Electronic Supplementary Information (ESI) for:

Push-pull unsymmetrical substitution in nickel(II) complexes with tetradentate N_2O_2 Schiff base ligands: synthesis, structures and linear-nonlinear optical studies

Luca Rigamonti, Alessandra Forni, Stefania Righetto and Alessandro Pasini

Index

page S2	Experimental section (cont.)
page S7	Table S1 Crystallographic and data collection parameters for $3c\cdot\text{CHCl}_3,3g\cdot\text{EtOH}$
	and 3 j.
page S8	Table S2 Computed excitation energies, oscillator strengths and analysis of the most
	important contributions to the transitions for compounds ${\bf 3}$ and selected analogue
	copper(II) complexes Cu3a and Cu3l.
page S10	Fig. S1 Isodensity surface plot of the PBE0/6-311++G(d,p) frontier orbitals of $3c$
	and 3j mainly involved in the computed transitions.
page S11	Fig. S2 UV-visible absorption spectra of $3c$: dilution studies from 10^{-3} down to 10^{-5}
	mol $L^{1}\ \text{CHCl}_3$ solutions, solvatochromism at $5\times 10^{5}\ \text{mol}\ L^{1}$ solutions in solvents
	from low polar toluene to high polar methanol, and addition of increasing amount of
	DMSO to the 10^{-4} mol L ⁻¹ CHCl ₃ solution.
page S12	Fig. S3 UV-visible absorption spectra of 3j: solvatochromism at 5×10^{-5} mol L ⁻¹
	solutions in solvents from low polar toluene to high polar methanol, and addition of

increasing amount of DMSO to the 10⁻⁴ mol L⁻¹ CHCl₃ solution.

page S13 **References**

Experimental section (cont.)

Synthetic procedures for compounds 1

 $[Ni(^{Br}sal)_2(H_2O)_2]$ (1b).^{1,2} This yellow solid was synthesized as 1a from 5-Br-salH (281.7 mg, 1.40 mmol), ethanolic KOH (14.0 mL of a 0.1 mol L⁻¹ solution, 1.40 mmol) and solid Ni(AcO)₂·4H₂O (174.2 mg, 0.70 mmol) (306.8 mg, 89%). Anal. Calcd (%) for C₁₄H₁₂Br₂NiO₆ (494.74): C, 33.99; H, 2.44. Found: C, 34.09; H, 2.60. IR (KBr): 3445 (v_{O-H}), 2906 (v_{CHO}), 1631 (v_{C=O}) cm⁻¹. UV-vis (CHCl₃): 25060 (4130), 28650 (4620).

[Ni(^Hsal)₂(H₂O)₂] (1c).¹⁻⁴ This light green solid was synthesized as above from salH (1220.4 mg, 10.00 mmol), ethanolic KOH (20.0 mL of a 0.5 mol L⁻¹ solution, 10.00 mmol) and solid Ni(AcO)₂·4H₂O (1242.6 mg, 5.00 mmol) (1552.0 mg, 92%). Anal. Calcd (%) for C₁₄H₁₄NiO₆·0.25H₂O (341.46): C, 49.25; H, 4.28. Found: C, 49.41; H, 4.58. IR (KBr): 3452 (v_{O-H}), 2790 (v_{CHO}), 1653 ($v_{C=O}$) cm⁻¹. UV-vis (CHCl₃): 25910 (3280), 30210 (5510).

[Ni(^{Me}sal)₂(H₂O)₂] (1d). This yellow-green compound was synthesized as above from 5-Me-salH (500.2 mg, 3.68 mmol), ethanolic KOH (7.4 mL of a 0.5 mol L⁻¹ solution, 3.70 mmol) and Ni(AcO)₂·4H₂O (456.9 mg, 1.84 mmol) (518.6 mg, 77%). Anal. Calcd (%) for C₁₆H₁₈NiO₆·0.5H₂O (374.01): C, 51.38; H, 5.12. Found: C, 50.92; H, 4.93. IR (KBr): 3456 (v_{O-H}), 1633 ($v_{C=O}$) cm⁻¹. UV-vis (CHCl₃): 25060 (2300), 28990 (5620).

[Ni(5-OMe-sal)₂(H₂O)₂] (1e). This yellow-green compound was synthesized as above from 5-OMe-salH (500.0 μ L, 4.00 mmol), ethanolic KOH (8 mL of a 0.5 mol L⁻¹ solution, 4.00 mmol) and Ni(AcO)₂·4H₂O (497.6 mg, 2.00 mmol) (364.0 mg, 46%). Anal. Calcd (%) for C₁₆H₁₈NiO₈ (397.00): C, 48.41; H, 4.57. Found: C, 48.39; H, 4.55. IR (KBr): 3457 (v_{O-H}), 2787 (v_{CHO}), 1659 (v_{C=O}) cm⁻¹. UV-vis (CHCl₃): 23700 sh (2550), 27100 (6830).

