1 b}(125.7 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathbf{2 c}(150.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ were suspended in EtOH (30 mL) and refluxed for 12 h , yielding $4 \mathbf{e}^{\prime}$ as light green solid ($138.1 \mathrm{mg}, 49 \%$). Anal. Calcd (\%) for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (907.88): C, 44.98; H, 4.22; N, 6.17. Found: C, 45.15; H,
 $3293\left(v_{\mathrm{NH} 2}\right), 1638\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1} .4 \mathbf{e}^{\mathbf{\prime}}(135.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$ and DMF (5 mL) and the brown solution was left under reflux for 3 h , after which ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture was left at slow evaporation. After two days $\mathbf{3 e}$ precipitated as dark green solid that was recovered by filtration, washed with ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($70.6 \mathrm{mg}, 54 \%$). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (440.43): C, 46.84; H, 3.93; N, 6.43. Found: C, 46.61; H, 4.02; N, 5.98. MS (ESI): m/z 419 ([M + 1] ${ }^{+}$, 100\%), 859 ([2M + Na] ${ }^{+}$, 20). IR (KBr): 3447 (v_{O} H), $1624\left(v_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 1.11\left(2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 1.84(2 \mathrm{H}$, tn central $\left.\mathrm{CH}_{2}\right), 3.54\left(4 \mathrm{H}\right.$, tn lateral $\left.\mathrm{CH}_{2}\right), 5.8-7.8(9 \mathrm{H}$, aromatic and $\mathrm{N}=\mathrm{CH})$ ppm.
 method $\mathbf{1 d}+\mathbf{2 b}$: 1d ($109.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathbf{2 b}(171.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ were suspended in EtOH (20 mL) and refluxed for 12 h , yielding the intermediate $\mathbf{4 f}$ as light green solid (217.1 mg , 75%). Anal. Calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (908.91): C, 47.57; H, 4.32; N, 6.16. Found: C, 47.51; H, 4.20; N, 5.87. IR (KBr): $3451\left(v_{\mathrm{O}-\mathrm{H}}\right), 3339,3290\left(v_{\mathrm{NH} 2}\right), 1631\left(v_{\mathrm{C}=\mathrm{N}}\right)$. The light green solid $\mathbf{4 f}$ was dried under vacuum for several days, and the color changed to military green. The solid was then suspended in ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$, filtered and dried under vacuum yielding $\mathbf{3 f}$ as military green solid (177.6 mg, 67\%). Anal. Calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{NiO}_{2}$ (431.94): C, 50.05; H, 3.97; N, 6.49. Found: C, 50.03; H, 4.15; N, 6.51. MS (ESI): m/z 433 ([M + 1] $]^{+}$, 100\%). IR (KBr): $1624\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-}$ ${ }^{1}$. Second method $\mathbf{1 b}+2 \boldsymbol{d}: \mathbf{1 b}(155.5 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $2 d(154.4 \mathrm{mg}, 0.31 \mathrm{mmol})$ were suspended in EtOH (20 mL) and refluxed for 12 h , yielding directly $\mathbf{3 f}$ as green solid (228.8 mg ,

