Preparation of CeSiO₄ from aqueous precursors under soft hydrothermal conditions

Paul Estevenon^{a,b}, Eleonore Welcomme^a, Stephanie Szenknect^b, Adel Mesbah^{*b}, Philippe Moisy^a, Christophe Poinssot^a, Nicolas Dacheux^{*b}

^a CEA, Nuclear Energy Division, CEA Marcoule Research Department of Mining and Fuel Recycling Processes, DMRC, BP 17171, 30207 Bagnols-sur-Cèze, France

^b ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols-sur-Cèze, France

SUPPORTING INFORMATION

Label	C _{Ce} (mol·L ⁻¹)	Reactive media	C _{carb. tot.} (mol·L⁻¹)	pH _{initial}	т (°С)	∆t (days)	Final phase
(1)				10.5			
(2)				8.7			
(3)	4.2 × 10 ⁻²			6.9	250	7	CeO ₂
(4)				4.1			
(5)				3.9			
(6)				2.4			
			0.10	8.6			
(7)			0.21	8.7			
(8)	0.21		0.42	8.6	150	10	CeO ₂
(9)			1.0	8.6			
(10)			2.1	8.6			
(11)				12.3			CeO ₂
(12)				10.1			CeO ₂
(13)	0.21	HNO ₃		9.0	150	10	$CeSiO_4 + CeO_2$
(14)				8.4			$CeSiO_4 + CeO_2$
(15)				7.0			$CeSiO_4 + CeO_2$

Table S1Synthesis parameters for the presented CeSiO₄ hydrothermal syntheses.

Label	C _{Ce} (mol·L ⁻¹)	Reactive media	C _{carb. tot.} (mol·L ⁻¹)	pH _{initial}	т (°С)	Δt (days)	Final phase	
(16)				5.9			CeO ₂	
(17)				3.1			CeO ₂	
(18)				1.3				
(19)				8.7				
(20)				8.6				
(21)	1.0			8.2	150	10		
(22)	1.0			7.8		150	10	$CeSIO_4 + CeO_2$
(23)				7.4				
(24)				7.0				
(25)			7.0	90		CeSiO ₄ + CeO ₂		
(26)				7.9	130		$CeSiO_4 + CeO_2$	
(27)	0.21	HNO ₃		7.8	170	10	CeO ₂	
(28)				7.5	210		CeO ₂	
(29)				7.4	250		CeO ₂	
(30)	1.0	HNO		8.0	40	210	$CeSiO_4 + CeO_2$	
(31)	1.0	HNO ₃		7.0	60	52	CeSiO ₄	
(32) (33)	1.0	HCI		8.5	150	10	CeSiO ₄ + CeO ₂ + Ce(OH) ₂ Cl	
			0.10	8.8			$Ce_2O(CO_3)_2 + CeO_2$	
(34)			0.21	8.7			$Ce_2O(CO_3)_2$	
	0.21		0.42	8.6	150	10	$Ce_2O(CO_3)_2$ + Na ₄ Ce ₂ (CO ₃) ₅	
(35)			1.0	8.6			$Na_4Ce_2(CO_3)_5$	
			2.1	8.6			$Na_4Ce_2(CO_3)_5$	
(36)	1.0	HNO ₃	-	8.0	150	20	CeSiO ₄	

Table S2. Thermodynamic data for the main reactions involving Ce(III), Ce(IV), hydroxide,
carbonate and silicate complexes in the considered system at I = 0 (25°C).