Synthetic procedures for compounds 2

[Ni(^{Br}L)₂] (2b).⁵ 5-Br-salH (214.2 mg, 1.07 mmol) was dissolved in ethanolic KOH (10.7 mL of a 0.1 mol L⁻¹ solution, 1.07 mmol) and Ni(AcO)₂·4H₂O (132.2 mg, 0.53 mmol) was added under stirring, with the formation of a green precipitate. The slurry was refluxed for 1 h, then tn (134 μ L, 1.61 mmol) was added, with the formation of a brown solution and after few minutes of a yellow precipitate. The mixture was refluxed for 3 h, cooled with an ice bath, and 2b was recovered by filtration as brownish-yellow solid, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (225.3 mg, 87%). Anal. Calcd (%) for C₂₀H₂₄Br₂N₄NiO₂ (570.93): C, 42.07; H, 4.24; N, 9.81. Found: C, 42.41; H, 4.37; N, 9.63. MS (ESI): *m/z* 571 ([M + H]⁺, 25%), 593 ([M + Na]⁺, 15), 885 ([M + Ni(^{Br}L)]⁺, 80), 1165 ([2M + Na]⁺, 100). UV-vis: 26110 (7490). IR (KBr): 3326, 3257 (v_{NH2}), 1627 (v_{C=N}).

[Ni(^HL)₂] (2c).⁶ salH (1.50 mL, 20.40 mmol) was dissolved in ethanolic KOH (40.8 mL of a 0.5 mol L⁻¹ solution, 20.40 mmol) and Ni(AcO)₂·4H₂O (2540.0 mg, 10.20 mmol) was added under stirring. The yellow mixture was stirred at 70 °C for 1 h, with the formation of a light green precipitate, and then tn (2.1 mL, 25.20 mmol) was added. The brown solution was refluxed for 3 h. The mixture was cooled with an ice bath, and **2c** was recovered by filtration as pale yellow solid, washed with EtOH, acetone and dried under vacuum (2640.0 mg, 61%). Anal. Calcd (%) for $C_{20}H_{26}N_4NiO_2 \cdot 0.5H_2O$ (422.15): C, 56.90; H, 6.45; N, 13.27. Found: C, 56.51; H, 6.47; N, 13.07. MS (ESI): *m/z* 235 ([Ni(^HL)]⁺, 45%), 267 ([Ni(^HL)(MeOH)]⁺, 100), 413 ([M + H]⁺, 25), 435 ([M + Na]⁺, 25), 647 ([M + Ni(^HL)]⁺, 30). IR (KBr): 3456 (v_{O-H}), 3326, 3255 (v_{NH2}), 1629 (v_{C=N}) cm⁻¹. UV-vis: 27250 (7450).

[Ni(^{Me}L)₂] (2d). 5-Me-salH (408.3 mg, 3.00 mmol) was dissolved in ethanolic KOH (6.0 mL of a 0.5 mol L⁻¹ solution, 3.00 mmol) and Ni(AcO)₂·4H₂O (373.3 mg, 1.50 mmol) was added under stirring. The reaction mixture was refluxed for 1 h, then tn (335 μ L, 4.00 mmol) was added with the formation of a brown solution, which was refluxed for 3 h. The dark brown solution was left at slow evaporation for few days, yielding 2d as light green solid that filtered, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum. Further product was recovered treating the reaction solution with water (691.1 mg, 92%). Anal. Calcd (%) for C₂₂H₃₀N₄NiO₂·0.5EtOH·2H₂O (500.26): C, 55.22; H, 7.45; N, 11.20. Found: C, 55.09; H, 7.43; N, 11.10. MS (ESI): *m/z* 249 ([Ni(^{Me}L)]⁺, 20%), 267 ([Ni(^{Me}L)(H₂O)]⁺, 100), 441 ([M + H]⁺, 10), 463 ([M + Na]⁺, 20), 689 ([M + Ni(^{Me}L)]⁺, 40). IR (KBr): 3449 (v_{O-H}), 3317, 3276 (v_{NH2}), 1639 (v_{C=N}) cm⁻¹. UV-vis: 26180 (7240).

Synthetic procedures for compounds 3 and 4

[Ni(5'-OMe-saltn)] (3c). *First method 1e* + 2*c*: 1e (172.5 mg, 0.43 mmol) and 2c (172.5 mg, 0.43 mmol) were dissolved in EtOH (30 mL) and refluxed for 5 h. The mixture was cooled with an ice bath and 3c was filtered as green solid, washed with cold EtOH, ^{*i*}Pr₂O and dried under vacuum (231.0 mg, 68%). Anal. Calcd for $C_{18}H_{18}N_2NiO_3 \cdot 1.5H_2O$ (396.06): C, 54.59; H, 5.34; N, 7.07. Found: C, 54.65; H, 5.22; N, 6.81. MS (ESI): *m/z* 369 ([M + 1]⁺, 100%), 737 ([2M + 1]⁺, 20), 759 ([2M + Na]⁺, 25). IR (KBr): 3457 (v_{O-H}), 1626 (v_{C=N}). ¹H NMR (CDCl₃, 298 K, 400 MHz): δ 1.31 (3H, H₂O), 1.89 (2H, tn central CH₂), 3.55 (4H, tn lateral CH₂), 3.74 (3H, OMe), 6.5–7.2 (9H, aromatic and N=CH) ppm.