82\%). Anal. Calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{NiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (449.95): C, 48.05; H, 4.26; N, 6.23. Found: C, 47.74; H, 4.19; N, 5.89. MS (ESI): m/z 433 ($[\mathrm{M}+1]^{+}, 90 \%$), 863 ($[2 \mathrm{M}+1]^{+}, 100$), 885 ($[2 \mathrm{M}+$ $\left.\mathrm{Na}]^{+}, 50\right)$. IR (KBr): $3439\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 1626\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 0.90$ $\left(2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 1.81\left(2 \mathrm{H}\right.$, tn central $\left.\mathrm{CH}_{2}\right), 2.30(3 \mathrm{H}, \mathrm{Me}), 3.52\left(4 \mathrm{H}\right.$, tn lateral $\left.\mathrm{CH}_{2}\right), 6.8-7.2(8 \mathrm{H}$, aromatic and $\mathrm{N}=\mathrm{CH}$) ppm.
 method $1 \boldsymbol{e}+2 \boldsymbol{b}$: $\mathbf{1 e}(119.1 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathbf{2 b}(171.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ were suspended in EtOH (30 mL) and refluxed for 12 h . The green solid $\mathbf{4 g}$ was filtered and dried under vacuum (196.7 mg, 67\%). Anal. Calcd (\%) for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Ni}_{2} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (931.90): C, 46.40; H, 4.11; N, 6.01 . Found: C, 46.64; H, 4.11; N, 5.84. MS (ESI): m/z 346 ([Ni($\left.\left.{ }^{\mathrm{Br}} \mathrm{L}\right)(\mathrm{MeOH})\right]^{+}$, 100\%). IR (KBr): 3444 $\left(v_{\mathrm{O}-\mathrm{H}}\right), 3341,3290\left(\mathrm{v}_{\mathrm{NH} 2}\right), 1637\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1}$. The product $\mathbf{3 g}$ precipitated as brown solid from the remaining reaction mixture, left for one day at room temperature, or refluxing the intermediate $\mathbf{4 g}$ in EtOH for further 24 h (111.2 mg, 37\%). Anal. Calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{NiO}_{3}$ (447.94): C, 48.26; H, 3.83; N, 6.25. Found: C, 48.47; H, 3.79; N, 5.95. MS (ESI): m/z 449 ([M + 1] ${ }^{+}, 100 \%$). IR $(\mathrm{KBr}): 1612,1597\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 1.90\left(2 \mathrm{H}\right.$, tn central $\left.\mathrm{CH}_{2}\right)$, $3.74(3 \mathrm{H}, \mathrm{OMe}), 3.81+3.83\left(4 \mathrm{H}\right.$, tn lateral $\left.\mathrm{CH}_{2}\right), 6.5-7.5(8 \mathrm{H}$, aromatic and $\mathrm{N}=\mathrm{CH})$ ppm. Crystals suitable for X-ray diffraction were obtained by slow diffusion of ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ into an EtOH solution of the title compound.
[$\mathbf{N i}\left(5,5 \cdots-\left(\mathbf{N O}_{2}\right)_{2}\right.$-saltn)] (3h). This compound was synthesized with a modification of literature procedures. ${ }^{7,8} 5-\mathrm{NO}_{2}$-salH ($168.3 \mathrm{mg}, 1.01 \mathrm{mmol}$) and tn $(43 \mu \mathrm{~L}, 0.51 \mathrm{mmol})$ were dissolved in EtOH $(15 \mathrm{~mL})$ and the yellow mixture was refluxed for 30 minutes. $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(121.9 \mathrm{mg}, 0.51$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ were then added and the mixture was refluxed for 4 h . The green solid was filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum (193.0 mg, 80\%). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NiO}_{6} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ (474.05): C, 43.07; H, 4.04; N, 11.82. Found: C, 42.82; H, 3.76; N, 11.72. MS (ESI): $m / z 429$ ([M + 1] ${ }^{+}$, 100\%). IR (KBr): $3454\left(v_{\mathrm{O}-\mathrm{H}}\right), 1634\left(v_{\mathrm{C}=\mathrm{N}}\right), 1308\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: not soluble.
 $0.30 \mathrm{mmol})$ were suspended in EtOH (30 mL) and refluxed for 5 h . The green product 3 i was filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($238.3 \mathrm{mg}, 82 \%$). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{NiO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (480.92): C, 42.46; H, 3.35; N, 8.74. Found: C, 42.42; H, 3.38; N, 8.73. MS (ESI): $m / z 464\left([\mathrm{M}+1]^{+}, 50 \%\right), 949\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. IR (KBr): $3438\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 1650,1627\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right)$, $1308\left(v_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1}$. Second method $\mathbf{1 b}+2 \boldsymbol{a}$: 1b $(152.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ and 2a ($155.3 \mathrm{mg}, 0.30$ mmol) were suspended in $\mathrm{EtOH}(30 \mathrm{~mL})$ and refluxed for 5 h . The green product $3 \mathbf{i}$ was filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($184.5 \mathrm{mg}, 64 \%$). Anal. Calcd (\%) for