Reaction	log K°
$H_4SiO_4 \rightleftharpoons H_2SiO_4^{2-} + 2 H^+$	- 23.14 ¹
$H_4SiO_4 \rightleftharpoons H_3SiO_4^- + H^+$	- 9.84 ¹
$2 H_4 SiO_4 \leftrightarrows Si_2O_2(OH)_5^- + H^+ + H_2O$	- 8.50 ¹
$2 H_4 SiO_4 \leftrightarrows Si_2O_3(OH)_4^{2-} + 2 H^+ + H_2O$	- 19.40 ¹
$3 H_4SiO_4 \leftrightarrows Si_3O_5(OH)_5^{3-} + 3 H^+ + 2H_2O$	- 29.40 ¹
$3 H_4SiO_4 \leftrightarrows Si_3O_6(OH)_3^{3-} + 3 H^+ + 3 H_2O$	- 29.30 ¹
$4 \text{ H}_4\text{SiO}_4 \leftrightarrows \text{Si}_4\text{O}_6(\text{OH})_6^{2-} + 2 \text{ H}^+ + 4 \text{ H}_2\text{O}$	- 15.60 ¹
$4 \text{ H}_4\text{SiO}_4 \leftrightarrows \text{Si}_4\text{O}_7(\text{OH})_6^{4-} + 4 \text{ H}^+ + 3 \text{ H}_2\text{O}$	- 39.10 ¹
$4 \text{ H}_4\text{SiO}_4 \leftrightarrows \text{Si}_4\text{O}_8(\text{OH})_4^{4-} + 4 \text{ H}^+ + 4 \text{ H}_2\text{O}$	- 39.20 ¹
$6 \text{ H}_4\text{SiO}_4 \leftrightarrows \text{Si}_6\text{O}_{15}^{6-} + 6 \text{ H}^+ + 9 \text{ H}_2\text{O}$	- 61.80 ¹
CO_3^{2-} + 2 H ⁺ \Leftrightarrow CO_2 + H ₂ O	16.68 ¹
$\text{CO}_3^{2-} + \text{H}^+ \leftrightarrows \text{HCO}_3^-$	10.33 ¹
$Ce^{3+} + H_2O \leftrightarrows Ce(OH)^{2+} + H^+$	- 8.4 ²
$Ce^{3+} + 2 H_2O \rightleftharpoons Ce(OH)_2^+ + 2 H^+$	- 17.6 ²
$Ce^{3+} + 3 H_2O \leftrightarrows Ce(OH)_3 + 3 H^+$	– 27.2 ²
$Ce^{3+} + CO_3^{2-} \leftrightarrows CeCO_3^+$	5.4 ³
$Ce^{3+} + 2 CO_3^{2-} \rightleftharpoons Ce(CO_3)_2^{-}$	9.3 ³
$Ce^{3+} + 3 CO_3^{2-} \rightleftharpoons Ce(CO_3)_3^{3-}$	12.6 ³
$Ce^{3+} + 4 CO_3^{2-} \rightleftharpoons Ce(CO_3)_4^{5-}$	13.7 ³
$Ce^{4+} + H_2O \leftrightarrows Ce(OH)^{3+} + H^+$	0.76 ²
$Ce^{4+} + 2 H_2O \rightleftharpoons Ce(OH)_2^{2+} + 2 H^+$	0.05 ²
$Ce^{4+} + 3 H_2O \rightleftharpoons Ce(OH)_{3^+} + 3 H^+$	- 1.49 ²
$Ce^{4+} + 4 H_2O \rightleftharpoons Ce(OH)_4 + 4 H^+$	- 4.12 ²
$Ce^{3+} + H_4SiO_4 \Leftrightarrow Ce(OSi(OH)_3)^{2+} + H^+$	– 2.0 (this study)
$Ce^{4+} + H_4SiO_4 \rightleftharpoons Ce(OSi(OH)_3)^{3+} + H^+$	1.9 (this study)

Table S3 Unit cell parameters determined by Rietveld refinement.

Conditions	<i>a</i> parameter	c parameter	Volume V

Ref.⁴	6.9564(3) Å	6.1953(4) Å	299.80(5) ų
Hydrothermal - HNO ₃ (36)	6.9606(1) Å	6.1951(1) Å	300.16(1) ų
Hydrothermal – HCl (32)	6.9480(1) Å	6.1993(1) Å	299.27(1) ų
1000°C annealing	6.9446(1) Å	6.1975(2) Å	298.89(1) Å ³

Table S4.Equilibrium constants of M(III)- and M(IV)-hydroxide and silicate complexes at I = 0
(25°C).