[Ni(5,5'-Br₂-saltn)] (3d). This compound was synthesized with a modification of literature procedures.^{7,8} 5-Br-salH (200.0 mg, 0.99 mmol) and tn (42 μ L, 0.50 mmol) were dissolved in EtOH (15 mL) and the yellow mixture was refluxed for 30 minutes. NiCl₂·6H₂O (122.3 mg, 0.51 mmol) and Et₃N (1 mL) were then added and the mixture was refluxed for 4 h. The green solid was

filtered, washed with EtOH, ${}^{i}Pr_{2}O$ and dried under vacuum (186.6 mg, 70%). Anal. Calcd (%) for $C_{17}H_{14}Br_{2}N_{2}NiO_{2} \cdot 2H_{2}O$ (532.84): C, 38.32; H, 3.40; N, 5.26. Found: C, 37.97; H, 3.42; N, 5.27. MS (ESI): m/z 497 ([M + 1]⁺, 100%). IR (KBr): 3454 (v_{O-H}), 1626 ($v_{C=N}$) cm⁻¹. ¹H NMR: not soluble.

^HL)(^{Br}sal)₂] (4e'). First method 1c + 2b: 1c (55.3 mg, 0.16 mmol) and 2b (93.8 mg, 0.16 mmol) were suspended in EtOH (10 mL) and refluxed for 12 h. The intermediate 4e was filtered as light green solid, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (117.0 mg, 80%). Anal. Calcd (%) for C₃₄H₃₄Br₂N₄Ni₂O₆ (871.85): C, 46.84; H, 3.93; N, 6.43. Found: C, 47.17; H, 4.10; N, 6.13. MS (ESI): *m/z* 313 ([Ni(^{Br}L)]⁺, 10%), 356 ([Ni(^{Br}L)(MeOH)]⁺, 100). IR (KBr): 3342, 3293 (v_{NH2}), 1652 sh, 1631 ($v_{C=N}$) cm⁻¹. Further refluxing in EtOH or drying under vacuum of 4e did not yield 3e. Second method 1b + 2c: 1b (125.7 mg, 0.30 mmol) and 2c (150.4 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 12 h, yielding 4e' as light green solid (138.1 mg, 49%). Anal. Calcd (%) for C₃₄H₃₄Br₂N₄Ni₂O₆·2H₂O (907.88): C, 44.98; H, 4.22; N, 6.17. Found: C, 45.15; H, 4.42; N, 5.93. MS (ESI): *m/z* 235 ([Ni(^HL)]⁺, 100%), 267 ([Ni(^HL)(MeOH)]⁺, 70). IR (KBr): 3349, 3293 (v_{NH2}), 1638 ($v_{C=N}$) cm⁻¹. 4e' (135.1 mg, 0.15 mmol) was dissolved in EtOH (10 mL) and DMF (5 mL) and the brown solution was left under reflux for 3 h, after which ⁱPr₂O (20 mL) was added and the mixture was left at slow evaporation. After two days 3e precipitated as dark green solid that was recovered by filtration, washed with Pr_2O and dried under vacuum (70.6 mg, 54%). Anal. Calcd (%) for C₁₇H₁₅BrN₂NiO₂·H₂O (440.43): C, 46.84; H, 3.93; N, 6.43. Found: C, 46.61; H, 4.02; N, 5.98. MS (ESI): *m/z* 419 ([M + 1]⁺, 100%), 859 ([2M + Na]⁺, 20). IR (KBr): 3447 (v₀-_H), 1624 ($v_{C=N}$) cm⁻¹. ¹H NMR (CDCl₃, 298 K, 400 MHz): δ 1.11 (2H, H₂O), 1.84 (2H, tn central CH₂), 3.54 (4H, tn lateral CH₂), 5.8–7.8 (9H, aromatic and N=CH) ppm.

[Ni(5-Br-5'-Me-saltn)] (3f) and isolation of the intermediate [Ni₂(μ -^{Br}L)₂(^{Me}sal)₂] (4f). *First method 1d* + 2b: 1d (109.5 mg, 0.30 mmol) and 2b (171.3 mg, 0.30 mmol) were suspended in EtOH (20 mL) and refluxed for 12 h, yielding the intermediate 4f as light green solid (217.1 mg, 75%). Anal. Calcd (%) for C₃₆H₃₈Br₂N₄Ni₂O₆·0.5H₂O (908.91): C, 47.57; H, 4.32; N, 6.16. Found: C, 47.51; H, 4.20; N, 5.87. IR (KBr): 3451 (v_{O-H}), 3339, 3290 (v_{NH2}), 1631 (v_{C=N}). The light green solid 4f was dried under vacuum for several days, and the color changed to military green. The solid was then suspended in ^{*i*}Pr₂O, filtered and dried under vacuum yielding 3f as military green solid (177.6 mg, 67%). Anal. Calcd (%) for C₁₈H₁₇BrN₂NiO₂ (431.94): C, 50.05; H, 3.97; N, 6.49. Found: C, 50.03; H, 4.15; N, 6.51. MS (ESI): *m/z* 433 ([M + 1]⁺, 100%). IR (KBr): 1624 (v_{C=N}) cm⁻¹. *Second method 1b* + 2*d*: 1b (155.5 mg, 0.31 mmol) and 2d (154.4 mg, 0.31 mmol) were suspended in EtOH (20 mL) and refluxed for 12 h, yielding directly 3f as green solid (228.8 mg,