$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{NiO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (480.93): C, 42.46; H, 3.35; N, 8.74. Found: C, 42.62; H, 3.48; N, 8.67. MS (ESI): $m / z 486\left([\mathrm{M}+\mathrm{Na}]^{+}, 50 \%\right), 949\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. IR (KBr): $3439\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 1650,1627$ $\left(v_{\mathrm{C}=\mathrm{N}}\right), 1308\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: not soluble.
[$\mathbf{N i}\left(\mathbf{5}-\mathrm{NO}_{2}\right.$-saltn)] (3j). First method $\mathbf{1 c}+\mathbf{2 a}: \mathbf{1 c}(152.2 \mathrm{mg}, 0.45 \mathrm{mmol})$ and $\mathbf{2 a}(171.8 \mathrm{mg}, 0.45$ $\mathrm{mmol})$ were suspended in EtOH (50 mL) and refluxed for 5 h . The light brown solid $\mathbf{3 j}$ was filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($230.1 \mathrm{mg}, 66 \%$). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NiO}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (393.02): C, 51.95; H, 4.10; N, 10.69. Found: C, 52.26; H, 4.46; N, 10.33. MS (ESI): $m / z 384$ ([M + 1] $\left.{ }^{+}, 100 \%\right), 406\left([\mathrm{M}+\mathrm{Na}]^{+}, 25\right), 789$ ([2M + Na] $\left.{ }^{+}, 90\right)$. IR (KBr): 3447 $\left(v_{\mathrm{O}-\mathrm{H}}\right), 1624,1599\left(\mathrm{v}_{\mathrm{C}=\mathrm{N}}\right), 1308\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1}$. Crystals suitable for X-ray diffraction were obtained by slow diffusion of ${ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ into a CHCl_{3} solution of the title compound. Second method $\mathbf{1 a}+\mathbf{2 c}$: 1a $(127.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $2 \mathrm{c}(122.7 \mathrm{mg}, 0.30 \mathrm{mmol})$ were suspended in $\mathrm{EtOH}(30 \mathrm{~mL})$ and refluxed for 5 h . The brown solid $\mathbf{3 j}$ was filtered, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($135.7 \mathrm{mg}, 55 \%$). Anal. Calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NiO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ (411.04): C, 49.68; H, 4.41; N, 10.22. Found: C, 49.59; H, 4.14; N, 10.17. IR (KBr): $3446\left(v_{\mathrm{O}-\mathrm{H}}\right), 1624,1599\left(v_{\mathrm{C}=\mathrm{N}}\right), 1308\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 1.54\left(3 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 1.99\left(2 \mathrm{H}\right.$, tn central $\left.\mathrm{CH}_{2}\right), 3.62+3.66(4 \mathrm{H}$, tn lateral $\left.\mathrm{CH}_{2}\right), 6.6-8.1(9 \mathrm{H}$, aromatic and $\mathrm{N}=\mathrm{CH}) \mathrm{ppm}$.
[$\mathbf{N i}\left(\mathbf{5}-\mathbf{N O}_{\mathbf{2}} \mathbf{- 5} \mathbf{5}\right.$-Me-saltn)] (3k). First method $\mathbf{1 d} \boldsymbol{+} \mathbf{2 a}: \mathbf{1 d}(109.5 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathbf{2 a}(150.9 \mathrm{mg}$, $0.30 \mathrm{mmol})$ were suspended in $\mathrm{EtOH}(30 \mathrm{~mL})$ and refluxed for 7 days, yielding the product $\mathbf{3 k}$ as yellow-earth solid, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($134.5 \mathrm{mg}, 50 \%$). Anal. Calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NiO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (452.09): C, 47.82; H, 5.13; N, 9.29. Found: C, 48.05; H, 4.97; N, 9.30. MS (ESI): $m / z 398\left([\mathrm{M}+1]^{+}, 100 \%\right), 817\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 60\right)$. IR (KBr): $3446\left(\mathrm{v}_{\mathrm{O}-\mathrm{H}}\right), 1628$, $1597\left(v_{\mathrm{C}=\mathrm{N}}\right), 1309\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1}$. The reaction was monitored by infrared spectroscopy, where it was clearly visible the disappearance of $\mathbf{2 a}\left(\mathrm{NH}_{2}\right.$ bands around $3200 \mathrm{~cm}^{-1}, \mathrm{C}=\mathrm{N}$ band at $\left.1640 \mathrm{~cm}^{-1}\right)$ and the appearance of the new $\mathrm{C}=\mathrm{N}$ stretching at $1628 \mathrm{~cm}^{-1}$ of $\mathbf{3 k}$ (the formation of the hypothetic intermediate $\mathbf{4 k}$ was never detected). Second method $\mathbf{1 a}+\mathbf{2 d}$: 1a ($76.4 \mathrm{mg}, 0.18 \mathrm{mmol}$) and 2d $(84.6 \mathrm{mg}, 0.18 \mathrm{mmol})$ were suspended in $\mathrm{EtOH}(15 \mathrm{~mL})$ and refluxed for 5 h . The product $\mathbf{3 k}$ was filtered as yellow-earth solid, washed with $\mathrm{EtOH},{ }^{i} \mathrm{Pr}_{2} \mathrm{O}$ and dried under vacuum ($114.5 \mathrm{mg}, 85 \%$). Anal. Calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NiO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (416.05): C, 51.96; H, 4.60; N, 10.10. Found: C, 51.92; H, 4.85; N, 10.35. MS (ESI): $m / z 398$ ([M + 1] ${ }^{+}$, 100\%). IR (KBr): 3445 ($v_{\mathrm{O}-\mathrm{H}}$), 1629, 1598 ($\mathrm{v}_{\mathrm{C}=\mathrm{N}}$), $1308\left(\mathrm{v}_{\mathrm{NO} 2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: not soluble