Reaction	log β°	
$Eu^{3+} + HO^{-} \rightleftharpoons Eu(OH)^{2+}$	6.2 ⁵	
$Eu^{3+} + H_3SiO_4^- \leftrightarrows Eu(OSi(OH)_3)^{2+}$	8.04 ± 0.08 ⁶	
$Am^{3+} + HO^{-} \leftrightarrows Am(OH)^{2+}$	7.6 ± 0.7 ⁷	
$Am^{3+} + H_3SiO_4^- \rightleftharpoons Am(OSi(OH)_3)^{2+}$	8.23 ± 0.09 ⁶	
$Cm^{3+} + HO^{-} \leftrightarrows Cm(OH)^{2+}$	6.4 ± 0.1 ⁷	
$Cm^{3+} + H_3SiO_4^- \rightleftharpoons Cm(OSi(OH)_3)^{2+}$	7.94 ± 0.06 ⁶	
$AI^{3+} + HO^{-} \leftrightarrows AI(OH)^{2+}$	9.05 ¹	
$AI^{3+} + H_3SiO_4^- \rightleftharpoons AI(OSi(OH)_3)^{2+}$	8.73 ± 0.06 ⁸	
$Fe^{3+} + HO^{-} \leftrightarrows Fe(OH)^{2+}$	11.81 ¹	
$Fe^{3+} + H_3SiO_4^- \rightleftharpoons Fe(OSi(OH)_3)^{2+}$	9.33 ± 0.26 ⁹	
$Ce^{3+} + HO^{-} \rightleftharpoons Ce(OH)^{2+}$	5.6 ± 0.1 ²	
$Ce^{3+} + H_3SiO_4^- \rightleftharpoons Ce(OSi(OH)_3)^{2+}$	7.8 (this study)	
$Th^{4+} + HO^{-} \leftrightarrows Th(OH)^{3+}$	11.8 ± 0.2 ¹⁰	
$Th^{4+} + H_3SiO_4^- \leftrightarrows Th(OSi(OH)_3)^{3+}$	8.7 – 9.2 ⁸	
$Np^{4+} + HO^{-} \Leftrightarrow Np(OH)^{3+}$	14.5 ± 0.2 ¹⁰	
$Np^{4+} + H_3SiO_4^- \rightleftharpoons Np(OSi(OH)_3)^{3+}$	11.2 ¹¹	
$Pu^{4+} + HO^{-} \rightleftharpoons Pu(OH)^{3+}$	14.6 ± 0.2 ¹⁰	
$Pu^{4+} + H_3SiO_4^- \leftrightarrows Pu(OSi(OH)_3)^{3+}$	11.8 11	
$Ce^{4+} + HO^{-} \rightleftharpoons Ce(OH)^{3+}$	14.8 ²	
$Ce^{4+} + H_3SiO_4^- \rightleftharpoons Ce(OSi(OH)_3)^{3+}$	11.7 (this study)	

Figure S2 IR obtained for samples prepared under hydrothermal conditions (10 days, T = 150°C) with starting silicate and cerium(III) concentrations of 0.21 mol·L⁻¹, in nitric acid media and with an initial pH equal to 12.3 (11), 10.1 (12), 9.0 (13), 8.4 (14), 7.0 (15), 5.9 (16), 3.1 (17) or 1.3 (18).

Figure S3 IR obtained for samples prepared with starting silicate and cerium(III) concentrations of 0.21 mol·L⁻¹, in nitric acid media and with an initial pH ranging from 7 to 8, after hydrothermal treatment during 10 days at 90°C (25), 130°C (26), 150°C (27), 170°C (28) and 250°C (29).

Figure S4 IR spectrum obtained for CeSiO₄ prepared under hydrothermal conditions (T = 150°C, t = 20 days, Ar-atmosphere), in nitric medium, with $C_{Ce(III)} \approx C_{Si} \approx 1 \text{ mol·L}^{-1}$ and pH_{initial} = 8.0 (36).

