SUPPORTING INFORMATION

Contents

1. Supporting experimental data	S2
1.1 1 H, 19 F { 1 H}, and 13 C { 1 H}NMR spectra of synthesized compounds	S2
1.2 DOSY NMR measurements	S14
1.3 Lewis acidity quantification by the Gutmann-Beckett method	S17
1.4 Competition experiment between $MgNF_2$ and $B(C_6F_5)_3$	S20
1.5 Single crystal X-ray diffraction	S21
2. DFT calculations	S39
3. References	S74

1 Supporting experimental data

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 chemical shift [ppm]

Figure S 1 ¹H NMR (400 MHz, $_{6}CD$, rt) of $MgN^{F} \cdot (THF)$.

Figure S 2 ¹⁹F {¹H} NMR (376 MHz, C_6D_6 , rt) of $MgN_2^{F_2} \cdot (THF)_2$.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

Figure S 3 ^{13}C {^1H} NMR (101 MHz_6 C D , rt) of $MgN^F{}_2(THF)$.

Figure S 4 ¹H NMR (600 MHz, C_6D_6 , rt) of MgN_2^F ·(Et_2O_2).

Figure S5¹⁹F 1 H}NMR(565MHz, $\mathcal{C}\mathcal{D}$, rt)of MgN $^{\mathbb{P}}_{2}$ ·(E $_{\mathbb{P}}\mathcal{Q}$).

Figure S6¹³C{¹H}NMR(151 MHz, C_6D_6 , rt) of MgN^F₂·(Et₂O)₂.

Figure S 7 ¹H NMR (400 MHz, $_{\mathcal{C}}C$ D , rt) of $\mathcal{L}aN^{F}_{2}(THF)$.

-160.5 -160.5 -165.6 -165.6 -165.7 -165.7 -174.9 -175.0

Figure S 8 $^{19}\mathsf{F}$ {1H} NMR (376 MHz, C₆D₆, rt) of CaN^F₂ · (THF)₂.

Figure S 9 ^{13}C {1H} NMR (101 MHz_6 C D , rt) of_2CaNF_2 (THF) .

Figure S 10 ¹H NMR (600 MHz, C_6D_6 , rt) of CaN^F₂·(Et₂O)₂.

-159.4 -159.4 -165.3 -165.3 -165.3 -165.3 -174.7 -174.7

Figure S11¹⁹F{¹H}NMR(565MHz, CQ, rt)of CaN^E₂·($E_{\underline{t}}Q$).

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} chemical shift [ppm]

Figure S $12^{13}C{^{1}H}NMR(151 MHz, C_6D_6, rt)$ of $CaN^{F_2} \cdot (Et_2O)_2$.

Figure S 13 1H NMR (400 MHz, $_6C$ D , rt) of $_2SrN^{\text{F}}$ $_2(THF)$.

Figure S 14 ¹⁹F {¹H} NMR (376 MHz, C_6D_6 , rt) of SrN^F₂·(THF)₂.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift [ppm]

Figure S 15 ^{13}C {^1H} NMR (101 MHz $_{\!\!6}$ C D , rt) of of SrN $_{\!\!2}^{\rm F}\cdot(THF)$.

Figure S 16 ¹H NMR (600 MHz, C_6D_6 , rt) of (N^FMgN")₂.

Figure S17¹⁹F{¹H}NMR(565MHz, $\mathcal{G}\mathcal{D}$, rt)of(N^FMgN")₂.

Figure S 18¹³C {¹H} NMR (151 MHz, C₆D₆, rt) of (N^FMgN'')₂.

Figure S 19 ¹H NMR (400 MHz, $_{\circ}CD$, rt) of (N^FÇaN").

Figure S 20 ¹⁹F {¹H} NMR (376 MHz, C₆D₆, rt) of (N^FCaN")₂.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2¹ chemical shift [ppm]

Figure S 21 ^{13}C {^1H} NMR (101 MHz $_{\!\!\!S}$ C D , rt) of (NF2CaN'') .

Figure S 22 ¹H NMR (600 MHz, C_6D_6 , rt) of (N^FSrN")₂, with co-crystallized toluene.

Figure S23¹⁹F{¹H}NMR (565 MHz, G D, rt) of (N^FSrN")₂ with co-crystallized toluene.

Figure S24¹³C{¹H}NMR (151 MHz, C_6D_6 , rt) of (N^FSrN")₂, with co-crystallized toluene.

1.2 DOSY NMR measurements

Diffusion measurements were carried out at 298 K on a Bruker AVANCE NMR spectrometer operating at 600.13 MHz for proton resonance equipped with a 5 mm PABDO BB/19F-1H/D probe with Z-GRD and actively shielded gradient coil with a maximum gradient strength of 5.3500094 G/mm (at 10 A).

Parameter optimization was carried out empirically employing the pulse program ledbpgp2s1D using stimulated echo and LED (D21 = 5 ms, longitudinal eddy current delay as a Z-filter) with bipolar gradient pulses (P30) and two spoiling gradients (P19 = 600 μ s) leading to values for gradient pulse length (in case of bipolar gradients "*little DELTA*"*0.5) and diffusion time (D20 = 60 ms for proton DOSY; "*big DELTA*"). Delay for gradient recovery was set to 200 μ s.

The diffusion experiment was executed with variable gradients from 2% to 98% gradient strength with 32 increment values (difframp calculated with the AU-program *DOSY*). In this case the pulse program ledbpgp2s was applied for data aquiring of this pseudo-2D Experiment. Data processing was performed with the T1/T2 software package (SimFit) of TopSpin (version 3.2, Bruker Biospin) by fitting area data (integration of all peaks of interest of the same molecule) of diffusion decays. From these Stejskal-Tanner fitting curves calculated diffusion constants were obtained (with *Gamma* values for proton $\gamma = 4258$ Hz/G) and assimilated statistically.

The molecular weight was determined according to the publication "Molecular Weight Estimation of Molecules Incorporating Elements from van-der-Waals Corrected ECC-DOSY" from the group of Stalke.¹ C₆D₅H is used as internal reference; the aggregation in solution is similar for all examined compounds; based on the estimated molecular weights, an equilibrium between monomer and dimer is indicated whereby the dimeric form is largely favored. Due to overlapping of C₆D₅H and toluene signals (cocrystallized toluene) in the DOSY spectrum for (N^FSrN")₂, a reliable molecular weight could not be given. The value of the hydrodynamic radius r, however, compares well to those of (N^FMgN")₂ and (N^FCaN")₂, implying that also the Sr complex is mainly present as a dimer.

S14

Compound	D [m²/s]	r [Å]	MW	MW
			(ECC)	(calc. for (NfAeN''))
(N ^F MgN'') ₂	4.5993*10 ⁻¹⁰	6.40	928	532.8
(N ^F CaN'') ₂	4.5993*10 ⁻¹⁰	6.15	930	548.6
(N ^F SrN") ₂	4.5993*10 ⁻¹⁰	6.32	-	596.1

Table S 1 Results from diffusion measurements for heteroleptic ($N_2^{F}AeN$ ") complexes.

Figure S 25 ¹H DOSY NMR spectrum of $(N^{F}MgN'')_{2}$ in C₆D₆.

Figure S 26 ¹H DOSY NMR spectrum of ($N^{F}CaN^{"}$) in CD.

Figure S 27 ¹H DOSY NMR spectrum of $(N^{F}SrN'')_{2}$ with co- crystallized toluene in $C_{6}D_{6}$.

1.3 Lewis acidity quantification by the Gutmann-Beckett method

Lewis acidity was tested according to Gutmann and Beckett²⁻³ by dissolving or suspending a portion of the respective complex in C_6D_6 (600 µL) in an NMR tube after which exactly one equivalent of Et₃PO per metal was added. If necessary the mixture was slightly heated until a clear solution was obtained. ³¹P NMR spectra were recorded after 10 min.

Thereby the perturbation of the ³¹P NMR chemical shift of the LEWIS base Et₃PO upon coordination to an acceptor molecule is determined. This value is converted in an acceptor number (AN) which has been calibrated using fully inert hexane (AN = 0) and the strong LEWIS acid SbF₅ (AN = 100).⁴ The conversion is done according to the following formula:

$$\Box \Box = 2.21 \times (\Box (^{31} P NMR) \Box \Box \Box \Box \Box \Box - 41.0)$$

Table S 2 ³¹ P NMR shifts of OPEt ₃ and resulting acceptor numbers of alkaline earth metal compounds
--

	³¹ P NMR shift of OPEt ₃ (δ) *ppm+	Acceptor number Ae compound (AN)
MgN ^F ₂	66.8	57.0
CaN ^F ₂	59.2	40.2
MgN" ₂	64.0	50.8
CaN" ₂	61.5	45.3
MgI ₂	67.6	58.8
Cal₂	58.4	38.5

140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240
								cł	nemical	shift [pp	om]								

Figure S28³¹P{¹H}NMR(243MHz, $\mathcal{C}\mathcal{Q}$, rt) of OPEt with MgN^F₂

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 chemical shift [ppm]

Figure S29³¹P{¹H}NMR (243 MHz, C₆D₆, rt) of OPEt₃ with CaN^F₂

Figure S 30 ^{31}P {1H} NMR (243 MHz_6 C D , rt) of_3OPEt with MgN" .

Figure S 31 ³¹P {¹H} NMR (243 MHz, C_6D_6 , rt) of OPEt₃ with CaN"₂.

1.4 Competition experiment between $MgNF_2$ and $B(C_6F_5)_3$

Under inert conditions $MgN_{2}^{F_{2}}$ (16 mg; 0.022 mmol) was suspended in $C_{6}D_{6}$ (550 µL) and $Et_{3}PO \cdot B(C_{6}F_{5})_{3}$ (14 mg; 0.022 mmol) added. Heating shortly to 60 °C resulted in a clear solution, which was examined by NMR spectroscopic methods.

Figure S 32 ³¹P {¹H} NMR (243 MH₂ $_6$ C D , rt)₃ of Et P₆Q·B(C F) without MgN^F.

Figure S 33 ³¹P {¹H} NMR (243 MHz, C₆D₆, rt) of Et₃PO·B(C₆F₅)₃ with MgN^F₂.

1.5 Single-crystal X-ray diffraction

Magnesium bis[(decafluorodiphenyl)amide] dimer, (MgNF2)2

A colorless crystal of compound (MgN^F₂)₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100 K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKα microfocus source. The measured data was processed with the CrysAlisPro (v38.46)⁵ software package. Using the program Olex2⁶, the structure was solved by Direct Methods (SheIXT)⁷ and refined by Least Squares minimization with SheIXL⁸. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905398 contains the supplementary crystallographic data for complex (MgNF₂)₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 34 ORTEP plot (50% probability) for $(MgNF_2)_2$.

