Synthesis and Structural, Redox and Photophysical Properties of Tris-(2,5-di(2pyridyl)pyrrolide) Lanthanide Complexes

James N. McPherson, ^a Laura Abad Galan, ^b Hasti Iranmanesh, ^a Max Massi ^{b*} and Stephen B. Colbran ^{a*}

^aSchool of Chemistry, University of New South Wales, NSW 2052 Australia; ^bDepartment of Chemistry, Curtin University, WA 6102 Australia

Electronic Supplementary Information

SC-XRD structures

Fig S1. Overlaid SC-XRD structures of $[Sm(dpp^{CO_2Me,Me})_3]$ (pink) and $[Eu(dpp^{CO_2Me,Me})_3]$ (light blue) by matching the Ln(III) centre and 9 coordinating N atoms (RMSD = 0.0119 Å).

Fig S2. H-bonding network with the lattice water molecule linking neighbouring $[Ln(dpp^{CO_2Me,Me})_3]$ complex molecules (Ln = Sm, Eu) down the *b* axis. Key distances and angles: Ln = Sm: O2C...O1 2.90(1) Å, O1...O1B 2.91(1) Å, and O2C–O1–O1B 92.8(4); Ln = Eu: O1C'...O1 2.91(3) Å, O1...O1B 2.92(2) Å, and O1C'–O1–O1B 98.3(7)°.

Table S1. Experimental details

Complex	[La(dpp ^{Me,Me}) ₃]	[Sm(dpp ^{CO2Me,Me}) ₃]	[Eu(dpp ^{CO2Me,Me}) ₃]
CIF name	p1bar_a	james_sm1_a	James_Eu_June18_0m_a
Crystal data			
Chemical formula	$C_{48}H_{42}LaN_9 \cdot 1.5(C_6H_6)$	$2(C_{51}H_{42}N_9O_6Sm)\cdot H_2O$	$C_{51}H_{42}EuN_9O_6 \cdot 0.5(H_2O)$
M _r	1000.98	2072.58	1066.48
Crystal system, space group	Triclinic, P^{-1}	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$
Temperature (K)	100	100	99.95
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.928 (3), 13.980 (3), 14.100 (3)	17.177 (3), 13.222 (3), 19.402 (4)	17.3254(12), 13.3245(9), 19.4895(13)
α, β, γ (°)	80.97 (3), 83.88 (3), 70.72 (3)	90.85 (3)	90.717(2)
$V(Å^3)$	2371.5 (9)	4406.0 (15)	4498.8(5)
Ζ	2	2	4
Radiation type	Μο Κα	Μο Κα	Mo $K\square$
μ (mm ⁻¹)	0.95	1.40	1.458
Crystal size (mm)	$0.02 \times 0.01 \times 0.01$	$0.02\times0.02\times0.02$	0.1 imes 0.04 imes 0.01
Data collection			
Diffractometer	ADSC Quantum 210r	ADSC Quantum 210r	Bruker D8 Quest
Absorption correction	_	_	SADABS
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	39500, 10228, 9722	65218, 9559, 8469	146595, 7935
R _{int}	0.018	0.029	0.1555
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.658	0.641	0.595
Refinement			
$\frac{R[F^2 > 2\sigma(F^2)], wR(F^2),}{S}$	0.024, 0.061, 1.07	0.039, 0.103, 1.14	0.0479, 0.1249, 1.076
No. of reflections	10228	9559	7935
No. of parameters	611	651	653
No. of restraints	_	11	49
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$	0.51, -1.40	0.92, -1.16	0.94, -0.85

Computer programs: BluIce (McPhillips, 2002), XDS (Kabsch, 1993), *SHELXT* (Sheldrick, 2015), *SHELXL* (Sheldrick, 2015), Olex2 (Dolomanov *et al.*, 2009).

NMR Spectra

Fig. S4. ¹H NMR (400 MHz, C_6D_6) spectra of [La(dpp^{Me,Me})₃]: after 20 minutes in solution (bottom) and after 6 hours in solution (top). The signals, which correspond to unbound dpp^{Me,Me}H—and increase over time—have been highlighted by grey regions.

Fig S5. ¹H-¹H COSY NMR (400 MHz, C₆D₆) spectrum of [La(^{Me,Me}dpp)₃].

Fig S6. ¹H-¹H nOeSY NMR (400 MHz, C_6D_6) spectrum of $[La(^{Me,Me}dpp)_3]$. The key interaction (A3 – Me) has been highlighted.

Fig S8. ¹H-¹³C{¹H} HSQC NMR (400 MHz, 101 MHz, C₆D₆) spectrum of [La(^{Me,Me}dpp)₃].

Fig S9. ¹H-¹³C{¹H} HMBC NMR (400 MHz, 101 MHz, C₆D₆) spectrum of [La(^{Me,Me}dpp)₃].

Fig. S10. ¹H NMR (400 MHz, C_6D_6) spectrum of [La(dpp^{CO2Me,Me})₃].

Fig S11. ¹H-¹H COSY NMR (400 MHz, C₆D₆) spectrum of [La(dpp^{CO₂Me,Me})₃].

Fig S12. ¹H-¹H nOeSY NMR (400 MHz, C_6D_6) spectrum of [La(dpp^{CO2Me,Me})₃].

Fig. S13. Superimposed ¹H NMR (C_6D_6) spectra of solutions of [Sm(dpp^{CO2Me,Me})₃] prepared separately at different fields (600 MHz in blue, 400 MHz in black).