82%). Anal. Calcd (%) for $C_{18}H_{17}BrN_2NiO_2 H_2O$ (449.95): C, 48.05; H, 4.26; N, 6.23. Found: C, 47.74; H, 4.19; N, 5.89. MS (ESI): m/z 433 ([M + 1]⁺, 90%), 863 ([2M + 1]⁺, 100), 885 ([2M + Na]⁺, 50). IR (KBr): 3439 (v_{O-H}), 1626 ($v_{C=N}$) cm⁻¹. ¹H NMR (CDCl₃, 298 K, 400 MHz): δ 0.90 (2H, H₂O), 1.81 (2H, tn central CH₂), 2.30 (3H, Me), 3.52 (4H, tn lateral CH₂), 6.8–7.2 (8H, aromatic and N=CH) ppm.

[Ni(5-Br-5'-OMe-saltn)] (3g) and isolation of the intermediate [Ni₂(μ -BrL)₂(^{OMe}sal)₂] (4g). *First method 1e* + 2*b*: 1e (119.1 mg, 0.30 mmol) and 2b (171.3 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 12 h. The green solid 4g was filtered and dried under vacuum (196.7 mg, 67%). Anal. Calcd (%) for C₃₆H₃₈Br₂N₄Ni₂O₈·H₂O (931.90): C, 46.40; H, 4.11; N, 6.01. Found: C, 46.64; H, 4.11; N, 5.84. MS (ESI): *m/z* 346 ([Ni(^{Br}L)(MeOH)]⁺, 100%). IR (KBr): 3444 (ν _{O-H}), 3341, 3290 (ν _{NH2}), 1637 (ν _{C=N}) cm⁻¹. The product 3g precipitated as brown solid from the remaining reaction mixture, left for one day at room temperature, or refluxing the intermediate 4g in EtOH for further 24 h (111.2 mg, 37%). Anal. Calcd (%) for C₁₈H₁₇BrN₂NiO₃ (447.94): C, 48.26; H, 3.83; N, 6.25. Found: C, 48.47; H, 3.79; N, 5.95. MS (ESI): *m/z* 449 ([M + 1]⁺, 100%). IR (KBr): 1612, 1597 (ν _{C=N}) cm⁻¹. ¹H NMR (CDCl₃, 298 K, 400 MHz): δ 1.90 (2H, tn central CH₂), 3.74 (3H, OMe), 3.81+3.83 (4H, tn lateral CH₂), 6.5–7.5 (8H, aromatic and N=CH) ppm. Crystals suitable for X-ray diffraction were obtained by slow diffusion of ¹Pr₂O into an EtOH solution of the title compound.

[Ni(5,5'-(NO₂)₂-saltn)] (3h). This compound was synthesized with a modification of literature procedures.^{7,8} 5-NO₂-salH (168.3 mg, 1.01 mmol) and tn (43 μ L, 0.51 mmol) were dissolved in EtOH (15 mL) and the yellow mixture was refluxed for 30 minutes. NiCl₂·6H₂O (121.9 mg, 0.51 mmol) and Et₃N (1 mL) were then added and the mixture was refluxed for 4 h. The green solid was filtered, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (193.0 mg, 80%). Anal. Calcd (%) for C₁₇H₁₄N₄NiO₆·2.5H₂O (474.05): C, 43.07; H, 4.04; N, 11.82. Found: C, 42.82; H, 3.76; N, 11.72. MS (ESI): *m/z* 429 ([M + 1]⁺, 100%). IR (KBr): 3454 (v_{O-H}), 1634 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. ¹H NMR: not soluble.

[Ni(5-NO₂-5'-Br-saltn)] (3i). *First method 1a* + 2b: 1a (170.9 mg, 0.30 mmol) and 2b (128.2 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 5 h. The green product 3i was filtered, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (238.3 mg, 82%). Anal. Calcd (%) for $C_{17}H_{14}BrN_3NiO_4 \cdot H_2O$ (480.92): C, 42.46; H, 3.35; N, 8.74. Found: C, 42.42; H, 3.38; N, 8.73. MS (ESI): *m/z* 464 ([M + 1]⁺, 50%), 949 ([2M + Na]⁺, 100). IR (KBr): 3438 (v_{O-H}), 1650, 1627 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. *Second method 1b* + 2*a*: 1b (152.4 mg, 0.30 mmol) and 2a (155.3 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 5 h. The green product 3i was filtered, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (184.5 mg, 64%). Anal. Calcd (%) for

 $C_{17}H_{14}BrN_3NiO_4 H_2O$ (480.93): C, 42.46; H, 3.35; N, 8.74. Found: C, 42.62; H, 3.48; N, 8.67. MS (ESI): *m/z* 486 ([M + Na]⁺, 50%), 949 ([2M + Na]⁺, 100). IR (KBr): 3439 (v_{O-H}), 1650, 1627 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. ¹H NMR: not soluble.