Crystal data and structure refinement	(MgN ^F ₂) ₂
Identification code	hasj180309a
Empirical formula	$C_{48}F_{40}Mg_2N_4$
Formula weight	1441.14
Temperature/K	100
Crystal system	triclinic
Space group	<i>P</i> –1
a/Å	10.7838(4)
b/Å	10.8947(4)
c/Å	11.2504(4)
α/°	90.810(3)
β/°	113.380(4)
γ/°	102.982(3)
Volume/Å ³	1174.32(8)
Z	1
ρ _{calc} g/cm ³	2.038
µ/mm ⁻¹	2.397
F(000)	700.0
Crystal size/mm ³	0.265 × 0.175 × 0.156
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.384 to 136.222
Index ranges	$-12 \le h \le 12$, $-13 \le k \le 13$, $-13 \le l \le 11$
Reflections collected	12778
Independent reflections	$4275 [R_{int} = 0.0239, R_{sigma} = 0.0223]$
Data/restraints/parameters	4275/0/424
Goodness-of-fit on F ²	1.045
Final R indexes *I>=2σ (I)+	$R_1 = 0.0370, wR_2 = 0.1017$
Final R indexes [all data]	$R_1 = 0.0384, wR_2 = 0.1032$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.27

Table S 3 Crystal data and structure refinement for $(MgNF_2)_{2.}$

Magnesium bis[(decafluorodiphenyl)amide]·(THF)₂, MgN^F₂·(THF)₂

A colorless crystal of compound MgN^F₂·(THF)₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100 K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKa microfocus source. The measured data was processed with the CrysAlisPro (v38.46)⁵ software package. Using the program Olex2⁶, the structure was solved by Direct Methods (SheIXT)⁷ and refined by Least Squares minimization with ShelXL⁸. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905399 contains the supplementary crystallographic data for complex MgN^F₂·(THF)₂. This data can be obtained free of charge The Cambridge Crystallographic from Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 35 ORTEP plot (50% probability) for MgNf₂. (THF)₂.

Crystal data and structure refinement	MgN ^F ₂•(THF)₂
Identification code	hasj170517a
Empirical formula	$C_{32}H_{16}F_{20}MgN_2O_2$
Formula weight	864.78
Temperature/K	100
Crystal system	monoclinic
Space group	<i>C</i> 2/c
a/Å	9.2647(4)
b/Å	20.2362(8)
c/Å	17.7948(7)
α/°	90
β/°	100.799(5)
γ/°	90
Volume/Å ³	3277.1(2)
Z	4
ρ _{calc} g/cm ³	1.753
µ/mm ^{−1}	1.881
F(000)	1720.0
Crystal size/mm ³	0.446 × 0.39 × 0.372
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.74 to 136.192
Index ranges	$-11 \le h \le 7$, $-24 \le k \le 23$, $-21 \le l \le 18$
Reflections collected	5622
Independent reflections	2982 [$R_{int} = 0.0165$, $R_{sigma} = 0.0208$]
Data/restraints/parameters	2982/0/258
Goodness-of-fit on F ²	1.046
Final R indexes *I>=2σ (I)+	$R_1 = 0.0416$, $wR_2 = 0.1090$
Final R indexes [all data]	$R_1 = 0.0440, wR_2 = 0.1112$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.42

Table S 4 Crystal data and structure refinement for $MgNF_2 \cdot (THF)_2$.

Magnesium bis[(decafluorodiphenyl)amide]·(Et₂O)₂, MgN^F₂·(Et₂O)₂

A colorless crystal of compound MgN^F₂·(Et₂O)₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 99.9(2) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKa microfocus source. The measured data was processed with the CrysAlisPro (v39.46)¹⁰ software package. Using Olex2⁶, the structure was solved with the SheIXT⁷ structure solution program using Intrinsic Phasing and refined with the SheIXL¹¹ refinement package using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905400 contains the supplementary crystallographic data for complex MgN^F₂·(Et₂O)₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 36 Crystal structure (H omitted for clarity) and ORTEP plot (50% probability) for MgN_{2}^{F} (Et₂O)₂.

Crystal data and structure refinement	$MgNF_2 \cdot (Et_2O)_2$
Identification code	hasj180313a
Empirical formula	$C_{32}H_{20}F_{20}MgN_2O_2$
Formula weight	868.81
Temperature/K	99.9 (2)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	28.9330(3)
b/Å	10.43410(10)
c/Å	11.29390(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3409.51(6)
Z	4
ρ _{calc} g/cm ³	1.693
µ/mm ^{−1}	1.808
F(000)	1736.0
Crystal size/mm ³	0.353 × 0.16 × 0.149
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	6.11 to 145.88
Index ranges	$-35 \le h \le 35$, $-12 \le k \le 11$, $-13 \le l \le 13$
Reflections collected	38139
Independent reflections	6590 [$R_{int} = 0.0392$, $R_{sigma} = 0.0246$]
Data/restraints/parameters	6590/1/518
Goodness-of-fit on F ²	1.055
Final R indexes *I>=2σ (I)+	$R_1 = 0.0305, wR_2 = 0.0789$
Final R indexes [all data]	$R_1 = 0.0309, wR_2 = 0.0794$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.27

Table S 5 Crystal data and structure refinement for $MgNf_2$ ·(Et_2O)₂.

Calcium bis[(decafluorodiphenyl)amide]·(THF)₂, CaN^F₂·(THF)₂

A colorless crystal of compound $CaN_2^{F} \cdot (THF_2)$ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100.0(1) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuK α microfocus source. The measured data was processed with the CrysAlisPro (v38.46)⁵ software package. Using the program Olex2⁶, the structure was solved by Direct Methods (ShelXT)⁷ and refined by Least Squares minimization with ShelXL⁸. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model. The THF-group was refined over two positions (ratio ~ 70:30). The THF-group was additionally modeled using Rigid Bond (RIGU) Restraints and Similar Bond Constraints (SIMU)¹². Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905401 contains the supplementary crystallographic data for complex CaNF₂· (THF)₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 37 ORTEP plot (50% probability) for $CaN^{F_2} \cdot (THF)_2$.

Crystal data and structure refinement	CaN ^F ₂ ⋅(THF) ₂
Identification code	hasj170427a
Empirical formula	$C_{32}H_{16}CaF_{20}N_2O_2$
Formula weight	880.55
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	C2/c
a/Å	9.2667(2)
b/Å	20.4436(4)
c/Å	17.8288(4)
α/°	90
β/°	98.013(2)
γ/°	90
Volume/Å ³	3344.59(12)
Z	4
ρ _{calc} g/cm ³	1.749
µ/mm ^{−1}	3.002
F(000)	1752.0
Crystal size/mm ³	0.353 × 0.226 × 0.124
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.65 to 136.23
Index ranges	$-11 \le h \le 11$, $-24 \le k \le 16$, $-20 \le l \le 21$
Reflections collected	9982
Independent reflections	$3066 [R_{int} = 0.0204, R_{sigma} = 0.0193]$
Data/restraints/parameters	3066/93/277
Goodness-of-fit on F ²	1.039
Final R indexes *I>=2σ (I)+	$R_1 = 0.0317$, $wR_2 = 0.0821$
Final R indexes [all data]	$R_1 = 0.0327$, $wR_2 = 0.0830$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.38

Table S 6 Crystal data and structure refinement for $CaN^{F_2} \cdot (THF)_2$.

Calcium bis[(decafluorodiphenyl)amide]·(Et₂O)₂, CaN^F₂·(Et₂O)₂

A colorless crystal of compound $CaN_{F_2}(Et_2O)_2$ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100.0(1) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuK α microfocus source. The measured data was processed with the CrysAlisPro (v39.46)¹⁰ software package. Using Olex2⁶, the structure was solved with the ShelXT⁷ structure solution program using Intrinsic Phasing and refined with the ShelXL¹¹ refinement package using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905402 contains the supplementary crystallographic data for complex CaN^F₂·(Et₂O)₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 38 Crystal structure (H omitted for clarity) and ORTEP plot (30% probability) for CaN^F₂·(Et₂O)₂.

Crystal data and structure refinement	$CaNF_2 \cdot (Et_2O)_2$
Identification code	hasj170817a
Empirical formula	$C_{32}H_{20}CaF_{20}N_2O_2$
Formula weight	884.58
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /n
a/Å	9.2631(3)
b/Å	20.3100(4)
c/Å	18.1174(4)
α/°	90
β/°	91.034(2)
γ/°	90
Volume/Å ³	3407.94(15)
Z	4
$\rho_{calc}g/cm^3$	1.724
µ/mm ^{−1}	2.947
F(000)	1768.0
Crystal size/mm ³	0.232 × 0.11 × 0.097
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	6.538 to 147.41
Index ranges	$-7 \le h \le 11, -25 \le k \le 15, -21 \le l \le 21$
Reflections collected	12065
Independent reflections	6645 [$R_{int} = 0.0239, R_{sigma} = 0.0333$]
Data/restraints/parameters	6645/0/518
Goodness-of-fit on F ²	1.025
Final R indexes *I>=2σ (I)+	$R_1 = 0.0343, wR_2 = 0.0871$
Final R indexes [all data]	R ₁ = 0.0395, wR ₂ = 0.0909
Largest diff. peak/hole / e Å ⁻³	0.42/-0.45

Table S 7 Crystal data and structure refinement for $CaNf_2 \cdot (Et_2O)_2$.

Strontium bis[(decafluorodiphenyl)amide]·(THF)₂, SrN^F₂·(THF)₂

A colorless crystal of compound SrN^F₂·(THF)₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100.0(1) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKa microfocus source. The measured data was processed with the CrysAlisPro (v38.46)⁵ software package. Using the program Olex2⁶, the structure was solved by Direct Methods (ShelXT)⁷ and refined by Least Squares minimization with SheIXL⁸. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model. The THF-group was refined over two positions (ratio ~ 80:20). The THF-group was additionally modeled using Rigid Bond (RIGU)¹². Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905403 contains the supplementary crystallographic data for complex SrN^F₂ (THF)₂. This data can be obtained The charge from Cambridge Crystallographic free of Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 39 ORTEP plot (50% probability) for SrNF₂. (THF)₂.

Crystal data and structure refinement	SrN ^F ₂ ·(THF) ₂
Identification code	hasj181130a
Empirical formula	$C_{32}H_{16}F_{20}N_2O_2Sr$
Formula weight	928.09
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	<i>C</i> 2/c
a/Å	15.8863(2)
b/Å	12.46800(10)
c/Å	17.3641(2)
α/°	90
β/°	107.9700(10)
γ/°	90
Volume/Å ³	3271.54(6)
Z	4
ρ _{calc} g/cm ³	1.884
µ/mm ⁻¹	3.705
F(000)	1824.0
Crystal size/mm ³	0.148 × 0.099 × 0.092
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	9.196 to 136.218
Index ranges	$-19 \le h \le 17$, $-14 \le k \le 14$, $-20 \le l \le 20$
Reflections collected	9108
Independent reflections	2992 [$R_{int} = 0.0204, R_{sigma} = 0.0180$]
Data/restraints/parameters	2992/51/278
Goodness-of-fit on F ²	1.047
Final R indexes *I>=2σ (I)+	$R_1 = 0.0222$, $wR_2 = 0.0561$
Final R indexes [all data]	$R_1 = 0.0228$, $wR_2 = 0.0565$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.34

Table S 8 Crystal data and structure refinement for $SrNf_2 \cdot (THF)_2$.

Bis[magnesium((decafluorodiphenyl)amide)(bis(trimethylsilyl)amide)], (N^FMgN")₂ A colorless crystal of compound (N^FMgN")₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100 K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKα microfocus source. The measured data was processed with the CrysAlisPro (v38.46)⁵ software package. Using the program Olex2⁶, the structure was solved by Direct Methods (SheIXT)⁷ and refined by Least Squares minimisation with SheIXL⁸. The hydrogen atoms have been placed on calculated positions and were refined isotropically in a riding model. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905404 contains the supplementary crystallographic data for complex (N^FMgN")₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 40 ORTEP plot (50% probability) for (N^FMgN")₂.

