Supporting Information

Surface Intercalated Spherical MoS_{2x}Se_{2(1-x)} Nanocatalysts for Highly Efficient and

Durable Hydrogen Evolution Reactions

Bo Lin,^{a,||} Zhiping Lin,^{b,||} Shougang Chen,^{*,a} Meiyan Yu,^a Wen Li,^{*,a} Qiang Gao,^{*,c}

Mengyao Dong,^{d,g} Qian Shao,^e Shide Wu,^h Tao Ding,^{d,*} and Zhanhu Guo,^{*,g}

^{a.} School of Materials Science & Engineering, Ocean University of China, Qingdao, 266100, PR China

^{b.} School of Advanced Study, Taizhou University, Taizhou, 318000, PR China

^{c.} Department of Heterogeneous Catalysis, Max Planck Institute for Chemical Energy Conversion. Mülheim an der Ruhr, 45470, Germany

^{*d.*} Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China

^{e.} College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

^{f.} Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, China

^{g.} Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, Unvieristy of Tennessee, Knoxville, TN 37996, USA

^{h.} College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China

Fig. S1 The Zeta potential of the nanospheres before intercalation.

Fig. S2 Cyclic voltammetry curves of the $MoS_{2x}Se_{2(1-x)}$ samples (Sample-1/2, Sample-1/2-2h, Sample-1/2-4h, Sample-1/2-6h, Sample-1/2-8h) in the region of 0.1-0.2 V vs. RHE with different scan rates from 20 to 200 mV s⁻¹. These plots were used to calculate the C_{dl} for various samples in Fig 3d.

Fig. S3 SEM images of (a) Sample-1/2; (b) Sample-1/2-2h; (c) Sample-1/2-4h; (d) Sample-1/2-6h; and (e) Sample-1/2-8h.

Fig. S4 Electrocatalytic performance of various samples (1, 3/4, 1/2, 1/4, 0) for HER: (a) Polarization curves after iR correction of samples; (b) corresponding Tafel slopes; (c) C_{dl} for samples.

Fig. S5 Cyclic voltammetry curves of the samples (Sample-1, Sample-3/4, Sample-1/2, Sample-1/4, Sample-0) in the region of 0.1-0.2V vs. RHE with different scan rates from 20 to 200 mV s⁻¹. These plots were used to calculate the C_{dl} for various samples in Fig S4c.

Catalysts	Preparation method	Electrolyte	η ₁₀ (mV)	Tafel (mV dec ⁻¹)	Ref
MoSSe nanosheets	CVD	$0.5M H_2SO_4$	~-200	56	[1]
MoS ₂ nanosheets	Hydrothermal	0.5M H ₂ SO ₄	-220	61	[2]
$MoS_{0.98}Se_{1.02}$ nanosheets	Hydrothermal	0.5M H ₂ SO ₄	-271.3	57	[3]
hierarchical MoS ₂ nanocolumn	Hydrothermal	0.5M H ₂ SO ₄	-258	57	[4]
porous MoS ₂ nanosheets	KOH-assisted exfoliation	$0.5M H_2SO_4$	-240.7	88.4	[5]
MoS _{0.72} Se _{1.28} /CNFs	CVD	$0.5M H_2SO_4$	-272	124	[6]
MoS _{1.06} Se _{0.94} /carbon cloth	CVD	0.5M H ₂ SO ₄	-183	55.5	[7]
MoS _{1.08} Se _{0.92} nanosheets	CVD+ Hydrothermal	0.5M H ₂ SO ₄	-219	55±2	[8]
monolayered MoS _{0.98} Se _{1.02}	CVD	0.5M H ₂ SO ₄	-273	119	[9]
Intercalated MoS _{0.82} Se _{1.18}	Solvothermal	0.5M H ₂ SO ₄	-143	53.8	This work

Table S1. Comparison of previously reported $Mo_{2x}Se_{2(1-x)}$ based catalysts towards the HER.

Table S2. Comparison of samples with different ratios of the S and Se element. For clarify, the as-synthesized samples were marked as Sample-x/y, where x/y means the ratio of S content (x) to the total content (y) of the initially added S and Se.

	addition amount (mmol)		atomic	η_{10}	Tafel	C _{dl}
Catalysts	S	Se	ratio S/Se	(mV)	(mV dec⁻¹)	(mF cm ⁻²)
Sample-1	0.38	0	1/0	-266	133.8	1.18
Sample-3/4	0.285	0.095	3/1	-229	104.6	5.27
Sample-1/2	0.19	0.19	1/1	-208	83.5	5.99
Sample-1/4	0.095	0.285	1/3	-221	96.9	3.66
Sample-0	0	0.38	0/1	-253	111.7	1.75