Table S1 Crystallographic and data collection parameters for $\mathbf{3 c} \cdot \mathrm{CHCl}_{3}, \mathbf{3 g} \cdot \mathrm{EtOH}$ and $\mathbf{3 j}$.

	3c. CHCl_{3}	$\mathbf{3 g} \cdot \mathrm{EtOH}$	3j
Crystal Data			
Moiety formula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NiO}_{3} \cdot \mathrm{CHCl}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{NiO}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NiO}_{4}$
M	488.42	494.02	384.03
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	$P-1$ (n. 2)	$P 2{ }_{1} / \mathrm{c}$ (n. 14)	$P 2_{1 / c}$ (n. 14)
a / \AA	10.0155(8)	10.5470(11)	10.9731(6)
b / \AA	10.1973(8)	9.3472(10)	10.7934(6)
c / \AA	$11.2392(11)$	20.660(2)	13.7310(8)
$\alpha /{ }^{\circ}$	100.5860(10)	90	90
$\beta 1{ }^{\circ}$	97.6650(10)	98.9680(10)	95.6060(10)
$\gamma 1^{\circ}$	113.6250(10)	90	90
$V / \AA^{3}, Z, Z^{\text {' }}$	1006.09(15), 2, 1	2011.9(4), 4, 1	1618.48(16), 4, 1
Reflns for cell determination	5836	4058	6997
$2 \theta /{ }^{\circ}$ for cell determination	4.5-63.5	4.8-40.8	4.5-62.0
$D_{x} / \mathrm{Mg} \mathrm{m}^{-3}$	1.612	1.631	1.576
μ / mm^{-1}	1.386	2.979	1.227
Colour, habit	brown, prism	brown, plate	red, rectangular prism
Dimensions / mm	$0.70 \times 0.38 \times 0.25$	$0.29 \times 0.16 \times 0.03$	$0.35 \times 0.33 \times 0.20$
Data Collection			
Temperature / K	291(2)	291(2)	293(2)
radiation λ / \AA	Mo K $\alpha, 0.71073$	Mo K $\alpha, 0.71073$	Mo K $\alpha, 0.71073$
Scan type	φ and ω	φ and ω	φ and ω
$2 \theta_{\text {max }}{ }^{\text {o }}$	65.1	55.0	60.0
h range	$-14 \rightarrow 15$	$-13 \rightarrow 13$	$-15 \rightarrow 15$
k range	$-15 \rightarrow 15$	$-12 \rightarrow 12$	$-15 \rightarrow 15$
l range	$-16 \rightarrow 17$	$-26 \rightarrow 26$	$-19 \rightarrow 19$
Intensity decay	None	None	None
Measured reflections	21696	28896	30966
Independent reflections	6864	4614	4717
Reflections with $1>2 \sigma(I)$	5915	2787	4090
$R_{\text {int }}$	0.018	0.055	0.019
Refinement on F^{2}			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	0.0355, 0.1015	0.0544, 0.1443	0.0255, 0.0680
S	1.038	1.039	1.045
Parameters, restraints	254, 0	273, 1	226, 0
$(\Delta \sigma)_{\max }$	0.001	0.001	0.001
$\Delta \rho_{\max }, \Delta \rho_{\text {min }} / \mathrm{e} \AA^{-3}$	0.550, -0.612	0.769, -0.905	0.356, -0.202

Table S2 Computed excitation energies ($\lambda_{\max }$ in nm), oscillator strengths (f), difference between excited and ground state dipole moment ($\Delta \mu_{\mathrm{eg}}$, in D), when available, and analysis of the most important contributions to the transitions for compounds $\mathbf{3}$ and selected analogue copper(II) complexes