[Ni(5-NO₂-saltn)] (3j). *First method 1c* + 2*a*: **1c** (152.2 mg, 0.45 mmol) and **2a** (171.8 mg, 0.45 mmol) were suspended in EtOH (50 mL) and refluxed for 5 h. The light brown solid **3j** was filtered, washed with EtOH, ¹Pr₂O and dried under vacuum (230.1 mg, 66%). Anal. Calcd (%) for C₁₇H₁₅N₃NiO₄·0.5H₂O (393.02): C, 51.95; H, 4.10; N, 10.69. Found: C, 52.26; H, 4.46; N, 10.33. MS (ESI): *m*/*z* 384 ([M + 1]⁺, 100%), 406 ([M + Na]⁺, 25), 789 ([2M + Na]⁺, 90). IR (KBr): 3447 (v_{O-H}), 1624, 1599 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. Crystals suitable for X-ray diffraction were obtained by slow diffusion of ¹Pr₂O into a CHCl₃ solution of the title compound. *Second method 1a* + 2*c*: **1a** (127.9 mg, 0.30 mmol) and **2c** (122.7 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 5 h. The brown solid **3j** was filtered, washed with EtOH, ¹Pr₂O and dried under vacuum (135.7 mg, 55%). Anal. Calcd (%) for C₁₇H₁₅N₃NiO₄·1.5H₂O (411.04): C, 49.68; H, 4.41; N, 10.22. Found: C, 49.59; H, 4.14; N, 10.17. IR (KBr): 3446 (v_{O-H}), 1624, 1599 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. ¹H NMR (CDCl₃, 298 K, 400 MHz): δ 1.54 (3H, H₂O), 1.99 (2H, tn central CH₂), 3.62+3.66 (4H, tn lateral CH₂), 6.6–8.1 (9H, aromatic and N=CH) ppm.

[Ni(5-NO₂-5'-Me-saltn)] (3k). *First method 1d* + *2a*: **1d** (109.5 mg, 0.30 mmol) and **2a** (150.9 mg, 0.30 mmol) were suspended in EtOH (30 mL) and refluxed for 7 days, yielding the product **3k** as yellow-earth solid, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (134.5 mg, 50%). Anal. Calcd (%) for $C_{18}H_{17}N_3NiO_4\cdot 3H_2O$ (452.09): C, 47.82; H, 5.13; N, 9.29. Found: C, 48.05; H, 4.97; N, 9.30. MS (ESI): *m/z* 398 ([M + 1]⁺, 100%), 817 ([2M + Na]⁺, 60). IR (KBr): 3446 (v_{O-H}), 1628, 1597 (v_{C=N}), 1309 (v_{NO2}) cm⁻¹. The reaction was monitored by infrared spectroscopy, where it was clearly visible the disappearance of **2a** (NH₂ bands around 3200 cm⁻¹, C=N band at 1640 cm⁻¹) and the appearance of the new C=N stretching at 1628 cm⁻¹ of **3k** (the formation of the hypothetic intermediate **4k** was never detected). *Second method 1a* + *2d*: **1a** (76.4 mg, 0.18 mmol) and **2d** (84.6 mg, 0.18 mmol) were suspended in EtOH (15 mL) and refluxed for 5 h. The product **3k** was filtered as yellow-earth solid, washed with EtOH, ^{*i*}Pr₂O and dried under vacuum (114.5 mg, 85%). Anal. Calcd (%) for $C_{18}H_{17}N_3NiO_4\cdot H_2O$ (416.05): C, 51.96; H, 4.60; N, 10.10. Found: C, 51.92; H, 4.85; N, 10.35. MS (ESI): *m/z* 398 ([M + 1]⁺, 100%). IR (KBr): 3445 (v_{O-H}), 1629, 1598 (v_{C=N}), 1308 (v_{NO2}) cm⁻¹. ¹H NMR: not soluble