Calculation of Per-site Turn Over Frequency (TOF):

In order to obtain the TOF of prepared samples, the relative roughness factor (RF) should be first calculated by equation (1) as follows:

$$RF = \frac{C_{dl \ catalyst}}{C_{dl \ flat}} \tag{1}$$

where $C_{dl catalyst}$ is the electrical double-layer capacitance (at the over potential of 200 mV) of as-prepared catalyst and $C_{dl flat}$ is the specific capacitance of flat standard MoS₂ (60 μ F cm⁻²). Then, the TOF could be obtained through Equation (2):

$$TOF = \frac{J \times N_A}{2 \times F \times n \times RF}$$
⁽²⁾

where J is the current density for samples at the over potential of 200 mV, N_A is the Avogadro's number (N_A =6.02×10²³ mol⁻¹), 2 is the number of electrons needed to make each hydrogen molecule, F is the Faraday constant (F= 96485 C mol⁻¹) and n stands for the number of surface sites for the flat standard per cm² geometric area (1.164×10¹⁵ cm⁻²). Here is the counting process of Sample-1/2-4h:

It's C_{dl} of catalyst is 20.6 mF cm⁻²

$$RF = \frac{20.6 \ mF \ cm^{-2}}{60 \ \muF \ cm^{-2}} = 343.33$$
(3)

And the current density is 86.68 mA cm⁻²

TOF
=
$$\frac{86.68 \text{ mA cm}^{-2} \times 6.02 \times 10^{23} \text{ mol}^{-1}}{2 \times 96485 \text{ C mol}^{-1} \times 1.164 \times 10^{15} \text{ cm}^{-2} \times 343}$$

(4)

The TOF of other samples could also be calculated through equations and the results are showed in Table S3.

Catalysts	η ₁₀ (mV)	Tafel (mV dec ⁻¹)	C _{dl} (mF cm ⁻²)	j ₂₀₀ (mA cm ⁻²)	Roughness factor	TOF (s ⁻¹)
Sample-1	-266	133.8	1.18	-1.5	19.67	0.20
Sample-3/4	-229	104.6	5.27	-4.61	87.83	0.14
Sample-1/4	-221	96.9	3.66	-6.16	61.00	0.27
Sample-0	-253	111.7	1.75	-3.31	29.17	0.30
Sample-1/2	-206	83.5	5.99	-7.61	99.83	0.20
Sample-1/2-2h	-180	74.6	6.67	-18.27	111.17	0.44
Sample-1/2-4h	-143	53.8	20.6	-86.68	343.33	0.68
Sample-1/2-6h	-171	66.8	13.88	-27.03	231.33	0.31
Sample-1/2-8h	-169	67.2	12.30	-29.22	205	0.38

Table S3. The calculated Roughness factor and TOF

References

- 1 V. Kiran, D. Mukherjee, R. N. Jenjeti and S. Sampath, *Nanoscale*, 2014, **6**, 12856-12863.
- 2 Z. Liu, Z. Gao, Y. Liu, M. Xia, R. Wang and N. Li, ACS Appl. Mater. Interfaces, 2017, 9, 25291-25297.
- 3 B. Xia, L. An, D. Gao, S. Shi, P. Xi and D. Xue, *CrystEngComm*, 2015, **17**, 6420-6425.

4 X. Shang, W. H. Hu, X. Li, B. Dong, Y. R. Liu, G. Q. Han, Y. M. Chai and C. G. Liu, Electrochim. Acta, 2017, 224, 25-31.

5 Z. Cui, H. Chu, S. P. Gao, Y. Pei, J. Ji, Y. C. Ge, P. Dong, P. M. Ajayan, J. F. Shen and M. X. Ye, Nanoscale, 2018, 10, 6168-6176.

6 H. Yang, T. Zhang, H. Zhu, M. Zhang, W. Wu and M. Du, Int. J. Hydrogen Energy, 2017, 42, 1912-1918.

7 X. Chen, Z. Wang, Y. Qiu, J. Zhang, G. Liu, W. Zheng, W. Feng, W. Cao, P. Hu and W. Hu, J. Mater. Chem. A, 2016, 4, 18060-18066.

8 C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng, J. Chen, Y. Huang, P. Ercius, Z. Luo, X. Qi, B. Chen, Z. Lai, B. Li, X. Zhang, J. Yang, Y. Zong, C. Jin, H. Zheng, C. Kloc and H. Zhang, Small, 2016, 12, 1866-1874.

9 L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang, J. Zhang and B. Xiang, *Nanoscale*, 2015, **7**, 10490-10497.