Cu3a and Cu31. ${ }^{a}$

	A	D	$\lambda_{\text {max }}, \Delta \mu_{\text {eg }}$	f	assignment	$\lambda_{\text {max }}, \Delta \mu_{\text {eg }}$	f	assignment	$\lambda_{\text {max }}, \Delta \mu_{\text {eg }}$	f	assignment
3a	H	H	401	0.023	$\mathrm{H} \rightarrow \mathrm{L}(84 \%)^{b}$	349	0.032	$\mathrm{H}-1 \rightarrow \mathrm{~L}(84 \%)$	329	0.034	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (94\%)
			381	0.064	$\mathrm{H} \rightarrow \mathrm{~L}+1(92 \%)$						
3b	H	Me	406	0.027	$\mathrm{H} \rightarrow \mathrm{~L}(85 \%)^{b}$	352	0.025	$\mathrm{H}-1 \rightarrow \mathrm{~L}(82 \%)$	335	0.043	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (94\%)
			387	0.059	$\mathrm{H} \rightarrow \mathrm{L}+1$ (92\%)						
3c	H	OMe	424, -1.41	0.043	$\mathrm{H} \rightarrow \mathrm{L}(88 \%)^{b}$	362, -0.52	0.015	$\mathrm{H}-1 \rightarrow \mathrm{~L}(67 \%)$	346, -1.40	0.020	$\mathrm{H} \rightarrow \mathrm{~L}+2 \text { (38\%) }$
			399, 7.12	0.043	$\mathrm{H} \rightarrow \mathrm{~L}+1(93 \%)$				343, 2.36	0.050	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(93 \%)$
3d	Br	Br	413	0.028	$\mathrm{H} \rightarrow \mathrm{L}(84 \%)^{b}$	364	0.030	$\mathrm{H}-1 \rightarrow \mathrm{~L}(87 \%)$	343	0.029	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (96\%)
			393	0.062	$\mathrm{H} \rightarrow \mathrm{~L}+1(92 \%)$						
3 e	Br	H	403	0.014	$\mathrm{H} \rightarrow \mathrm{L}(78 \%)^{b}$	351	0.033	$\mathrm{H}-1 \rightarrow \mathrm{~L}(73 \%)$	342	0.029	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (86\%)
			391	0.075	$\mathrm{H} \rightarrow \mathrm{~L}+1(83 \%)$						
3 f	Br	Me	409	0.013	$\mathrm{H} \rightarrow \mathrm{L}(87 \%)^{b}$	354	0.029	$\mathrm{H}-1 \rightarrow \mathrm{~L}(68 \%)$	348	0.033	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (86\%)
			397	0.073	$\mathrm{H} \rightarrow \mathrm{L}+1$ (89\%)				337	0.011	$\mathrm{H} \rightarrow \mathrm{~L}+2 \text { (49\%) }$
3g	Br	OMe	425	0.024	$\mathrm{H} \rightarrow \mathrm{L}(85 \%)^{b}$	365	0.017	$\mathrm{H}-1 \rightarrow \mathrm{~L}(68 \%)$	357	0.050	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (87\%)
			413	0.060	$\mathrm{H} \rightarrow \mathrm{L}+1$ (90\%)				349	0.017	$\mathrm{H} \rightarrow \mathrm{L}+2$ (32\%)
3h	NO_{2}	NO_{2}	383	0.072	$\mathrm{H} \rightarrow \mathrm{L}(84 \%)^{\text {b }}$	336	0.024	$\mathrm{H}-1 \rightarrow \mathrm{~L}(78 \%)$	329	0.467	$\mathrm{H} \rightarrow \mathrm{L}+2$ (52\%)
			364	0.088	$\mathrm{H} \rightarrow \mathrm{~L}+1 \text { (85\%) }$				323	0.022	$\mathrm{H} \rightarrow \mathrm{~L}+3(40 \%)$
									318	0.017	$\mathrm{H} \rightarrow \mathrm{~L}+4(36 \%)$
									314	0.031	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1(52 \%)$
$3 \mathbf{1}$	NO_{2}	Br	403	0.041	$\mathrm{H} \rightarrow \mathrm{L}(79 \%)^{b}$	349	0.074	$\mathrm{H} \rightarrow \mathrm{L}+2$ (75\%)	335	0.061	$\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (42\%),
			387	0.066	$\mathrm{H} \rightarrow \mathrm{~L}+1(76 \%)$	346	0.067	$\mathrm{H} \rightarrow \mathrm{~L}+3(37 \%),$			$\mathrm{H}-1 \rightarrow \mathrm{~L}(30 \%)$
								$\mathrm{H}-1 \rightarrow \mathrm{~L}(31 \%)$			
3j	NO_{2}	H	394, 5.39	0.032	$\mathrm{H} \rightarrow \mathrm{L}(66 \%)^{b}$	350, 19.94	0.110	$\mathrm{H} \rightarrow \mathrm{L}+2$ (77\%)	333, 6.12	0.052	$\mathrm{H}-1 \rightarrow \mathrm{~L}(56 \%)$
			382, 1.24	0.076	$\mathrm{H} \rightarrow \mathrm{L}+1$ (78\%)	339, 3.34	0.035	$\mathrm{H} \rightarrow \mathrm{~L}+3 \text { (35\%), }$			
3k	NO_{2}	Me	404	0.031	$\mathrm{H} \rightarrow \mathrm{L}(67 \%)^{b}$	362	0.074	$\mathrm{H} \rightarrow \mathrm{L}+2$ (75\%)	338	0.081	$\mathrm{H}-1 \rightarrow \mathrm{~L}(73 \%)$
			392	0.068	$\mathrm{H} \rightarrow \mathrm{L}+1$ (81\%)	348	0.030	$\mathrm{H} \rightarrow \mathrm{L}+3$ (50\%),			

31	NO_{2}	OMe	$\begin{aligned} & 424 \\ & 413 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.063 \end{aligned}$	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L}(68 \%)^{b} \\ & \mathrm{H} \rightarrow \mathrm{~L}+1(79 \%) \end{aligned}$	$\begin{aligned} & 381 \\ & 366 \end{aligned}$	$\begin{aligned} & 0.041 \\ & 0.025 \end{aligned}$	$\mathrm{H}-1 \rightarrow \mathrm{~L}(9 \%)$			
								$\mathrm{H} \rightarrow \mathrm{L}+2$ (76\%)	343	0.108	$\mathrm{H}-1 \rightarrow \mathrm{~L}(79 \%)$
								$\mathrm{H} \rightarrow \mathrm{L}+3$ (59\%)			
Cu3a	H	H	411	0.043	$\mathrm{H} \rightarrow \mathrm{L}(73 \%)^{\text {b,c }}$						
Cu31	NO_{2}	OMe	498	0.014	$\mathrm{H} \rightarrow \mathrm{L}(46 \%),{ }^{\text {b,c }}$						
					$\mathrm{H}-1 \rightarrow \mathrm{~L}(35 \%)$						