	3c ·CHCl ₃	3g ∙EtOH	3ј	
Crystal Data				
Moiety formula	C ₁₈ H ₁₈ N ₂ NiO ₃ ·CHCl ₃	C ₁₈ H ₁₇ BrN ₂ NiO ₃ ·C ₂ H ₆ O	C ₁₇ H ₁₅ N ₃ NiO ₄	
М	488.42	494.02	384.03	
Crystal system	Triclinic	Monoclinic	Monoclinic	
Space group	<i>P</i> –1 (n. 2)	$P2_1/c$ (n. 14)	$P2_1/c$ (n. 14)	
<i>a</i> / Å	10.0155(8)	10.5470(11)	10.9731(6)	
b / Å	10.1973(8)	9.3472(10)	10.7934(6)	
<i>c</i> / Å	11.2392(11)	20.660(2)	13.7310(8)	
lpha / °	100.5860(10)	90	90	
β/\circ	97.6650(10)	98.9680(10)	95.6060(10)	
γ/°	113.6250(10)	90	90	
$V/Å^3, Z, Z'$	1006.09(15), 2, 1	2011.9(4), 4, 1	1618.48(16), 4, 1	
Reflns for cell determination	5836	4058	6997	
2θ / ° for cell determination	4.5-63.5	4.8-40.8	4.5-62.0	
$D_x / \text{Mg m}^{-3}$	1.612	1.631	1.576	
μ/mm^{-1}	1.386	2.979	1.227	
Colour, habit	brown, prism	brown, plate	red, rectangular prism	
Dimensions / mm	$0.70 \times 0.38 \times 0.25$	$0.29 \times 0.16 \times 0.03$	$0.35 \times 0.33 \times 0.20$	
Data Collection				
Temperature / K	291(2)	291(2)	293(2)	
radiation $\lambda / \text{Å}$	Μο Κα, 0.71073	Μο Κα, 0.71073	Μο Κα, 0.71073	
Scan type	φ and ω	φ and ω	φ and ω	
$2\theta_{\rm max}/\circ$	65.1	55.0	60.0	
h range	-14	-13→13	-15→15	
k range	-15→15	-12→12	-15→15	
<i>l</i> range	-16→17	-26→26	-19→19	
Intensity decay	None	None	None	
Measured reflections	21696	28896	30966	
Independent reflections	6864	4614	4717	
Reflections with $I > 2\sigma(I)$	5915	2787	4090	
R _{int}	0.018	0.055	0.019	
Refinement on F ²				
$R[F^2 > 2\sigma(F^2)], wR[F^2 > 2\sigma(F^2)]$	0.0355, 0.1015	0.0544, 0.1443	0.0255, 0.0680	
S	1.038	1.039	1.045	
Parameters, restraints	254, 0	273, 1	226, 0	
$(\Delta / \sigma)_{\rm max}$	0.001	0.001	0.001	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} / {\rm e} {\rm \AA}^{-3}$	0.550, -0.612	0.769, -0.905	0.356, -0.202	

Table S1 Crystallographic and data collection parameters for $3c \cdot CHCl_3$, $3g \cdot EtOH$ and 3j.

Table S2 Computed excitation energies (λ_{max} in nm), oscillator strengths (*f*), difference between excited and ground state dipole moment ($\Delta \mu_{eg}$, in D), when available, and analysis of the most important contributions to the transitions for compounds **3** and selected analogue copper(II) complexes **Cu3a** and **Cu3l**.^{*a*}

