

Supporting Information

S I Supporting figures

Figure S1 Dependence of (a) the unit lattice parameters and (b) unit cell volumes on the Ce^{3+} concentration in CSGO: xCe^{3+} phosphors.

Figure S2 CIE coordinates of CSGO: 0.08Ce³⁺ sample excited upon 400 and 450 nm, respectively.

Figure S3 (a) Decay curves of CSGO: xCe^{3+} phosphors measured by monitoring 510 nm upon 425 nm excitation. (b) Dependence curve of lifetimes on Ce^{3+} concentration in CSGO: xCe^{3+} phosphors.

Figure S4 (a) Fitting plot of $\ln(I_0/I_T-1)$ against 1/Kt for (a) CSGO: 0.01Ce³⁺ and (b) CSGO: 0.08Ce³⁺ phosphors.

S I Calculation of energy gap

The energy gap of CSGO host was calculated according to Kubelka-Munk equation:

$$[F(R_{\infty})hv]^{\prime\prime} = C(hv - E_g), \tag{S1}$$

where E_g is the value of the band gap; hv is the photon energy; C is a proportionality constant; and n = 1/2 indicates an indirect allowed transition, n = 2 indicates a direct allowed transition, n = 3/2 indicates a direct forbidden transition, or n = 3 indicates an indirect forbidden transition. The $F(R_{\infty})$ can be described by the Kubelka–Munk function: 1

$$F(R_{\infty}) = \left(\frac{1-R}{R}\right),\tag{S2}$$

where R is the reflectance parameter.

SI Calculation of external and internal quantum efficiency

The IQE is calculated by the following equation: ²

$$\eta_{IQE} = \frac{\varepsilon}{\alpha} = \frac{\int L_S}{\int E_R - \int E_S},$$
(S3)

where ε is the number of photons emitted by the sample; α is the number of photons absorbed by the sample; L_S is the luminescence emission spectrum of the sample; E_S is the spectrum of the light without the sample in the sphere. All the spectra were collected using the sphere.

The EQE is calculated according to the following equation:

$$\eta_{EQE} = \eta_{IQE} \times \eta_{Abs} \tag{S4}$$

 η_{Abs} is the absorption rate of phosphor towards incident light.

- 1. B. Wang, Z. Wang, Y. Liu, T. Yang, Z. Huang, M. Fang, Journal of Alloys and Compounds, 2019, 776, 554-559.
- L. Zhou, P. A. Tanner, L. Ning, W. Zhou, H. Liang and L. Zheng, The Journal of Physical Chemistry A, 2016, 120, 5539-5548.