${ }^{a}$ Calculations performed at (TD)PBE0/6-311++G(d,p) level of theory. Unrestricted formalism used for copper(II) complexes. Only transitions with $f>0.010$ are reported. ${ }^{b} \mathrm{H}=\mathrm{HOMO}, \mathrm{L}=$ LUMO. Main atomic contributions to H, L and $\mathrm{L}+1: \mathbf{3 a}, \mathrm{H}=0.12 \mathrm{p}_{\mathrm{O} 1}, 0.12 \mathrm{p}_{\mathrm{O} 2}, 0.11 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.30 \mathrm{p}_{\mathrm{C} 17}, 0.15 \mathrm{p}_{\mathrm{N} 2}, 0.12 \mathrm{p}_{\mathrm{C} 13}, 0.10 \mathrm{p}_{\mathrm{C} 1} ; \mathrm{L}+1=0.31 \mathrm{p}_{\mathrm{C} 4}, 0.16 \mathrm{p}_{\mathrm{N} 2}, 0.15 \mathrm{p}_{\mathrm{C} 8}, 0.11 \mathrm{p}_{\mathrm{C} 6}, 3 \mathrm{~b}, \mathrm{H}=0.14 \mathrm{p}_{\mathrm{O} 2}$, $0.12 \mathrm{p}_{\mathrm{C} 16}, 0.10 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.30 \mathrm{p}_{\mathrm{C} 17}, 0.14 \mathrm{p}_{\mathrm{N} 2}, 0.13 \mathrm{p}_{\mathrm{C} 13}, 0.10 \mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.31 \mathrm{p}_{\mathrm{C} 4}, 0.16 \mathrm{p}_{\mathrm{N} 1}, 0.14 \mathrm{p}_{\mathrm{C} 8}, 0.11 \mathrm{p}_{\mathrm{C} 6} .3 \mathrm{c}, \mathrm{H}=0.15 \mathrm{p}_{\mathrm{O} 2}, 0.12 \mathrm{p}_{\mathrm{C} 14}, 0.11 \mathrm{p}_{\mathrm{C} 16}, 0.07 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.29 \mathrm{p}_{\mathrm{C} 17}, 0.14 \mathrm{p}_{\mathrm{N} 2}, 0.14 \mathrm{p}_{\mathrm{C} 13}, 0.10$ $\mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.31 \mathrm{p}_{\mathrm{C} 4}, 0.16 \mathrm{p}_{\mathrm{N} 1}, 0.15 \mathrm{p}_{\mathrm{C} 8}, 0.11 \mathrm{p}_{\mathrm{C} 6} .3 \mathrm{~d}, \mathrm{H}=0.10 \mathrm{p}_{\mathrm{O} 1}, 0.10 \mathrm{p}_{\mathrm{O} 2}, 0.09 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.29 \mathrm{p}_{\mathrm{C} 17}, 0.15 \mathrm{p}_{\mathrm{N} 2}, 0.12 \mathrm{p}_{\mathrm{C} 13}, 0.11 \mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.30 \mathrm{p}_{\mathrm{C} 4}, 0.16 \mathrm{p}_{\mathrm{N} 1}, 0.15 \mathrm{p}_{\mathrm{C}}, 0.11 \mathrm{p}_{\mathrm{C} 6} .3 \mathrm{e}, \mathrm{H}=0.11 \mathrm{p}_{\mathrm{O} 1}$, $0.11 \mathrm{p}_{\mathrm{O} 2}, 0.10 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.24 \mathrm{p}_{\mathrm{C} 17}, 0.11 \mathrm{p}_{\mathrm{N} 2}, 0.09 \mathrm{p}_{\mathrm{C} 13}, 0.08 \mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.24 \mathrm{p}_{\mathrm{C} 4}, 0.13 \mathrm{p}_{\mathrm{N} 1}, 0.12 \mathrm{p}_{\mathrm{C} 8}, 0.09 \mathrm{p}_{\mathrm{C} 6} .3 \mathrm{f}, \mathrm{H}=0.14 \mathrm{p}_{\mathrm{O} 2}, 0.12 \mathrm{p}_{\mathrm{C} 14}, 0.09 \mathrm{p}_{\mathrm{C} 16}, 0.09 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.18 \mathrm{p}_{\mathrm{C} 17}, 0.11 \mathrm{p}_{\mathrm{C} 4}, 0.09 \mathrm{p}_{\mathrm{N} 2} ; \mathrm{L}+1=$ $0.18 \mathrm{p}_{\mathrm{C} 4}, 0.12 \mathrm{p}_{\mathrm{C} 17}, 0.10 \mathrm{p}_{\mathrm{N} 1}, 0.10 \mathrm{p}_{\mathrm{C} 8}, 0.07 \mathrm{p}_{\mathrm{C} 6} .3 \mathrm{~g}, \mathrm{H}=0.15 \mathrm{p}_{\mathrm{O} 2}, 0.12 \mathrm{p}_{\mathrm{C} 14}, 0.11 \mathrm{p}_{\mathrm{C} 16}, 0.07 \mathrm{p}_{\mathrm{O} 3}, 0.07 \mathrm{~d}_{\mathrm{N}} ; \mathrm{L}=0.24 \mathrm{p}_{\mathrm{C} 17}, 0.12 \mathrm{p}_{\mathrm{N} 2}, 0.11 \mathrm{p}_{\mathrm{C} 13}, 0.08 \mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.25 \mathrm{p}_{\mathrm{C} 4}, 0.14 \mathrm{p}_{\mathrm{N} 1}, 0.13 \mathrm{p}_{\mathrm{C} 8}, 0.10 \mathrm{p}_{\mathrm{C} 6}$ $3 \mathbf{h}, \mathrm{H}=0.11 \mathrm{~d}_{\mathrm{Ni}}, 0.11 \mathrm{p}_{\mathrm{O} 2}, 0.11 \mathrm{p}_{\mathrm{O} 1}, 0.09 \mathrm{p}_{\mathrm{C} 7}, 0.09 \mathrm{p}_{\mathrm{C} 14} ; \mathrm{L}=0.27 \mathrm{p}_{\mathrm{C} 17}, 0.16 \mathrm{p}_{\mathrm{C} 15}, 0.15 \mathrm{p}_{\mathrm{N} 2} ; \mathrm{L}+1=0.24 \mathrm{p}_{\mathrm{C} 4}, 0.20 \mathrm{p}_{\mathrm{C} 6}, 0.14 \mathrm{p}_{\mathrm{N} 1} .3 \mathbf{3 i}, \mathrm{H}=0.17 \mathrm{p}_{\mathrm{O} 2}, 0.15 \mathrm{p}_{\mathrm{C} 14}, 0.11 \mathrm{p}_{\mathrm{C} 16}, 0.10 \mathrm{p}_{\mathrm{Br}}, 0.10 \mathrm{p}_{\mathrm{C} 12}, 0.07 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=$ $0.19 \mathrm{p}_{\mathrm{C} 17}, 0.10 \mathrm{p}_{\mathrm{N} 2}, 0.08 \mathrm{p}_{\mathrm{C} 6}, 0.08 \mathrm{p}_{\mathrm{C} 13}, 0.07 \mathrm{p}_{\mathrm{C} 15} ; \mathrm{L}+1=0.15 \mathrm{p}_{\mathrm{C} 6}, 0.15 \mathrm{p}_{\mathrm{C} 4}, 0.10 \mathrm{p}_{\mathrm{C} 17}, 0.09 \mathrm{p}_{\mathrm{N} 1} .3 \mathrm{j}, \mathrm{H}=0.18 \mathrm{p}_{\mathrm{O} 2}, 0.17 \mathrm{p}_{\mathrm{C} 14}, 0.11 \mathrm{p}_{\mathrm{C} 16}, 0.11 \mathrm{p}_{\mathrm{C} 12}, 0.09 \mathrm{~d}_{\mathrm{N} i} ; \mathrm{L}=0.21 \mathrm{p}_{\mathrm{C} 6}, 0.18 \mathrm{p}_{\mathrm{C} 4}, 0.12 \mathrm{p}_{\mathrm{N} 1}, 0.10 \mathrm{p}_{\mathrm{N} 3}$, $0.10 \mathrm{p}_{\mathrm{O} 3}, 0.08 \mathrm{p}_{\mathrm{O} 4} ; \mathrm{L}+1=0.27 \mathrm{p}_{\mathrm{C} 17}, 0.13 \mathrm{p}_{\mathrm{N} 12}, 0.11 \mathrm{p}_{\mathrm{C} 13}, 0.09 \mathrm{p}_{\mathrm{C} 15}, 0.09 \mathrm{~d}_{\mathrm{Ni}} .3 \mathrm{k}, \mathrm{H}=0.18 \mathrm{p}_{\mathrm{O} 2}, 0.17 \mathrm{p}_{\mathrm{C} 14}, 0.12 \mathrm{p}_{\mathrm{C} 16}, 0.10 \mathrm{p}_{\mathrm{C} 12}, 0.08 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.22 \mathrm{p}_{\mathrm{C} 6}, 0.18 \mathrm{p}_{\mathrm{C} 4}, 0.12 \mathrm{p}_{\mathrm{N} 1}, 0.10 \mathrm{p}_{\mathrm{N} 3}, 0.10 \mathrm{p}_{\mathrm{O} 3}, 0.09 \mathrm{p}_{\mathrm{O} 4} ;$ $\mathrm{L}+1=0.27 \mathrm{p}_{\mathrm{C} 17}, 0.13 \mathrm{p}_{\mathrm{N} 2}, 0.12 \mathrm{p}_{\mathrm{C} 13}, 0.10 \mathrm{p}_{\mathrm{C} 15}, 0.09 \mathrm{~d}_{\mathrm{Ni}} .3 \mathrm{k}, \mathrm{H}=0.16 \mathrm{p}_{\mathrm{O} 2}, 0.14 \mathrm{p}_{\mathrm{C} 14}, 0.12 \mathrm{p}_{\mathrm{C} 16}, 0.09 \mathrm{p}_{\mathrm{O} 3(\mathrm{Me})}, 0.09 \mathrm{p}_{\mathrm{C} 15}, 0.08 \mathrm{p}_{\mathrm{C} 12}, 0.07 \mathrm{p}_{\mathrm{N} 2}, 0.06 \mathrm{p}_{\mathrm{C} 11}, 0.05 \mathrm{~d}_{\mathrm{Ni}} ; \mathrm{L}=0.22 \mathrm{p}_{\mathrm{C} 6}, 0.18 \mathrm{p}_{\mathrm{C} 4}, 0.12 \mathrm{p}_{\mathrm{N} 1}, 0.10$ $\mathrm{p}_{\mathrm{N} 3}, 0.10 \mathrm{p}_{\mathrm{O} 4(\mathrm{NO} 2)}, 0.09 \mathrm{p}_{\mathrm{O} 5(\mathrm{NO} 22} ; \mathrm{L}+1=0.26 \mathrm{p}_{\mathrm{C} 17}, 0.13 \mathrm{p}_{\mathrm{N} 2}, 0.13 \mathrm{p}_{\mathrm{C} 13}, 0.09 \mathrm{p}_{\mathrm{C} 15}, 0.08 \mathrm{p}_{\mathrm{C} 11}, 0.07 \mathrm{~d}_{\mathrm{Ni}} . \mathrm{Cu} 3 \mathrm{a}, \mathrm{H}=0.13 \mathrm{p}_{\mathrm{O} 1}, 0.12 \mathrm{p}_{\mathrm{C} 7}, 0.11 \mathrm{p}_{\mathrm{O} 2}, 0.10 \mathrm{p}_{\mathrm{C} 14}, 0.09 \mathrm{p}_{\mathrm{C} 5}, 0.08 \mathrm{p}_{\mathrm{C}}, 0.07 \mathrm{p}_{\mathrm{C} 16}, 0.06 \mathrm{p}_{\mathrm{C} 12} ; \mathrm{L}=0.61$ $\mathrm{d}_{\mathrm{Cu}}, 0.07 \mathrm{p}_{\mathrm{O} 1}, 0.07 \mathrm{p}_{\mathrm{O} 2} . \mathrm{Cu} 31, \mathrm{H}=0.16 \mathrm{p}_{\mathrm{O} 2}, 0.16 \mathrm{p}_{\mathrm{C} 14}, 0.12 \mathrm{p}_{\mathrm{C} 16}, 0.10 \mathrm{p}_{\mathrm{O}(\mathrm{Me})}, 0.10 \mathrm{p}_{\mathrm{C} 15}, 0.08 \mathrm{p}_{\mathrm{C} 12}, 0.08 \mathrm{p}_{\mathrm{C} 11}, 0.07 \mathrm{p}_{\mathrm{N} 2} ; \mathrm{L}=0.59 \mathrm{~d}_{\mathrm{Cu}}, 0.08 \mathrm{p}_{\mathrm{O} 2}, 0.06$ pol. ${ }^{c}$ Singularly occupied orbitals.