	А	D	$\lambda_{\rm max}, \Delta \mu_{\rm eg}$	f	assignment	$\lambda_{\rm max}, \Delta \mu_{\rm eg}$	f	assignment	$\lambda_{\rm max}, \Delta \mu_{\rm eg}$	f	assignment
3a	Н	Н	401 381	0.023 0.064	$H \rightarrow L (84\%)^b$ $H \rightarrow L+1 (92\%)$	349	0.032	$H-1 \rightarrow L (84\%)$	329	0.034	H−1 → L+1 (94%)
3b	Н	Me	406 387	0.027 0.059	$H \rightarrow L (85\%)^b$ $H \rightarrow L +1 (92\%)$	352	0.025	H−1 → L (82%)	335	0.043	H−1 → L+1 (94%)
3c	Н	OMe	424, -1.41 399, 7.12	0.043 0.043	$H \rightarrow L (88\%)^{b}$ $H \rightarrow L+1 (93\%)$	362, -0.52	0.015	$H1 \rightarrow L \ (67\%)$	346, -1.40 343, 2.36	0.020 0.050	$H \rightarrow L+2 (38\%)$ $H-1 \rightarrow L+1 (93\%)$
3d	Br	Br	413 393	0.028 0.062	$\begin{split} \mathrm{H} &\rightarrow \mathrm{L} \; (84\%)^b \\ \mathrm{H} &\rightarrow \mathrm{L}{+1} \; (92\%) \end{split}$	364	0.030	$H1 \rightarrow L (87\%)$	343	0.029	H−1 → L+1 (96%)
3e	Br	Н	403 391	0.014 0.075	$\begin{split} \mathrm{H} &\rightarrow \mathrm{L} \; (78\%)^b \\ \mathrm{H} &\rightarrow \mathrm{L}{+}1 \; (83\%) \end{split}$	351	0.033	$H1 \rightarrow L (73\%)$	342	0.029	H−1 → L+1 (86%)
3f	Br	Me	409 397	0.013 0.073	$\begin{split} \mathbf{H} &\rightarrow \mathbf{L} \; (87\%)^b \\ \mathbf{H} &\rightarrow \mathbf{L} + 1 \; (89\%) \end{split}$	354	0.029	H−1 → L (68%)	348 337	0.033 0.011	$H-1 \rightarrow L+1 (86\%)$ $H \rightarrow L+2 (49\%)$
3g	Br	OMe	425 413	0.024 0.060	$H \rightarrow L (85\%)^b$ $H \rightarrow L+1 (90\%)$	365	0.017	$H1 \rightarrow L (68\%)$	357 349	0.050 0.017	$H-1 \rightarrow L+1 (87\%)$ $H \rightarrow L+2 (32\%)$
3h	NO ₂	NO ₂	383 364	0.072 0.088	$H \rightarrow L (84\%)^{b}$ $H \rightarrow L+1 (85\%)$	336	0.024	H−1 → L (78%)	329 323 318 314	0.467 0.022 0.017 0.031	$H \rightarrow L+2 (52\%)$ $H \rightarrow L+3 (40\%)$ $H \rightarrow L+4 (36\%)$ $H-1 \rightarrow L+1 (52\%)$
3i	NO ₂	Br	403 387	0.041 0.066	$\begin{split} \mathrm{H} &\rightarrow \mathrm{L} \; (79\%)^b \\ \mathrm{H} &\rightarrow \mathrm{L}{+1} \; (76\%) \end{split}$	349 346	0.074 0.067	$H \rightarrow L+2 (75\%)$ $H \rightarrow L+3 (37\%),$ $H-1 \rightarrow L (31\%)$	335	0.061	$H-1 \rightarrow L+1$ (42%), $H-1 \rightarrow L$ (30%)
3j	NO ₂	Н	394, 5.39 382, 1.24	0.032 0.076	$H \rightarrow L (66\%)^b$ $H \rightarrow L+1 (78\%)$	350, 19.94 339, 3.34	0.110 0.035	$H \rightarrow L+2 (77\%)$ $H \rightarrow L+3 (35\%),$ $H-1 \rightarrow L (25\%)$	333, 6.12	0.052	H−1 → L (56%)
3k	NO ₂	Me	404 392	0.031 0.068	$H \rightarrow L (67\%)^b$ $H \rightarrow L+1 (81\%)$	362 348	0.074 0.030	$H \rightarrow L+2 (75\%)$ $H \rightarrow L+3 (50\%),$	338	0.081	H−1 → L (73%)

								$H-1 \rightarrow L (9\%)$			
31	NO ₂	OMe	424 413	0.029 0.063	$\begin{split} \mathrm{H} &\rightarrow \mathrm{L} \; (68\%)^b \\ \mathrm{H} &\rightarrow \mathrm{L}{+1} \; (79\%) \end{split}$	381 366	0.041 0.025	$H \rightarrow L+2 (76\%)$ $H \rightarrow L+3 (59\%)$	343	0.108	$H1 \rightarrow L (79\%)$
Cu3a	Н	Н	411	0.043	$\mathrm{H} \rightarrow \mathrm{L} \; (73\%)^{b,c}$						
Cu3l	NO ₂	OMe	498	0.014	$H \to L (46\%)^{b,c}$ $H-1 \to L (35\%)$						