Fig. S14. From bottom to top, ¹H NMR (C_6D_6) spectra of [Sm(dpp^{CO2Me,Me})₃]: after 20 minutes in solution (600 MHz, bottom), [Sm(dpp^{CO2Me,Me})₃] after 4 hours in solution (600 MHz, second from the bottom), after 12 hours in solution (600 MHz, second from the top); and after 9 days in solution (400 MHz, top). Selected signals, which correspond to unbound Hdpp^{CO2Me,Me} and increase over time, have been highlighted by grey regions, while the signals assigned to the [Sm(dpp^{CO2Me,Me})₃] complex (and decrease over time) are coloured red and blue according to their assignment (Fig. X) for clarity. Note – a break in scale occurs between 4–5 ppm.

Fig. S15. ¹H-¹H COSY NMR (600 MHz, C_6D_6) of [Sm(dpp^{CO₂Me,Me})₃]. In black are signals corresponding to free Hdpp^{CO₂Me,Me} which has dissociated during the course of the solution state NMR studies.

Fig. S16. ¹H-¹H nOeSY NMR (600 MHz, C_6D_6) of [Sm(dpp^{CO₂Me,Me})₃] highlighting the key nOe interactions (opposite phase to diagonal peaks) between C3 and the 4-methyl pyrrolide proton environments.

Fig. S17. ¹³C{¹H} NMR (151 MHz, C_6D_6) spectrum for [Sm(dpp^{CO₂Me,Me})₃]. Shown inset are the five ¹³C environments associated with the pyrrole methyl substituent.

Fig. S18. ¹H-¹³C HSQC NMR (600 MHz, 151 MHz, C₆D₆) spectrum of [Sm(dpp^{CO₂Me,Me})₃].

Fig. S19. ¹H-¹³C HMBC NMR (600 MHz, 151 MHz, C₆D₆) spectrum of [Sm(dpp^{CO₂Me,Me})₃].

Mass Spectra

JM-2-19-1 #1-35 RT: 0.01-1.00 AV: 35 NL: 1.99E8 T: FTMS + c NSI Full ms [150.00-2000.00] 609.2214 100₇ 316.1051 95 MeOO 90-85 80-9-1#1-35 RT 00 AV: 35 T: 75 ical Formula: C₃₄H₃₀N₆NaO₄ Exact Mass: 609.2221 Ch 70-65 Addates and a second se 60-Relative Abundance 55 50 C₅₁ H₄₂ LaN₉ O₆ +Na: C₅₁ H₄₂ La₁ N₉ O₆ Na₁ pa Chro 1 45-40 35-40,228 1041,2314 1046,245 1037.2221 30-25-20-568.2773 1038.2202 15 363.2133 10-284.0789 5 Che 918.3031 Exact 723.1215 459.6545 2825 1347.3048 1640.4186 1816.2904 0-200 400 600 800 1800 2000 1000 1200 1400 1600 m/z

Fig. S23. (+)-HR-NSI-MS of $[La(dpp^{CO_2Me,Me})_3]$ in acetonitrile. Shown inset is the observed isotopomers (top) against the simulated isotopic distribution for $[La(dpp^{CO_2Me,Me})_3 + Na]^+$.

Fig. S24. (+)-HR-NSI-MS of $[Sm(dpp^{CO_2Me,Me})_3]$ in acetonitrile (top), against the simulated isotopic distribution for $[Sm(dpp^{CO_2Me,Me})_3 + H]^+$ (middle) and $[Sm(dpp^{CO_2Me,Me})_3 + Na]^+$ (bottom).

Fig. S25. (+)-HR-NSI-MS of $[Yb(dpp^{CO_2Me,Me})_3]$ in acetonitrile. Shown inset is the observed isotopomers (top) against the simulated isotopic distribution for $[Yb(dpp^{CO_2Me,Me})_3 + H]^+$ (middle) and for $[Yb(dpp^{CO_2Me,Me})_3 + Na]^+$ (bottom).

Fig. S26. (+)-HR-NSI-MS of [La(dpp^{Me,Me})₃] in acetonitrile.

Photophysical studies

[Eu(dpp)₃]:

Fig. S27. Normalised excitation (λ_{em} = 612 nm) and emission (λ_{exc} = 300 nm) spectra of [Eu(dpp)₃] in CH₂Cl₂ at room temperature.

Fig. S28. Normalised excitation (λ_{em} = 612 nm) and emission (λ_{exc} = 300 nm) spectra of [Eu(dpp)₃] in CH₂Cl₂ at 77K.

Fig. S29. Normalised excitation (λ_{em} = 612 nm) and emission (λ_{exc} = 300 nm) spectra of [Eu(dpp)₃] in the solid state.

[Yb(dpp)₃]:

Fig. S30. Normalised excitation (λ_{em} = 980 nm) and emission (λ_{exc} = 300 nm) spectra of [Yb(dpp)₃] in CH₂Cl₂ at room temperature.

Fig. S31. Normalised excitation (λ_{em} = 980 nm) and emission (λ_{exc} = 300 nm) spectra of [Yb(dpp)₃] in CH₂Cl₂ at 77K.

Fig. S32. Normalised excitation (λ_{em} = 980 nm) and emission (λ_{exc} = 300 nm) spectra of [Yb(dpp)₃] in the solid state.

Fig. S33. Overlay of CVs for $[Ln(dpp^{CO_2Me,Me})_3]$ (Ln = La(III), black trace; Sm(III), orange trace; Eu(III), red trace; and Gd(III), blue trace).

Fig. S34. CV of $[Yb(dpp^{CO_2Me,Me})_3]$ (green trace) overlayed onto those for $[Gd(dpp^{COOMe,Me})_3]$ (transparent blue trace) and Hdpp^{COOMe,Me} (dashed black trace).