Crystal data and structure refinement	(N ^F MgN'') ₂
Identification code	hasj170503a
Empirical formula	$C_{36}H_{36}F_{20}Mg_2N_4Si_4$
Formula weight	1065.67
Temperature/K	100
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ /n
a/Å	11.7023(3)
b/Å	15.6263(3)
c/Å	13.0643(3)
α/°	90
β/°	111.787(3)
γ/°	90
Volume/Å ³	2218.34(10)
Z	2
ρ _{calc} g/cm ³	1.595
µ/mm ^{−1}	2.616
F(000)	1080.0
Crystal size/mm ³	0.242 × 0.163 × 0.147
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	8.678 to 136.19
Index ranges	−14 ≤ h ≤ 13, −11 ≤ k ≤ 18, −13 ≤ l ≤ 15
Reflections collected	7362
Independent reflections	4040 [$R_{int} = 0.0225$, $R_{sigma} = 0.0326$]
Data/restraints/parameters	4040/0/304
Goodness-of-fit on F ²	1.038
Final R indexes *I>=2σ (I)+	$R_1 = 0.0366, wR_2 = 0.1001$
Final R indexes [all data]	$R_1 = 0.0416$, $wR_2 = 0.1052$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.37

Table S 9 Crystal data and structure refinement for (NfMgN")₂.

Bis[calcium((decafluorodiphenyl)amide)(bis(trimethylsilyl)amide)], (N^FCaN")₂ A colorless crystal of (N^FCaN")₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 200.0(1) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKα microfocus source. The measured data was processed with the CrysAlisPro (v39.46)¹⁰ software package. Using Olex2⁶, the structure was solved with the ShelXT⁷ structure solution program using Intrinsic Phasing and refined with the ShelXL¹¹ refinement package using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905405 contains the supplementary crystallographic data for complex (N^FCaN")₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 41 ORTEP plot (50% probability) for (NfCaN")₂.

Crystal data and structure refinement	(NfCaN") ₂
Identification code	hasj180921b
Empirical formula	$C_{36}H_{36}Ca_2F_{20}N_4Si_4$
Formula weight	1097.21
Temperature/K	200.0(1)
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	8.8864(2)
b/Å	24.4425(6)
c/Å	24.5767(7)
α/°	63.347(3)
β/°	83.970(2)
γ/°	89.760(2)
Volume/Å ³	4739.0(2)
Z	4
ρ _{calc} g/cm ³	1.538
µ/mm ⁻¹	4.085
F(000)	2224.0
Crystal size/mm ³	0.327 × 0.121 × 0.077
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	6.9 to 147.808
Index ranges	$-8 \le h \le 10, -30 \le k \le 30, -25 \le l \le 30$
Reflections collected	30487
Independent reflections	18418 [$R_{int} = 0.0308$, $R_{sigma} = 0.0492$]
Data/restraints/parameters	18418/0/1213
Goodness-of-fit on F ²	1.024
Final R indexes *I>=2σ (I)+	$R_1 = 0.0434, wR_2 = 0.1099$
Final R indexes [all data]	$R_1 = 0.0573$, $wR_2 = 0.1201$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.60

Table S 10 Crystal data and structure refinement for $(N^{F}CaN'')_{2}$.
Bis[strontium((decafluorodiphenyl)amide)(bis(trimethylsilyl)amide)], (N^FSrN'')₂

A colorless crystal of compound (N^FSrN")₂ was embedded in inert perfluoropolyalkylether (viscosity 1800 cSt; ABCR GmbH) and mounted using a Hampton Research CryoLoop. The crystal was then flash cooled to 100.0(1) K in a nitrogen gas stream and kept at this temperature during the experiment. The crystal structure was measured on a SuperNova diffractometer with Atlas S2 detector using a CuKa microfocus source. The measured data was processed with the CrysAlisPro (v39.46)¹⁰ software package. Using Olex2⁶, the structure was solved with the ShelXT⁷ structure solution program using Intrinsic Phasing and refined with the SheIXL¹¹ refinement package using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Two benzene molecules with occupancies of 1:1 were additionally modeled using Rigid Bond (RIGU) Restraints and additionally similarity restraints (SIMU)¹²; two disordered benzene molecules were found on a symmetry element and were refined with large displacement factors. Geometry calculations and graphics were done with PLATON⁹. The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 1905406 contains the supplementary crystallographic data for complex (N^FSrN")₂. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S 42 ORTEP plot (50% probability) for (NFSrN")2.

Crystal data and structure refinement	(N ^F SrN'') ₂
Identification code	hasj180302a
Empirical formula	$C_{48}H_{48}F_{20}N_4Si_4Sr_2$
Formula weight	1348.50
Temperature/K	100.0(1)
Crystal system	triclinic
Space group	<i>P</i> –1
a/Å	12.5188(2)
b/Å	20.5028(3)
c/Å	23.2272(2)
α/°	99.6880(10)
β/°	99.7680(10)
γ/°	102.2650(10)
Volume/Å ³	5610.49(13)
Z	4
ρ _{calc} g/cm ³	1.596
µ/mm ⁻¹	4.269
F(000)	2704.0
Crystal size/mm ³	0.2785 × 0.2206 × 0.1705
Crystal color	colorless
Radiation	CuKα (λ = 1.54184)
2O range for data collection/°	6.6 to 145.902
Index ranges	$-15 \le h \le 15, -25 \le k \le 24, -28 \le l \le 28$
Reflections collected	104506
Independent reflections	21992 [$R_{int} = 0.0422$, $R_{sigma} = 0.0252$]
Data/restraints/parameters	21992/258/1460
Goodness-of-fit on F ²	1.067
Final R indexes *I>=2σ (I)+	$R_1 = 0.0439$, $wR_2 = 0.1203$
Final R indexes [all data]	$R_1 = 0.0504, wR_2 = 0.1269$
Largest diff. peak/hole / e Å ⁻³	1.34/-0.57

Table S 11 Crystal data and structure refinement for (N^FSrN")₂.

2 DFT calculations

All calculations were carried out using Gaussian 16A.¹³ All methods were used as implemented. Structures were optimized on a B3PW91/6-311+G** level of theory,¹⁴⁻¹⁷ except for iodine-containing complexes. The latter were optimized on the B3PW91/def2tzvpp level of theory,¹⁸ which includes pseudopotentials for iodide. All optimized structures were determined to be true minima by frequency calculation (NIMAG=0). Charges were calculated using the Natural Bond Orbital analysis.¹⁹ Structures were drawn and evaluated using Molecule.²⁰ Topological analysis was carried out according to Bader using the Program AIMAII17 with the wave function obtained from the optimization.²¹⁻²²

XYZ-Coordinates

	102				
(N ^F Mg	(N ^F MgN") ₂				
Si	-0.583365	1.882027	2.321285		
Si	0.156375	-0.947023	2.713506		
Mg	1.402342	0.269817	0.019409		
F	2.021386	2.342312	-0.092868		
F	4.257932	-1.101384	2.523417		
F	6.396663	0.565309	0.297329		
F	3.060523	4.838676	-0.185787		
F	6.251296	-4.663699	0.210808		
F	4.341321	-1.112379	-2.190346		
F	7.386399	3.016032	0.195207		
F	5.552793	-3.462412	2.548127		
F	5.640846	-3.473690	-2.157783		
F	5.785640	5.208107	-0.041728		
Ν	3.467314	0.146583	0.141993		
Ν	-0.136977	0.346914	1.502838		
С	4.213418	-1.046753	0.164383		
С	4.143402	1.340006	0.106509		
С	3.388697	2.515206	-0.014701		
С	5.530972	1.582536	0.175065		
С	4.563980	-1.680033	1.359896		
С	3.885261	3.800111	-0.066933		
С	4.606993	-1.687171	-1.013759		
С	5.258139	3.985198	0.003537		
С	5.604770	-3.502924	0.195706		
С	5.288067	-2.895706	-1.011603		
С	5.243013	-2.889437	1.387146		
С	6.066772	2.862620	0.123974		
С	-1.412832	-1.691005	3.451886		

Н	-1.831618	-1.081290	4.253914
Н	-1.163670	-2.668490	3.880158
Н	-2.202746	-1.852431	2.714786
С	1.259860	-0.382970	4.135634
Н	2.246490	-0.070957	3.783732
Н	1.411477	-1.241673	4.799666
Н	0.842021	0.422445	4.742533
С	-1.730279	1.628066	3.800658
Н	-2.646857	1.098042	3.528167
Н	-2.022429	2.623307	4.154659
Н	-1.277715	1.109909	4.647830
С	0.904477	2.880527	2.907618
Н	1.636721	2.281117	3.451932
Н	0.555622	3.666992	3.586099
Н	1.416890	3.377113	2.081117
С	1.077796	-2.388750	1.920219
Н	0.419642	-3.044209	1.350230
Н	1.496495	-2.987483	2.736496
Н	1.929538	-2.123720	1.285381
С	-1.570124	3.019386	1.186784
Н	-0.967101	3.515562	0.428134
Н	-1.989838	3.807165	1.822460
Н	-2.428605	2.547334	0.696541
Si	0.224669	-1.642991	-2.523710
Si	0.132144	1.290866	-2.826530
Mg	-1.413948	-0.062633	-0.152043
F	-1.811858	-2.179751	0.213714
F	-3.789508	1.631818	-2.314754
F	-6.313348	-0.925565	-0.542894
F	-2.581295	-4.765492	0.420578
F	-6.723498	4.327062	0.170905
F	-5.013936	0.385382	2.066951
F	-7.048103	-3.460482	-0.302560
F	-5.316478	3.838618	-2.108956
F	-6.568930	2.579070	2.249958
F	-5.238918	-5.439109	0.176041
Ν	-3.481117	-0.169491	-0.218878
Ν	0.109161	-0.072408	-1.647797
С	-4.343017	0.932260	-0.128829
С	-4.019534	-1.429689	-0.118418
С	-3.147613	-2.503663	0.104074
С	-5.363410	-1.829188	-0.266018
С	-4.454370	1.852476	-1.173931
С	-3.505291	-3.831794	0.205137
С	-5.081649	1.220645	1.025316
С	-4.844453	-4.170407	0.079941
С	-5.964721	3.239738	0.073326
С	-5.885399	2.344166	1.132317
С	-5.242024	2.991624	-1.084514
С	-5.761808	-3.154473	-0.157413
С	1.878969	1.674113	-3.429192
Н	2.289798	0.899591	-4.077878