HOMO-1

HOMO

LUMO

LUMO+1

LUMO+2

HOMO-1

HOMO

LUMO

LUMO+1

LUMO+2

LUMO+3

Fig. S1 Isodensity surface plot of the PBE $0 / 6-311++G(d, p)$ frontier orbitals of $\mathbf{3 c}$ (top) and $\mathbf{3 j}$ (bottom) mainly involved in the computed transitions (isosurface values: 0.02).

Fig. S2 UV-visible absorption spectra of $\mathbf{3 c}$: a) dilution studies from 10^{-3} down to $10^{-5} \mathrm{~mol}^{-1}$ CHCl_{3} solutions, b) solvatochromism at $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ solutions in solvents from low polar toluene (red) to high polar methanol (violet), and c) addition of increasing amount of DMSO ($\mu \mathrm{L}$) to the $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CHCl}_{3}$ solution (2 mL) (data were not corrected for the dilution given by the addition of DMSO).

Fig. S3 UV-visible absorption spectra of $\mathbf{3 j}$: a) solvatochromism at $5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$ solutions in solvents from low polar toluene (red) to high polar methanol (violet), and b) addition of increasing amount of DMSO $(\mu \mathrm{L})$ to the $10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CHCl}_{3}$ solution (2 mL) (optical path of 0.1 cm , data were not corrected for the dilution given by the addition of DMSO).

References

1 G. C. Percy and D. A. Thornton, J. Inorg. Nucl. Chem., 1973, 35, 2719-2726.
2 J. B. Hodgson and G. C. Percy, Spectrochim. Acta A: Mol. Spectr., 1978, 34, 777-780.
3 G. N. Tyson and S. C. Adams, J. Am. Chem. Soc., 1940, 62, 1228-1229.
4 R. H. Holm, J. Am. Chem. Soc., 1961, 83, 4683-4690.
5 J. Chakraborty, M. Nandi, H. Mayer-Figge, W. S. Sheldrick, L. Sorace, A. Bhaumik and P. Banerjee, Eur. J. Inorg. Chem., 2007, 2007, 5033-5044.
6 R. C. Elder, Aus. J. Chem., 1978, 31, 35-45.
7 A. Elmali, C. T. Zeyrek, Y. Elerman and I. Svoboda, Acta Crystallogr. C, 2000, 56, 13021304.

8 O. Atakol, S. Durmus, Z. Durmus, C. Arici and B. Çiçek, Synth. React. Inorg. Met.-Org. Chem., 2001, 31, 1689-1704.

[^0]: page S13
 References