^{*a*} Calculations performed at (TD)PBE0/6-311++G(d,p) level of theory. Unrestricted formalism used for copper(II) complexes. Only transitions with f > 0.010 are reported. ^{*b*} H = HOMO, L = LUMO. Main atomic contributions to H, L and L+1: **3a**, H = 0.12 p₀₁, 0.12 p₀₂, 0.11 d_{Ni}; L = 0.30 p_{C17}, 0.15 p_{N2}, 0.12 p_{C13}, 0.10 p_{C15}; L+1 = 0.31 p_{C4}, 0.16 p_{N2}, 0.15 p_{C8}, 0.11 p_{C6}. **3b**, H = 0.14 p₀₂, 0.12 p_{C16}, 0.10 d_{Ni}; L = 0.30 p_{C17}, 0.14 p_{N2}, 0.13 p_{C13}, 0.10 p_{C15}; L+1 = 0.31 p_{C4}, 0.16 p_{N1}, 0.15 p_{C8}, 0.11 p_{C6}. **3b**, H = 0.14 p₀₂, 0.12 p_{C16}, 0.10 d_{Ni}; L = 0.30 p_{C17}, 0.14 p_{N2}, 0.13 p_{C13}, 0.10 p_{C15}; L+1 = 0.31 p_{C4}, 0.16 p_{N1}, 0.15 p_{C8}, 0.11 p_{C6}. **3b**, H = 0.14 p₀₁, 0.10 p₀₂, 0.09 d_{Ni}; L = 0.29 p_{C17}, 0.15 p_{N2}, 0.12 p_{C13}, 0.11 p_{C15}; L+1 = 0.30 p_{C4}, 0.16 p_{N1}, 0.15 p_{C8}, 0.11 p_{C6}. **3e**, H = 0.11 p₀₁, 0.11 p₀₂, 0.10 d_{Ni}; L = 0.24 p_{C17}, 0.11 p_{N2}, 0.09 p_{C13}, 0.08 p_{C15}; L+1 = 0.24 p_{C4}, 0.13 p_{N1}, 0.12 p_{C8}, 0.09 p_{C6}. **3f**, H = 0.14 p₀₂, 0.12 p_{C14}, 0.09 p_{C16}, 0.09 d_{Ni}; L = 0.18 p_{C17}, 0.11 p_{C4}, 0.09 p_{N2}; L+1 = 0.18 p_{C4}, 0.12 p_{C17}, 0.10 p_{N1}, 0.10 p_{C8}, 0.07 p_{C6}. **3g**, H = 0.15 p₀₂, 0.12 p_{C14}, 0.11 p_{C16}, 0.07 q_{N3}, 0.07 d_{Ni}; L = 0.24 p_{C17}, 0.16 p_{N1}, 0.11 p_{C16}, 0.07 p_{C6}. **3g**, H = 0.15 p_{O2}, 0.12 p_{C14}, 0.19 p_{C15}, 0.11 p_{C16}, 0.11 p_{C16}, 0.10 p_{Br}, 0.10 p_{C12}, 0.07 d_{Ni}; L = 0.27 p_{C17}, 0.16 p_{C15}, 0.15 p_{N2}; L+1 = 0.24 p_{C4}, 0.20 p_{C6}, 0.14 p_{N1}. **3i**, H = 0.17 p_{O2}, 0.15 p_{C14}, 0.11 p_{C16}, 0.10 p_{Br}, 0.10 p_{C12}, 0.07 d_{Ni}; L = 0.19 p_{C17}, 0.10 p_{N2}, 0.08 p_{C6}, 0.18 p_{C4}, 0.16 p_{C15}, 0.09 d_{Ni}; **3k**, H = 0.18 p_{O2}, 0.17 p_{C14}, 0.12 p_{C16}, 0.10 p_{C12}, 0.09 d_{Ni}; L = 0.21 p_{C6}, 0.18 p_{C4}, 0.12 p_{N1}, 0.10 p_{N3}, 0.10 p_{O3}, 0.08 p_{O4}; L+1 = 0.27 p_{C17}, 0.13 p_{N12}, 0.11 p_{C13}, 0.09 p_{C15}, 0.09 d_{Ni}, **3k**, H = 0.18 p_{O2}, 0.17 p_{C14}, 0.12 p_{C16}, 0.10 p_{C12}, 0.09 d_{Ni}; L = 0.22 p_{C6}, 0.18 p_{C4}, 0.12 p_{N1}, 0.10 p_{N3}, 0.10 p_{O3}, 0.09 p_{O4}; L+1 =

Fig. S1 Isodensity surface plot of the PBE0/6-311++G(d,p) frontier orbitals of **3c** (top) and **3j** (bottom) mainly involved in the computed transitions (isosurface values: 0.02).

Fig. S2 UV-visible absorption spectra of **3c**: a) dilution studies from 10^{-3} down to 10^{-5} mol L⁻¹ CHCl₃ solutions, b) solvatochromism at 5 × 10^{-5} mol L⁻¹ solutions in solvents from low polar toluene (red) to high polar methanol (violet), and c) addition of increasing amount of DMSO (µL) to the 10^{-4} mol L⁻¹ CHCl₃ solution (2 mL) (data were not corrected for the dilution given by the addition of DMSO).

Fig. S3 UV-visible absorption spectra of 3j: a) solvatochromism at 5×10^{-5} mol L⁻¹ solutions in solvents from low polar toluene (red) to high polar methanol (violet), and b) addition of increasing amount of DMSO (μ L) to the 10^{-4} mol L⁻¹ CHCl₃ solution (2 mL) (optical path of 0.1 cm, data were not corrected for the dilution given by the addition of DMSO).

References

- 1 G. C. Percy and D. A. Thornton, J. Inorg. Nucl. Chem., 1973, 35, 2719–2726.
- 2 J. B. Hodgson and G. C. Percy, Spectrochim. Acta A: Mol. Spectr., 1978, 34, 777–780.
- 3 G. N. Tyson and S. C. Adams, J. Am. Chem. Soc., 1940, 62, 1228–1229.
- 4 R. H. Holm, J. Am. Chem. Soc., 1961, 83, 4683–4690.
- 5 J. Chakraborty, M. Nandi, H. Mayer-Figge, W. S. Sheldrick, L. Sorace, A. Bhaumik and P. Banerjee, *Eur. J. Inorg. Chem.*, 2007, 2007, 5033–5044.
- 6 R. C. Elder, Aus. J. Chem., 1978, 31, 35–45.
- 7 A. Elmali, C. T. Zeyrek, Y. Elerman and I. Svoboda, *Acta Crystallogr. C*, 2000, **56**, 1302–1304.
- 8 O. Atakol, S. Durmus, Z. Durmus, C. Arici and B. Çiçek, Synth. React. Inorg. Met.-Org. Chem., 2001, **31**, 1689–1704.