Н	1.852818	2.606687	-4.004062
Н	2.588631	1.822647	-2.610385
С	-0.981338	1.019336	-4.325865
Н	-2.026668	0.895748	-4.031878
Н	-0.923867	1.924293	-4.941504
Н	-0.704032	0.179343	-4.964074
С	1.387658	-1.638776	-4.010421
Ĥ	2.420926	-1.436043	-3.720232
н	1 361632	-2 651932	-4 428436
н	1 116718	-0.955036	-4 815711
C	-1 466270	-2 215443	-3 136087
н	-1 872380	-1 558470	-3 907607
н	-1 363189	-3 214161	-3 575125
Ц	-2 217267	-3.214101	-2 3/5208
С С	-2.217207	2 206250	2.040290
с ц	-0.505517	2.090200	-2.079240
п	0.142000	2 627952	-1.304930
	-0.524527	3.027032	-2.093073
	-1.527499	2.835573	-1.700196
	0.909594	-3.025710	-1.443183
н	0.222118	-3.364868	-0.669020
Н	1.086752	-3.880278	-2.105874
Н	1.871891	-2.792394	-0.978051
	51		
NFMo	51 NI"		
	0 744000	0 704700	1 410460
ତ। ତ:	3.741003	0.724700	1.419400
31 Ma	3.742237	-0.721262	-1.419889
IVIG	1.150764	0.001858	-0.001170
F -	0.454407	2.027727	-1.003733
-	0.456881	-2.025366	1.005457
F	-3.4/236/	0.625314	1.188437
F	-0.552903	4.557025	-1.176884
F	-3.047113	-5.097945	0.200246
F	-3.470255	-0.629941	-1.190280
F	-4.476744	3.097455	0.976928
F	-0.546734	-4.555983	1.179399
F	-4.471279	-3.103652	-0.978021
F	-3.054666	5.094737	-0.199219
Ν	-0.875522	-0.000041	-0.000350
Ν	3.087772	0.002586	-0.000778
С	-1.524243	-1.216268	0.033511
С	-1.526180	1.215106	-0.033547
С	-0.815173	2.295865	-0.570298
С	-2.770108	1.547793	0.523060
С	-0.811954	-2.295550	0.571365
С	-1.289823	3.589626	-0.639476
Ċ	-2.767291	-1.551099	-0.523867
Ċ	-2.556269	3.862411	-0.136902
Ċ	-2.550387	-3.864961	0.137593
Ĉ	-3 279682	-2 839183	-0 450492
ĉ	-1 284740	-3 590038	0.400402
č	-3 284374	2 825215	0.450072

0.546734	-4.555983	1.179399
4.471279	-3.103652	-0.978021
-3.054666	5.094737	-0.199219
-0.875522	-0.000041	-0.000350
3.087772	0.002586	-0.000778
1.524243	-1.216268	0.033511
1.526180	1.215106	-0.033547
0.815173	2.295865	-0.570298
2.770108	1.547793	0.523060
0.811954	-2.295550	0.571365
1.289823	3.589626	-0.639476
2.767291	-1.551099	-0.523867
2.556269	3.862411	-0.136902
2.550387	-3.864961	0.137593

С	4.726014	0.471055	-2.499264
Н	5.628121	0.817541	-1.985032
Н	5.043991	-0.006235	-3.432533
Н	4.134742	1.355352	-2.756302
С	4.809538	-2.238053	-1.082364
Н	4.269628	-2.980683	-0.486975
н	5 126576	-2 717326	-2 014897
н	5 715215	-1 968655	-0 529548
C	4 807705	2 2/2868	1 083660
с ц	4.007703	2.242000	0.488050
	4.207123	2.900000	0.400909
	5.124210	2.721002	2.010000
	5.713000	1.974000	0.530626
C	4.727077	-0.468219	2.496763
Н	5.629734	-0.812344	1.981910
Н	5.044360	0.007848	3.430886
Н	4.137138	-1.353870	2.752158
С	2.220676	-1.290455	-2.422024
Н	1.560528	-0.457878	-2.706024
Н	2.520120	-1.757683	-3.366065
Н	1.628598	-2.050629	-1.892939
С	2.219969	1.291143	2.422679
Н	1.561163	0.457400	2.706267
Н	2.519282	1.758119	3.366891
Н	1.626537	2.050939	1.894555
N ^F Mgl	52 N"-F(-)		
Si	-3.984150	1.297553	-0.859166
Si	-2.736817	0.535974	1.808843
Mg	-0.860196	1.182310	-0.792196
F	0.776152	2.525350	0.543299
F	-0.919783	-1.334996	-1.893894
F	3.450605	-1.031481	-1.057475
F	2.985673	4.067067	0.778112
F	0.167447	-5.510561	0.004588
F	2.339962	-1.623317	1.517266
F	5.630224	0.486938	-0.766393
F	-1.299488	-4.006634	-1.744260
F	1.992791	-4.278176	1.614442
F	5.447532	3.053688	0.142327
N	0.829954	-0.003993	-0.330481
N	-2 622695	0.958284	0 147164
C	0 753707	-1 370723	-0 233242
C	2 018270	0.664716	-0 100025
C C	1 082205	2 003814	0.133023
0	2 200427	2.003014	0.230440
C C	J.JUU421	0.202032 _2 052770	-0.047021
0	-0.130/03 2 000052	-2.002110	-1.020401
	3.090003	2.00/000	0.040090
	1.400320	-2.103212	0.00/001
	4.348400	2.295044	0.024960
	0.349671	-4.185483	-0.069328
1.	1.283420	-3.555067	0.739432

С	-0.398268	-3.417806	-0.951783
С	4.436149	0.987019	-0.424288
С	-3.997722	1.577691	2.780430
Н	-5.016274	1.470526	2.394006
Н	-4.012481	1.277977	3.835096
Н	-3 737300	2 640542	2 737950
C	-3 210247	-1 280649	2 083566
ч	-0.210247	-1.2000-5	1 609616
	2 256504	1 520256	2 150990
	-3.230304	-1.529350	3.150009
	-4.199007	-1.503666	1.052077
	-5.478602	0.165066	-0.538737
н	-5.867270	0.253917	0.480791
Н	-6.295899	0.416959	-1.225018
Н	-5.215330	-0.884625	-0.705406
С	-3.534445	1.068924	-2.681834
Н	-3.317405	0.019712	-2.909715
Н	-4.370551	1.379316	-3.319595
Н	-2.658764	1.665738	-2.962675
С	-1.088464	0.781353	2.708735
Н	-0.786300	1.833286	2.716394
н	-1.180698	0.454264	3.750927
Н	-0.276923	0.205549	2.253847
C	-4 604228	3 081235	-0.667705
н	-3 804131	3 786014	-0 917383
н	-5 /53208	3 2860/3	-1 330/0/
	-3.433290	2 207450	0 250777
	-4.920754	3.207439	0.359777
Г	-0.495196	2.290130	-2.199027
	70		
MaNF	73 /TUE)		
IVIGIN' 2		4 074000	0 0000 40
ivig	-0.000055	1.371620	0.000049
-	2.196730	-2.634991	-0.085856
F	1.936912	1.731092	-1.270597
F	3.859255	-1.231825	1.867382
F	-0.095927	0.194003	2.922121
F	4 401904	0 00 4505	
F	4.401304	2.304535	-2.230945
–	6.614285	2.304535 1.065478	-2.230945 -1.166950
F	6.614285 1.372744	2.304535 1.065478 -4.774638	-2.230945 -1.166950 1.310397
F	6.614285 1.372744 6.269862	2.304535 1.065478 -4.774638 -0.699082	-2.230945 -1.166950 1.310397 0.881743
F F F	6.614285 1.372744 6.269862 -0.970100	2.304535 1.065478 -4.774638 -0.699082 -1.961783	-2.230945 -1.166950 1.310397 0.881743 4.272658
F F F F	6.614285 1.372744 6.269862 -0.970100 -0.230765	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150
F F F F O	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280
F F F O N	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160
F F F O N C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914
F F F O N C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1 133517	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025
F F F O N C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693
F F F O N C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.302207	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788252	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.700418
F F F O N C C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.392207 2.040720	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788352 0.402407	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.709418 0.817222
F F F F O N C C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.392207 3.940739 4.274005	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788352 -0.402497 1.440707	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.709418 0.817323
F F F F O N C C C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.392207 3.940739 4.274695	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788352 -0.402497 1.410797 2.444522	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.709418 0.817323 -1.248236
F F F O N C C C C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.392207 3.940739 4.274695 1.438234	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788352 -0.402497 1.410797 -2.441503	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.709418 0.817323 -1.248236 1.000208
F F F O N C C C C C C C C	6.614285 1.372744 6.269862 -0.970100 -0.230765 -0.606909 1.471557 3.028277 1.100965 2.772434 5.392207 3.940739 4.274695 1.438234 0.193121	2.304535 1.065478 -4.774638 -0.699082 -1.961783 -4.471406 2.936784 0.008748 1.092981 -1.133517 0.169509 0.788352 -0.402497 1.410797 -2.441503 -3.405298	-2.230945 -1.166950 1.310397 0.881743 4.272658 3.492150 -1.332280 0.672160 -0.750914 1.377025 0.273693 -0.709418 0.817323 -1.248236 1.000208 2.817098

С	0.269144	-1.030661	2.497384
С	5.207661	-0.116835	0.327708
С	-0.185736	-2.129545	3.207479
С	-0.731664	4.949355	-2.550619
Н	-0.209280	5.579075	-3.273237
Н	-1.273897	5.600751	-1.857782
С	-1.839225	2.888321	-2.113929
H	-2.666433	3.121852	-1.437512
н	-1.956161	1.874078	-2.490836
С	0.219018	4.035271	-1.801684
Ĥ	0.991909	3.633803	-2.462050
н	0.696863	4 487496	-0.931789
C	-1 678621	3 940387	-3 200642
н	-2 637586	4 372040	-3 492592
н	-1 217274	3 50/175	-1 001111
F	-7.106627	-2 635118	0.085770
E	1 027162	1 720050	1 270622
Г С	2 950146	1.730909	1.270033
г г	-3.039140	-1.232000	-1.00/010
г г	0.096018	0.194089	-2.922007
r r	-4.402240	2.304223	2.230860
F	-6.614484	1.065041	1.166/24
F	-1.372401	-4.774683	-1.310457
-	-6.269835	-0.699453	-0.881987
F	0.970421	-1.961612	-4.272531
F	0.231217	-4.471301	-3.492110
0	0.606723	2.936776	1.332436
Ν	-1.471584	0.008685	-0.672142
С	-3.028456	1.092791	0.750874
С	-1.100881	-1.133542	-1.377010
С	-2.772493	0.169357	-0.273737
С	-5.392363	0.788006	0.709250
С	-3.940734	-0.402717	-0.817437
С	-4.274920	1.410512	1.248139
С	-1.438074	-2.441559	-1.000232
С	-0.192786	-3.405234	-2.817065
С	-1.013430	-3.555262	-1.707147
С	-0.268998	-1.030608	-2.497317
С	-5.207701	-0.117148	-0.327883
С	0.186005	-2.129447	-3.207402
С	0.731408	4.949336	2.550804
Н	0.208996	5.579031	3.273424
Н	1.273637	5.600757	1.857987
С	1.839031	2.888340	2,114099
Ĥ	2 666241	3 121911	1 437698
н	1 955995	1 874095	2 490989
C	-0 219238	4 035239	1 801839
й	-0 002122	3 633746	2 462185
н	-0 607077	1 187166	0 0310/1
\hat{c}	1 678320	3 010202	3 200020
ч	1.070378	J.340302 1 379055	3.200029
Н	1 217026	3 50/1/1	1 001310
11	1.217020	5.50+1+1	- .031310