Figure S5Raman spectrum recorded for CeSiO4 prepared under hydrothermal conditions
 $(T = 150^{\circ}C, t = 20 \text{ days}, \text{ Ar-atmosphere})$, in nitric medium, with $C_{Ce(III)} \approx C_{Si} \approx 1 \text{ mol}\cdot L^{-1}$ and $pH_{initial} = 8.0$ (36).

Figure S6 PXRD profile, calculated and difference profile after Rietveld refinement obtained for a sample prepared under hydrothermal conditions (T = 150°C, t = 20 days, Aratmosphere) in hydrochloric medium, with $C_{Ce(III)} \approx C_{Si} \approx 0.21 \text{ mol}\cdot\text{L}^{-1}$ and $pH_{initial} = 8.5$ (32). Unit cell parameters: $CeSiO_4$: a = 6.9480(1) Å and c = 6.1993(1) Å, i.e. V = 299.27(1) Å³. $Ce(OH)_2CI$: a = 6.2842(5) Å, b = 3.9476(5) Å, c = 6.8710(8) Å and $\theta = 113.50(1)^\circ$, i.e. V = 156,31(3) Å³.

Figure S7 PXRD profile, calculated and difference profile after Rietveld refinement obtained for a CeSiO₄ sample prepared under hydrothermal conditions (T = 150°C, t = 20 days, Ar-atmosphere), in nitric medium, with $C_{Ce(III)} \approx C_{Si} \approx 1 \text{ mol}\cdot\text{L}^{-1}$ and $pH_{initial} = 8.0$ then submitted to heating treatment at 1000°C under inert atmosphere (Ar). Unit cell parameters: CeSiO₄: a = 6.9446(1) Å, c = 6.1975(2) Å, V = 298.89(1) Å³.

CeO₂: *a* = 5.417(2) Å, V = 159.0(1) Å³.

Figure S8. Comparison of the stability constants for the formation of metal-o-silicate and metal hydroxide complexes for M(III)- (a) and M(IV)-elements (b). Considered thermodynamics data available in **Table S4**.

Figure S9. Cerium(III) speciation diagram of Ce(III) determined by PhreeqC calculation at room temperature with $C_{\text{Si total}} \approx C_{\text{Ce total}} = 0.21 \text{ mol} \cdot L^{-1}$ and total carbonate concentration of 0.5 mol L⁻¹ (a) and 1.0 mol L⁻¹ (b). Considered thermodynamics data available in **Table S3**.

References:

- 1. E. Giffaut, M. Grivé, P. Blanc, P. Vieillard, E. Colàs, H. Gailhanou, S. Gaboreau, N. Marty, B. Madé and L. Duro, *Applied Geochemistry*, 2014 **49**, 225-236.
- 2. S. A. Hayes, P. Yu, T. J. O'Keefe, M. J. O'Keefe and J. O. Stoffer, *Journal of The Electrochemical Society*, 2006, **149**, C623-C630.
- 3. D. Ferri, I. Grenthe and F. Salvatore, *Inorganic Chemistry*, 1983, **22**, 3162-3165.
- 4. J. M. S. Skakle, C. L. Dickson and F. P. Glasser, *Powder diffraction*, 2000, **15**, 234-238.
- 5. K. Spahiu and J. Bruno, *SKB*, 1995, **SKB Technical Report 95-35**.
- 6. P. Thakur, D. K. Singh and G. R. Choppin, *Inorganica Chimica Acta*, 2007, **360**, 3705-3711.
- 7. R. Guillaumont, T. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe and M. H. Rand, *Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium,* Elsevier, Issy-les-Moulineaux, France, 2003.
- 8. M. P. Jensen, Ph.D. Thesis. Florida State University, 1994.
- 9. R. A. Porter and W. J. J. Weber, *Journal of Inorganic and Nuclear Chemistry*, 1971, **33**, 2443-2449.
- 10. V. Neck and J. I. Kim, Radiochimica Acta, 2001, 89, 1-16.
- 11. A. B. Yusov, A. M. Fedosseev and C. H. Delegard, *Radiochimica Acta*, 2004, **92**, 869-881.