	74		
MgN ^F ₂ ·	(THF) ₂ -F(-)		
Ma		0.000000	0.693763
0	-0.525590	2.167255	0.770326
0	0.525590	-2.167255	0.770326
C	-1 143806	4 179653	1 835486
C	1 143806	-4 179653	1.835486
с ц	-1 073182	4.173033	2 78/012
и Ц	1 072192	4.715020	2.704913
	2 002076	-4.715920	2.704913
	-2.092970	4.440001	1.300035
	2.092976	-4.440001	1.300035
	0.000000	3.240428	-0.023028
C	0.000000	-3.246428	-0.023028
н	-0.665146	3.400439	-0.879509
Н	0.665146	-3.400439	-0.879509
Н	0.985910	2.950094	-0.384663
Н	-0.985910	-2.950094	-0.384663
С	-1.044095	2.672913	2.022599
С	1.044095	-2.672913	2.022599
Н	-0.354353	2.380789	2.816167
Н	0.354353	-2.380789	2.816167
Н	-2.004128	2.189184	2.207989
Н	2.004128	-2.189184	2.207989
С	0.026422	4.463692	0.892396
С	-0.026422	-4.463692	0.892396
Н	-0.080465	5.398286	0.335966
Н	0.080465	-5.398286	0.335966
Н	0.965494	4.500036	1.450541
Н	-0.965494	-4.500036	1.450541
F	-4.257021	-1.966885	-0.916477
F	4.257021	1.966885	-0.916477
F	-2.129358	-2.232707	2.132655
F	2.129358	2.232707	2.132655
F	-4.089338	1.495587	-0.034976
F	4.089338	-1.495587	-0.034976
F	-0.801052	1.092786	-1.985086
F	0.801052	-1.092786	-1.985086
F	-3.855714	-1.953211	4.150029
F	3.855714	1.953211	4.150029
F	-5.764391	-0.004795	4.090055
F	5 764391	0.004795	4 090055
F	-5 047884	-1 941762	-3 467688
F	5 047884	1 941762	-3 467688
F	-5 871322	1 693472	1 953033
F	5 871322	-1 603472	1.000000
F	-1 57337/	1 050506	-4 550023
I E	1 573374	-1.050590	-4.550023
	2 717/60	-1.050590	-4.JJ002J
Г С	-3.111400	-0.437309	-0.000214 5 006044
Г N	3.111400 2025202	0.40/009	-0.000214 0.004057
IN NI	-2.UZƏJÖJ	-0.434223	-0.024257
N C	2.020383	0.434223	-0.024257
6	-2.992842	-1.2150/2	2.080471

С	2.992842	1.215672	2.080471
С	-2.484107	-0.429327	-1.319487
С	2.484107	0.429327	-1.319487
С	-2.994456	-0.360914	0.966394
С	2.994456	0.360914	0.966394
С	-4.881099	-0.119373	3.089371
С	4.881099	0.119373	3.089371
C	-4.010394	0.613512	0.974841
C	4.010394	-0.613512	0.974841
C	-3 898260	-1 096582	3 122422
C	3 898260	1.006582	3 122 122
C	-3 583773	-1 185109	-1 770124
C C	3 583773	1 185100	-1 770124
C C	2 222700	0 447655	4 055072
C C	-3.323700	-0.447055	-4.055072
	3.323700	0.447655	-4.055072
	-4.001038	-1.190515	-3.099946
C	4.001038	1.190515	-3.099946
C	-1.836880	0.306700	-2.327498
C	1.836880	-0.306700	-2.327498
С	-4.936936	0.733497	1.998228
С	4.936936	-0.733497	1.998228
С	-2.228274	0.302782	-3.654453
С	2.228274	-0.302782	-3.654453
F	0.000000	0.000000	2.554177
	04		
	94		
(MaN	F_)_		
(MgN Ma	F ₂) ₂ -1 548244	0 165096	-0 078844
(MgN Mg F	F ₂) ₂ -1.548244 -1.310114	0.165096	-0.078844
(MgN ^I Mg F	F ₂₎₂ -1.548244 -1.310114 -1.744788	0.165096 1.965522	-0.078844 -1.327014
(MgN Mg F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 2.056782	0.165096 1.965522 -1.982614	-0.078844 -1.327014 0.398831
(MgN ^I Mg F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782	0.165096 1.965522 -1.982614 1.380784	-0.078844 -1.327014 0.398831 -2.485006
(MgN ^I Mg F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877	0.165096 1.965522 -1.982614 1.380784 -0.547507	-0.078844 -1.327014 0.398831 -2.485006 -3.859670
(MgN ^I Mg F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070
(MgN ^I Mg F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552
(MgN ^I Mg F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499
(MgN ^I Mg F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602
(MgN ^I Mg F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771
(MgN ^I Mg F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231
(MgN ^I Mg F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724
(MgN ^I Mg F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166
(MgN ^I Mg F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210
(MgN ^I Mg F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621
(MgN ^I Mg F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949
(MgN ^I Mg F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644
(MgN ^I Mg F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796
(MgN ^I Mg F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808
(MgN ^I Mg F F F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120 -6.837149	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218 -3.732822	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808 -0.190812
(MgN ^I Mg F F F F F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120 -6.837149 -4.883388	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218 -3.732822 -5.525889	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808 -0.190812 0.426704
(MgN ^I Mg F F F F F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120 -6.837149 -4.883388 -3.552372	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218 -3.732822 -5.525889 -0.160043	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808 -0.190812 0.426704 -0.196356
(MgN ^I Mg F F F F F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120 -6.837149 -4.883388 -3.552372 0.063930	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218 -3.732822 -5.525889 -0.160043 -0.349911	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808 -0.190812 0.426704 -0.196356 -1.523619
(MgN ^I Mg F F F F F F F F F F F F F F F F F F	F ₂) ₂ -1.548244 -1.310114 -1.744788 -3.956782 1.766877 -6.310187 2.043236 -2.098757 -1.159296 1.876814 1.872141 0.438125 -2.297744 -6.800045 -2.243818 -5.119101 -0.275275 -5.605898 -7.045120 -6.837149 -4.883388 -3.552372 0.063930 0.188024	0.165096 1.965522 -1.982614 1.380784 -0.547507 -1.154594 -2.206171 -1.245903 3.974650 -4.773550 1.414353 3.697608 -4.616618 2.657048 -3.777547 0.544907 -5.559219 3.508605 4.156218 -3.732822 -5.525889 -0.160043 -0.349911 0.633193	-0.078844 -1.327014 0.398831 -2.485006 -3.859670 -0.535070 -1.112552 -3.109499 -3.141602 -1.988771 -5.673231 -5.346724 0.712166 1.962210 -4.035621 2.009949 -3.468644 -2.510796 -0.293808 -0.190812 0.426704 -0.196356 -1.523619 -2.544089

С	-0.035811	-1.670460	-2.055181
С	-3.045470	-2.431555	0.258766
С	-3.995485	-1.448685	-0.046745
С	-4.483105	0.891361	-0.233921
С	0.954606	-2.613061	-1.806795
С	-4.637123	1.683904	-1.373212
С	-1.114860	-2.101270	-2.829448
С	-5.298034	-1.963767	-0.199216
С	0.353908	2.724218	-4.451897
С	-1.198458	-3.400674	-3.311284
С	1.082571	1.552861	-4.616940
С	-3.291907	-3.778103	0.420955
С	-5.486776	2.780979	-1.402506
С	-6.100881	2.340927	0.874923
С	-0.457337	2.868061	-3.333500
С	1.010527	0.536077	-3.672258
С	-5.236468	1.258139	0.885862
С	-6.225540	3.110154	-0.275154
С	0.900254	-3.918980	-2.259855
C	-0.192701	-4.315507	-3.021025
С	-5.586240	-3.311933	-0.032953
C	-4.594091	-4.234551	0.277921
Ма	1.548242	-0.165439	0.077948
F	1.310001	-1.965785	1.325714
F	1.744531	1.982145	-0.400346
F	3.955071	-1.381351	2.485533
F	-1.766928	0.546980	3.858716
F	6.309352	1.155783	0.537894
F	-2.042379	2.206710	1.111355
F	2.098611	1.244617	3.109535
F	1.158919	-3.975284	3.139904
F	-1.875190	4.773916	1.987791
F	-1.872456	-1.415258	5.671888
F	-0.438617	-3.698552	5.344988
F	2.296949	4.616238	-0.713871
F	6.802200	-2.655134	-1.959921
F	2.244397	3.776095	4.035856
F	5.120747	-0.543418	-2.008178
F	0.276772	5.558624	3.468383
F	5.604706	-3.508732	2.511801
F	7.045875	-4.155119	0.295719
F	6.835845	3.734095	0.193329
F	4.882063	5.526378	-0.426371
Ν	3.552150	0.160348	0.197191
Ν	-0.063886	0.349647	1.522683
С	-0.188153	-0.633630	2.542967
С	0.515140	-1.826618	2.427777
C	0.036216	1.670080	2.054458
С	3.044926	2.431544	-0.259112
С	3.994991	1.449070	0.047516
С	4.483099	-0.890849	0.235078
С	-0.953768	2.613091	1.805875

С	4.636401	-1.683814	1.374175
С	1.115179	2.100386	2.829138
С	5.297261	1.964573	0.200932
С	-0.354276	-2.724994	4.450353
С	1.199128	3.399716	3.311124
С	-1.082855	-1.553608	4.615600
С	3.291103	3.778116	-0.421506
С	5.486300	-2.780696	1.403702
С	6.102105	-2.339610	-0.873060
С	0.457020	-2.868685	3.331975
С	-1.010686	-0.536640	3.671127
С	5.237432	-1.257034	-0.884255
С	6.226047	-3.109253	0.276816
С	-0.899033	3.918945	2.259085
С	0.193840	4.314981	3.020623
С	5.585202	3.312772	0.034512
С	4.593029	4.234995	-0.277478

0	4.000020	4.204000	0.211410
	47		
$MgNF_2$			
Mg	-0.000299	-0.002985	0.003008
F	-0.595654	1.597086	1.504106
F	0.590346	1.493103	-1.600979
F	0.615508	-1.509353	1.606354
F	-4.627311	1.006108	-0.859256
F	4.627140	-0.865028	-1.011476
F	-0.609937	-1.609141	-1.494017
F	-4.635036	-0.994268	0.879177
F	-1.526340	3.970097	2.484361
F	-1.558684	-3.974680	-2.473475
F	-5.555670	3.309648	0.139774
F	-4.044377	4.822828	1.818546
F	1.517676	2.471293	-3.975319
F	5.583245	-0.125246	3.280645
F	-5.579008	-3.289912	-0.120639
F	4.631694	0.873611	0.985046
F	-4.081602	-4.812134	-1.803040
F	1.569846	-2.487319	3.971363
F	4.091561	-1.811267	4.803270
F	5.551408	0.134189	-3.316931
F	4.037188	1.808019	-4.830176
Ν	2.012077	-0.003616	-0.001404
Ν	-2.012428	-0.002353	0.007420
С	-2.639949	1.148831	0.427202
С	-1.881664	2.004670	1.236059
С	-2.648266	-1.149451	-0.407708
С	1.877837	1.223855	-2.010168
С	2.636238	0.416123	-1.153572
С	2.650342	-0.419888	1.144564
С	-1.898704	-2.010245	-1.219569
С	1.901159	-1.233700	2.004848
С	-3.898817	-1.652749	-0.020103

С	3.884243	0.030989	-1.666386
С	-3.583531	3.661400	1.363446
С	-4.379541	-2.863466	-0.501807
С	-4.358549	2.875489	0.519100
С	2.303872	1.700341	-3.232039
С	2.343608	-1.709583	3.221130
С	4.384156	-0.508339	2.855184
С	-2.310385	3.226000	1.711723
С	-3.886553	1.660916	0.038737
С	3.900165	-0.028070	1.645373
С	3.619044	-1.357036	3.645989
С	-2.336117	-3.227001	-1.698178
С	-3.612170	-3.653678	-1.348870
С	4.354127	0.511576	-2.881397
С	3.577467	1.354498	-3.667593

48 (MaN^F2)-F(-)

)(-)		
0.165025	-0.194858	-1.558257
1.728447	0.349175	-0.276177
-1.360095	2.097783	-0.818779
-1.627839	-0.581291	-0.542544
2.116141	-1.241151	-2.368814
0.408597	-0.091234	2.136479
-4.244887	-1.633764	-1.106113
4.124087	0.944916	1.323968
0.157465	-2.516139	-0.872755
-3.554188	-0.971335	1.611737
-3.378308	3.708301	-1.605537
0.247352	-4.749411	0.666410
-6.255587	-0.014899	-1.828588
-5.856050	2.669219	-2.101889
4.520308	-2.275678	-3.045482
1.972134	4.985816	1.006046
-3.490711	-3.202527	3.082819
2.580220	2.990696	-0.704758
-1.599919	-5.120472	2.657730
-0.229662	1.913614	3.814830
0.552133	4.463604	3.269097
6.479527	-0.054946	0.617416
6.749229	-1.681262	-1.559873
-2.729017	0.178253	-0.875446
-2.569347	1.560919	-1.056946
-1.729833	-1.682523	0.260476
3.206532	-0.934483	-1.622027
3.000062	-0.076654	-0.523461
1.502526	1.377921	0.642171
-0.766591	-2.693329	0.108973
0.780573	1.151586	1.818353
-2.636623	-1.903419	1.313680
4.172783	0.181405	0.216806
-4.851703	1.872401	-1.716505
	0.165025 1.728447 -1.360095 -1.627839 2.116141 0.408597 -4.244887 4.124087 0.157465 -3.554188 -3.378308 0.247352 -6.255587 -5.856050 4.520308 1.972134 -3.490711 2.580220 -1.599919 -0.229662 0.552133 6.479527 6.749229 -2.729017 -2.569347 -1.729833 3.206532 3.000062 1.502526 -0.766591 0.780573 -2.636623 4.172783 -4.851703	Pr(-)0.165025-0.1948581.7284470.349175-1.3600952.097783-1.627839-0.5812912.116141-1.2411510.408597-0.091234-4.244887-1.6337644.1240870.9449160.157465-2.516139-3.554188-0.971335-3.3783083.7083010.247352-4.749411-6.255587-0.014899-5.8560502.6692194.520308-2.2756781.9721344.985816-3.490711-3.2025272.5802202.990696-1.599919-5.120472-0.2296621.9136140.5521334.4636046.749229-1.681262-2.7290170.178253-2.5693471.560919-1.729833-1.6825233.206532-0.9344833.000062-0.0766541.5025261.377921-0.766591-2.6933290.7805731.151586-2.636623-1.9034194.1727830.181405-4.8517031.872401

С	-2.600244	-3.046087	2.097253
С	-5.052541	0.508821	-1.565403
С	4.422827	-1.474866	-1.981372
С	0.454243	2.174641	2.696898
С	1.583492	3.735178	1.273031
С	-3.591206	2.396832	-1.466940
С	-4.010213	-0.314290	-1.170421
С	1.889365	2.702234	0.402024
С	0.857348	3.473093	2.425991
С	-0.697707	-3.830954	0.885713
С	-1.634208	-4.021187	1.893154
С	5.408713	-0.344156	-0.131139
С	5.552457	-1.175327	-1.230804
F	-0.210528	0.341873	-3.255523

77

MgN [⊦] 2	·(Et ₂ O) ₂		
Mg	0.000000	0.000000	1.379586
F	1.996617	-1.200098	1.678382
F	-1.996617	1.200098	1.678382
0	1.003381	1.110990	2.990155
0	-1.003381	-1.110990	2.990155
С	1.526321	2.446978	2.748106
С	-1.526321	-2.446978	2.748106
С	0.702346	3.531678	3.411208
С	-0.702346	-3.531678	3.411208
Н	1.525172	2.571516	1.666876
Н	-1.525172	-2.571516	1.666876
С	1.715369	0.389830	4.023237
С	-1.715369	-0.389830	4.023237
Н	2.754745	0.271654	3.698941
Н	-2.754745	-0.271654	3.698941
Н	1.257671	-0.598902	4.040404
Н	-1.257671	0.598902	4.040404
F	-1.069432	2.017171	-2.609047
F	1.069432	-2.017171	-2.609047
F	0.123940	4.291345	-1.191229
F	-0.123940	-4.291345	-1.191229
F	2.688848	1.021043	0.075626
F	-2.688848	-1.021043	0.075626
F	-3.905728	3.037449	2.241331
F	3.905728	-3.037449	2.241331
F	-3.823080	5.511235	1.046048
F	3.823080	-5.511235	1.046048
F	0.463018	1.850991	-4.800773
F	-0.463018	-1.850991	-4.800773
F	-1.780208	6.074419	-0.666815
F	1.780208	-6.074419	-0.666815
F	4.195902	0.787435	-2.134795
F	-4.195902	-0.787435	-2.134795
F	3.107285	1.219734	-4.602039
F	-3.107285	-1.219734	-4.602039

Ν	0.000000	1.607869	-0.001724
Ν	0.000000	-1.607869	-0.001724
С	-1.964516	2.417400	1.060225
С	1.964516	-2.417400	1.060225
С	0.754092	1.554485	-1.171643
С	-0.754092	-1.554485	-1.171643
С	-0.907583	2.625157	0.163511
C	0.907583	-2.625157	0.163511
C	-2.896529	4,592179	0.772603
C	2.896529	-4.592179	0.772603
C	-0.881956	3 921996	-0.386708
C	0 881956	-3 921996	-0.386708
C	-2 939563	3 341553	1 373403
C	2 939563	-3 341553	1 373403
C	0.233000	1 742422	-2 460765
C	-0 233000	-1 742422	-2 460765
C	2 357093	1 324358	-3 507602
C	-2 357093	-1 324358	-3 507602
C C	1 011152	1 650/25	-3 603810
C C	-1 011152	-1 650425	-3 603810
C C	2 112257	1 220/171	-1 12/708
C C	-2 112357	-1 220471	-1 124708
C C	-2.112337	1.220471	-0.106500
C C	1 857214	4.000779	-0.106500
C C	2 005645	-4.000779	2 252729
C	2.905045	1 100580	-2.200700
C	-2.903043	-1.100560	-2.203730
	1.004210	1.025130	5.397900
	-1.004210	-1.023130	0.097900
	2.007319	2.404/42	3.003330
п	-2.307319	-2.404742	5.000000
	2.130009	0.350616	0.110009
	-2.138889	-0.350818	6.110569
н	2.186481	1.977434	5.442342
	-2.180481	-1.977434	5.442342
н	0.625297	1.183/52	5.729214
н	-0.625297	-1.183752	5.729214
н	1.119556	4.506671	3.141136
н	-1.119556	-4.506671	3.141136
н	-0.331380	3.509176	3.059867
н	0.331380	-3.509176	3.059867
н	0.701362	3.455/18	4.499729
н	-0.701362	-3.455718	4.499729
	70		
MaNE	(E + O) = ()		
Ma Ma		0 00000	-0 366563
F	-2 107244	1 9/5/59	-0.300303
, E	-2.107244 2.107244	-1 0/5/59	0.213580
\cap	2.101244 1.272106	-1.340400	1 212002
0	1.273100 -1.273106	2.009940 -2 350012	4.013033
C C	2 20/027	-2.009940 2 155712	4.013033 5 508577
C	2.204031 _2.204027	3.100/40	5.000021
U	-2.204037	-3.100/43	0.000027

C -1.446673 -4.147527 6.367709 H 2.852274 3.686851 4.790795 H -2.852274 -3.686851 4.790795 C 1.852966 1.455640 3.878948 C -1.852966 -1.455640 3.878948 C -1.852966 -1.455640 3.878948 C -1.852966 -1.455640 3.878948 L 2.576091 -2.000700 3.251117 H -0.39608 -1.122917 3.231106 H -1.039608 -1.122917 3.231106 F -0.248443 -4.499397 -2.450947 F -0.248443 -4.499397 -2.450947 F -0.248443 -4.09397 -2.450947 F -0.248443 -4.09397 -2.450947 F -0.208968 -0.013247 -2.150052 F -1.710518 -0.013247 -2.100696 F -1.577190 -7.70503 -4.745858 F -1.577190 -4.770503 -4.745858 F -1.577190	С	1.446673	4.147527	6.367709
H2.8522743.6868514.790795H-2.852274-3.6868514.790795C1.8529661.4556403.878948C-1.852966-1.4556403.878948H2.5760912.0007003.251117H-2.576091-2.0007003.251117H1.0396081.1229173.231106F0.2484434.499397-2.450947F-0.248443-4.499397-2.450947F-0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F-1.3470665.8825361.640042F3.0143020.289805-4.512257F2.973242.694036-5.831388N0.3376861.960631-0.993411N-0.3376861.960631-0.993411C-1.2408722.9124190.554646C0.97886-2.248186-2.163899C0.0000002.959899-0.094884C0.7506414.8409651.891146C0.7506414.84096	С	-1.446673	-4.147527	6.367709
H-2.852274-3.6868514.790795C1.8529661.4556403.878948C-1.852966-1.4556403.878948H2.5760912.0007003.251117H-2.576091-2.0007003.251117H1.039608-1.1229173.231106F0.2484434.499397-2.450947F-0.248443-4.499397-2.450947F-0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F-2.089689-4.071886-0.200710F1.710518-0.013247-2.150052F-1.710518-0.013247-2.150052F-2.821336-3.7367942.100696F2.821336-3.7367942.100696F2.821336-3.7367942.100696F-1.105401-5.7345392.820177F1.05401-5.7345392.820177F1.577190-4.770503-4.745858F-1.3470665.8825361.640042F-1.3470665.8825361.640042F3.014302-0.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.337686-1.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.248186-2.163899C-0.978886<	Н	2.852274	3.686851	4.790795
C 1.852966 1.455640 3.878948 C -1.852966 -1.455640 3.878948 H 2.576091 2.000700 3.251117 H -2.576091 -2.000700 3.251117 H 1.039608 1.122917 3.231106 F 0.248443 4.499397 -2.450947 F -0.248443 -4.499397 -2.450947 F -0.289689 -4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F -2.821336 3.736794 2.100696 F -1.105401 -5.734539 2.820177 F 1.105401 -5.734539 2.820177 F 1.577190 -4.770503 -4.745858 F -1.577190 -4.770503 -4.745858 F 1.347066 -5.882536 1.640042 F 3.014302 -2.89805 -4.512257 F -3.014302 -0.289805 -4.512257 F -3.0	Н	-2.852274	-3.686851	4.790795
C -1.852966 -1.455640 3.878948 H 2.576091 2.000700 3.251117 H -2.576091 -2.000700 3.251117 H 1.039608 1.122917 3.231106 F 0.248443 4.499397 -2.450947 F 0.248443 4.499397 -2.450947 F -0.2489689 -4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F -2.821336 3.736794 2.100696 F -2.821336 -3.736794 2.100696 F -1.105401 -5.734539 2.820177 F 1.577190 -4.770503 -4.745858 F -1.577190 -4.770503 -4.745858 F 1.347066 -5.882536 1.640042 F 3.014302 -0.289805 -4.512257 F -3.014302 -0.289805 -4.512257 F	С	1.852966	1.455640	3.878948
H 2.576091 2.000700 3.251117 H -2.576091 -2.000700 3.251117 H 1.039608 1.122917 3.231106 F 0.248443 4.499397 -2.450947 F 0.248443 -4.499397 -2.450947 F 2.089689 4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F 1.710518 -0.013247 -2.150052 F -1.710518 -0.013247 -2.150052 F -2.821336 -3.736794 2.100696 F 2.821336 -3.736794 2.100696 F 1.105401 -5.734539 2.820177 F 1.577190 -4.770503 -4.745858 F -1.577190 -4.770503 -4.745858 F 1.347066 5.882536 1.640042 F -3.014302 0.289805 -4.512257 F -3.014302 -0.289805 -4.512257 F -2.973324 <t< td=""><td>С</td><td>-1.852966</td><td>-1.455640</td><td>3.878948</td></t<>	С	-1.852966	-1.455640	3.878948
H-2.576091-2.0007003.251117H1.0396081.1229173.231106F0.2484434.499397-2.450947F0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.821336-3.7367942.100696F2.821336-3.7367942.100696F1.1054015.7345392.820177F1.1054015.7345392.820177F1.5771904.770503-4.745858F-1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-2.9124190.554646C0.978886-2.248186-2.163899C0.000002.959899-0.094884C0.0750641-4.8409651.891146C0.750641-4.8409651.891146C0.750641-3.8223181.526122C1.618609-3.8223181.526122C1.618609-3.451660-2.896084C-2.333807-2.545408-4.664012C-2.333807-	Н	2.576091	2.000700	3.251117
H1.0396081.1229173.231106H-1.039608-1.1229173.231106F0.2484434.499397-2.450947F-0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.821336-3.7367942.100696F2.821336-3.7367942.100696F-1.054015.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.0143020.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.3376861.960631-0.993411N-0.3376862.248186-2.163899C0.000002.959899-0.094884C0.7506414.8409651.891146C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.6573413.9875520.321984C-0.95906-3.451660-2.896084C0.959906-3.451	Н	-2.576091	-2.000700	3.251117
H-1.039608-1.1229173.231106F0.2484434.499397-2.450947F-0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F2.821336-3.7367942.100696F-1.054015.7345392.820177F1.5771904.770503-4.745858F1.577190-4.770503-4.745858F1.347066-5.8825361.640042F3.0143020.289805-4.512257F3.0143020.289805-4.512257F2.973324-2.694036-5.831388N0.3376861.960631-0.993411N-0.337686-2.9124190.554646C0.978886-2.248186-2.163899C0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.959906-3.451660-2.896084C0.959906-3.451660-2.896084C0.959906-3.451	Н	1.039608	1.122917	3.231106
F 0.248443 4.499397 -2.450947 F -0.248443 -4.499397 -2.450947 F 2.089689 4.071886 -0.200710 F -2.089689 -4.071886 -0.200710 F 1.710518 0.013247 -2.150052 F -1.710518 -0.013247 -2.150052 F -2.821336 3.736794 2.100696 F 2.821336 -3.736794 2.100696 F -1.05401 5.734539 2.820177 F 1.577190 4.770503 -4.745858 F -1.577190 -4.770503 -4.745858 F 1.347066 5.882536 1.640042 F 3.014302 0.289805 -4.512257 F -3.014302 0.289805 -4.512257 F 2.973324 2.694036 -5.831388 N 0.337686 1.960631 -0.993411 N -0.337686 1.960631 -0.993411 N -0.337686 2.248186 -2.163899 C 0.000000 2.9	Н	-1.039608	-1.122917	3.231106
F-0.248443-4.499397-2.450947F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.248186-2.163899C0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906<	F	0.248443	4.499397	-2.450947
F2.0896894.071886-0.200710F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.248186-2.163899C0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906 <t< td=""><td>F</td><td>-0.248443</td><td>-4.499397</td><td>-2.450947</td></t<>	F	-0.248443	-4.499397	-2.450947
F-2.089689-4.071886-0.200710F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.248186-2.163899C0.000002.959899-0.094884C0.0000002.959899-0.094884C0.750641-4.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.657341-3.9875520.321984C-0.657341-3.9875520.321984C-0.659906-3.451660-2.896084C2.3338072.545408-4.664012C1.6299163.599960-4.101099C1.6299163.599960-4.101099C1.691882-1.210143-2.790298C0.492028-9	F	2.089689	4.071886	-0.200710
F1.7105180.013247-2.150052F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.9124190.554646C0.9788862.248186-2.163899C0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9	F	-2.089689	-4.071886	-0.200710
F-1.710518-0.013247-2.150052F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.240872-2.9124190.554646C0.978886-2.248186-2.163899C-0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.618609-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.59916-3.599960-4.101099C-1.629916	F	1.710518	0.013247	-2.150052
F-2.8213363.7367942.100696F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.9124190.554646C1.240872-2.9124190.554646C0.978886-2.248186-2.163899C-0.000002.959899-0.094884C0.00000-2.959899-0.094884C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.618609-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959906-3.451660-2.896084C-0.959916 <td>F</td> <td>-1.710518</td> <td>-0.013247</td> <td>-2.150052</td>	F	-1.710518	-0.013247	-2.150052
F2.821336-3.7367942.100696F-1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F-1.347066-5.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.248186-2.163899C0.978886-2.248186-2.163899C0.000002.959899-0.094884C0.7506414.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.6959906-3.451660-2.896084C2.3338072.545408-4.664012C1.6299163.599960-4.101099C1.691882 <td< td=""><td>F</td><td>-2.821336</td><td>3.736794</td><td>2.100696</td></td<>	F	-2.821336	3.736794	2.100696
F-1.1054015.7345392.820177F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388F-2.973324-2.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411N-0.337686-2.9124190.554646C1.2408722.9124190.554646C0.9788862.248186-2.163899C-0.000002.959899-0.094884C0.0000002.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.618609-3.8223181.526122C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C-1.6299163.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C-0.492028	F	2.821336	-3.736794	2.100696
F1.105401-5.7345392.820177F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F-1.347066-5.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.2408722.9124190.554646C0.9788862.248186-2.163899C-0.978886-2.248186-2.163899C0.000002.959899-0.094884C0.000000-2.959899-0.094884C0.7506414.8409651.891146C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.451660-2.896084C-2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C-0.492028-4.9182691.280774	F	-1.105401	5.734539	2.820177
F1.5771904.770503-4.745858F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.2408722.9124190.554646C0.9788862.248186-2.163899C-0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.8573413.9875520.321984C-0.9599063.451660-2.896084C2.3338072.545408-4.664012C1.6299163.599960-4.101099C1.6299163.599960-4.101099C1.6918821.210143-2.790298C0.492028-1.210143-2.790298C0.492028-4.9182691.280774C-0.492028-4.9182691.280774	F	1.105401	-5.734539	2.820177
F-1.577190-4.770503-4.745858F1.3470665.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388F-2.973324-2.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.2408722.9124190.554646C0.9788862.248186-2.163899C0.000002.959899-0.094884C0.000000-2.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.9599063.451660-2.896084C2.3338072.545408-4.664012C1.6299163.599960-4.101099C1.6299163.599960-4.101099C1.6918821.210143-2.790298C0.492028-1.210143-2.790298C0.492028-4.9182691.280774C-0.492028-4.9182691.280774	F	1.577190	4.770503	-4.745858
F1.3470665.8825361.640042F-1.347066-5.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388F-2.973324-2.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.2408722.9124190.554646C0.9788862.248186-2.163899C-0.978886-2.248186-2.163899C0.0000002.959899-0.094884C0.000000-2.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C1.6918821.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	F	-1.577190	-4.770503	-4.745858
F-1.347066-5.8825361.640042F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388F-2.973324-2.694036-5.831388N0.3376861.960631-0.993411N-0.337686-1.960631-0.993411C-1.2408722.9124190.554646C0.9788862.248186-2.163899C-0.978886-2.248186-2.163899C0.0000002.959899-0.094884C0.000000-2.959899-0.094884C0.7506414.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-0.857341-3.9875520.321984C-0.618609-3.8223181.526122C1.618609-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C-1.691882-1.210143-2.790298C0.492028-4.9182691.280774C-0.492028-4.9182691.280774	F	1.347066	5.882536	1.640042
F3.0143020.289805-4.512257F-3.014302-0.289805-4.512257F2.9733242.694036-5.831388F-2.973324-2.694036-5.831388N0.3376861.960631-0.993411C-1.2408722.9124190.554646C1.240872-2.9124190.554646C0.9788862.248186-2.163899C-0.978886-2.248186-2.163899C0.000002.959899-0.094884C0.000002.959899-0.094884C0.7506414.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.8223181.526122C1.618609-3.451660-2.896084C-0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C-1.6299163.599960-4.101099C-1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C-1.6918821.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	F	-1.347066	-5.882536	1.640042
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F	3.014302	0.289805	-4.512257
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F	-3.014302	-0.289805	-4.512257
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F	2.973324	2.694036	-5.831388
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F	-2.973324	-2.694036	-5.831388
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ν	0.337686	1.960631	-0.993411
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	-0.337686	-1.960631	-0.993411
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-1.240872	2.912419	0.554646
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.240872	-2.912419	0.554646
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.978886	2.248186	-2.163899
C0.0000002.959899-0.094884C0.000000-2.959899-0.094884C-0.7506414.8409651.891146C0.750641-4.8409651.891146C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C-2.3338072.545408-4.664012C1.6299163.599960-4.101099C1.629916-3.599960-4.101099C1.6918821.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-0.978886	-2.248186	-2.163899
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.000000	2.959899	-0.094884
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.000000	-2.959899	-0.094884
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.750641	4.840965	1.891146
C0.8573413.9875520.321984C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	0.750641	-4.840965	1.891146
C-0.857341-3.9875520.321984C-1.6186093.8223181.526122C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C1.629916-3.599960-4.101099C1.6918821.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	0.857341	3.987552	0.321984
C-1.6186093.8223181.526122C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C1.629916-3.599960-4.101099C1.6918821.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-0.857341	-3.987552	0.321984
C1.618609-3.8223181.526122C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-1.618609	3.822318	1.526122
C0.9599063.451660-2.896084C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	1.618609	-3.822318	1.526122
C-0.959906-3.451660-2.896084C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	0.959906	3.451660	-2.896084
C2.3338072.545408-4.664012C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-0.959906	-3.451660	-2.896084
C-2.333807-2.545408-4.664012C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	2.333807	2.545408	-4.664012
C1.6299163.599960-4.101099C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-2.333807	-2.545408	-4.664012
C-1.629916-3.599960-4.101099C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	1.629916	3.599960	-4.101099
C1.6918821.210143-2.790298C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	-1.629916	-3.599960	-4.101099
C-1.691882-1.210143-2.790298C0.4920284.9182691.280774C-0.492028-4.9182691.280774	С	1.691882	1.210143	-2.790298
C 0.492028 4.918269 1.280774 C -0.492028 -4.918269 1.280774	С	-1.691882	-1.210143	-2.790298
C -0.492028 -4.918269 1.280774	С	0.492028	4.918269	1.280774
	С	-0.492028	-4.918269	1.280774

-			
С	2.352028	1.328107	-3.995751
С	-2 352028	-1.328107	-3 995751
õ	2.002020	0.054000	4 500000
C	2.519589	0.251028	4.526320
С	-2.519589	-0.251028	4.526320
Ц	2 860640	2 537575	6 140750
	2.000049	2.337373	0.140759
Н	-2.860649	-2.537575	6.140759
н	2.867395	-0.433804	3.747513
	2.007000	0.100001	0.747540
п	-2.007393	0.433604	3.747513
Н	3.384143	0.526169	5.138860
н	-3 384143	-0 526169	5 138860
	4 005040	0.020100	5.100000
н	1.805343	-0.290291	5.152327
Н	-1.805343	0.290291	5.152327
н	2 143223	4 788290	6 917650
	0 4 4 0 0 0 0	4 700000	0.017000
н	-2.143223	-4.788290	6.917650
Н	0.805843	4.780680	5.749124
н	-0 805843	-4 780680	5 749124
	0.000040	4.700000	7.000700
н	0.814452	3.623721	7.089738
Н	-0.814452	-3.623721	7.089738
F	0,00000	0.00000	1 /6270/
I	0.000000	0.000000	1.4027.94
	55		
MaN")		
NI Z	1 045045	0.000740	0.000674
IN	-1.945215	0.000719	0.000674
Si	-2.664538	-1.249609	0.952217
Ma	-0 001140	0.000106	0 000447
C:	0.001110	0.054040	4 046700
31	2.000387	-0.954046	-1.240708
Si	2.664207	0.954743	1.246467
N	1 942754	-0 000507	0 000220
0:	0.000400	1.040400	0.000220
31	-2.000109	1.249190	-0.952156
С	-3.921386	2.294362	-0.007084
н	-4.799104	1.705201	0.277694
 Ц	1 076071	2 120192	0 610922
	-4.270271	3.130162	-0.019032
н	-3.488653	2.707575	0.909036
С	-3.503955	0.604194	-2.515928
Ц	-2 804264	0 033343	3 133720
	-2.00+20+	0.052542	-0.100729
Н	-3.894699	1.426864	-3.124827
Н	-4.343055	-0.055735	-2.275753
С	-3 504166	-0 607063	2 515994
ч Ц	2 905010	0.022047	2 12/120
	-2.005919	-0.033647	3.134130
н	-3.893266	-1.430784	3.124517
Н	-4.344655	0.051079	2.275743
С	-3 917473	-2 296574	0.006138
U U	4 706000	1 700010	0.070252
п	-4.796223	-1.708812	-0.278352
Н	-4.270903	-3.133454	0.618270
н	-3.483792	-2.708341	-0.910169
<u> </u>	1 252/02	2 207205	1 400947
	-1.202490	2.391393	-1.49904/
Н	-0.760591	2.888946	-0.651591
Н	-1.633606	3.198339	-2.142304
н	-0 482877	1 882580	-2 001253
^ ^	4.040044	0.002000	4 400700
С	-1.249014	-2.395/35	1.499708
Н	-0.756729	-2.886832	0.651406
Н	-1.628730	-3.197132	2.142445

Н	-0.479841	-1.879936	2.090801
С	3.931571	0.015316	2.282300
С	3.488774	2.525097	0.600075
С	1.253446	1.491572	2.403418
Н	1.634494	2.136312	3.202627
Н	0.476004	2.077746	1.894113
Н	0.770970	0.638921	2.896755
Н	3.878675	3.135558	1.421998
Н	4.326833	2.291561	-0.063686
Н	2.782645	3.138982	0.031847
Н	4.289665	0.629342	3.115797
Н	3.506635	-0.903296	2.698167
Н	4.806327	-0.264530	1.686291
С	3.928323	-0.011620	-2.285097
С	3.495848	-2.520999	-0.599424
С	1.255020	-1.496607	-2.401299
Н	4.287244	-0.625360	-3.118449
Н	3.499828	0.905182	-2.701339
Н	4.802953	0.271756	-1.690589
Н	3.888327	-3.130469	-1.420849
Н	4.332781	-2.283830	0.064450
Н	2.791878	-3.137216	-0.031041
Н	1.637364	-2.140045	-3.200900
Н	0.480851	-2.085561	-1.890321
Н	0.768390	-0.646078	-2.894208
	56		
MgN	" ₂ -F(-)		
N	-1.828513	0.051166	0.019638
Si	-2.960763	-0.863866	-0.890374

	11020010	01001100	01010000
Si	-2.960763	-0.863866	-0.890374
Mg	-0.007931	0.166809	-0.893128
Si	2.983742	1.049078	-0.590543
Si	2.164244	-1.513055	0.854724
Ν	1.824937	-0.105198	-0.058640
Si	-2.189858	1.159904	1.274826
С	-0.811096	1.194096	2.572433
Н	-0.777104	0.246453	3.120257
Н	-0.968303	1.999228	3.299835
Н	0.172962	1.336816	2.114086
С	-3.792504	0.787073	2.230295
Н	-4.675921	0.805539	1.583456
Н	-3.943290	1.538462	3.014658
Н	-3.750443	-0.195048	2.711989
С	-3.907239	-2.156817	0.134987
Н	-3.208692	-2.814497	0.663091
Н	-4.533422	-2.782286	-0.513011
Н	-4.559129	-1.694722	0.882350
С	-4.276226	0.189990	-1.769379
Н	-4.876088	0.766773	-1.056706
Н	-4.964061	-0.430400	-2.356559
Н	-3.793599	0.899424	-2.449373
С	-2.377800	2.941587	0.636518

H H	-1.467155 -2.588854	3.279752 3.646463	0.129978 1.450007
H C	-3.193775 -2.055402	3.008590 -1.833925	-0.090948 -2.243812
H	-1.472855	-1.166879	-2.890243
Н	-2.773601	-2.371215	-2.874179
н С	-1.378441	-2.583985 -2.505950	-1.818006
C	2.527107	-1.182668	2.690952
С	0.688443	-2.701282	0.802780
Н	0.839752	-3.543227	1.488330
Н	-0.242247	-2.197849	1.085606
п Н	2 702229	-2 118715	3 235290
Н	3.414412	-0.553384	2.813686
Н	1.688102	-0.665959	3.166743
Н	3.805954	-3.417884	0.802540
Н	3.506936	-2.800988	-0.832332
п С	4.585203	-1.926415 1.428786	0.260408
C	3.888342	0.528955	-2.174458
С	2.128812	2.695155	-0.974498
Н	5.016332	2.196374	0.323887
Н	3.889869	1.800921	1.632784
Н	4.929519	0.545380	0.946988
Н	4.393629	-0 403244	-2.011230
Н	3.156332	0.365052	-2.971711
Н	2.852419	3.437864	-1.330715
Н	1.378380	2.558621	-1.761996
H	1.637644	3.111522	-0.087629
F	0.017657	0.707094	-2.001751
F2CO	4		
С	-0.144287	0.000000	-0.000104
F	0.632294	-1.062541	0.000021
	0.632294	1.062541	0.000021
0	-1.314440	0.000000	0.000031
F3CO(-)	5		
C	0.002417	0.013409	-0.194204
F	0.649456	1.060759	0.540585
F	-1.281298	-0.010606	0.445776
F	0.615474	-1.143723	0.391775
0	0.016601	0.095209	-1.404750
MgI2	3		
Mg I	0.000111 0.405364	0.000628 -0.222738	-0.000748 -2.505861

I	-0.405389	0.222596	2.506031
MgI2- Mg I F	4 F(-) 2.305261 -2.305267 0.000037	-1.010110 0.352355 0.352267 -2.802628	0.000000 0.000000 0.000000 0.000000
Cal2 Ca I I	3 -0.000017 0.431782 -0.431775	-0.000569 0.397594 -0.397380	-0.000030 2.769895 -2.769883
Cal2-F Ca I F	4 -(-) 0.000000 2.622277 -2.622277 -0.000002	-0.982586 0.439135 0.439138 -2.988527	0.000000 0.000000 0.000000 0.000000
SrI2 Sr I I	3 0.000000 2.921118 -2.921118	0.481250 -0.172523 -0.172524	0.000000 0.000000 0.000000
SrI2-F Sr I F	4 (-) 0.000000 -2.787638 2.787638 0.000001	0.886425 -0.574309 -0.574326 3.021498	0.000000 0.000000 0.000000 0.000000
Bal2 Ba I I	3 0.000000 0.000000 0.000000	0.000000 2.826050 -2.826050	0.882661 -0.466312 -0.466312
Bal2-f Ba I F	4 =(-) 0.000000 2.979410 -2.979409 -0.000001	0.800822 -0.682634 -0.682634 3.057019	0.000000 0.000000 0.000000 0.000000
CaN ^F ₂ Ca F	73 ·(THF) ₂ -0.000022 -0.004649	1.340782 -0.083040	0.000001 2.490716

F	2.132465	1.786125	-1.328046
F	2.822498	-2.708195	-0.231310
F	6.841694	1.439718	-1.301590
F	4.293906	-1.220602	1.617983
F	4.534751	2.578659	-2.263873
F	-0.855644	-2.319046	3.750982
F	6.655727	-0.460382	0.644915
F	0.154214	-4.762223	3.048443
F	1 999257	-4 916553	1 052074
0	-0.697516	3 055691	-1 547764
N	1 820093	-0 110060	0.513958
C	1 496482	-1.300697	1 136090
Ĉ	3 093879	0 170703	0 105465
Ĉ	3 265670	1 178070	-0.858242
C	0.200070	-2 416742	2 780008
C	0.520586	-1 284164	2.103030
C C	1 182301	1 616860	-1 330287
C C	1 055366	-2 570376	0 780208
C C	5.640240	1 046007	0.700200
C C	0.049240 4 200055	0.220205	-0.050227
C C	4.309033	-0.339203	0.000279
	1.522230	-3.729400	1.421907
	0.374017	-3.037 140	2.434733
	0.007EE4	0.009204	0.131935
	-0.807554	4.869243	-3.067647
Н	-0.256778	5.340425	-3.883689
H	-1.357781	5.649650	-2.532939
C	-1.759708	3.767567	-3.535470
н	-2.701637	4.150448	-3.932291
Н	-1.288109	3.152113	-4.307125
C	-1.960171	2.963541	-2.263006
Н	-2.742966	3.396263	-1.630667
Н	-2.174228	1.906987	-2.425887
C	0.113499	4.114167	-2.121533
Н	0.951619	3.654167	-2.652036
H	0.504535	4.724607	-1.304531
F	0.004653	-0.083027	-2.490725
F	-2.132517	1.786051	1.328051
F	-2.822407	-2.708268	0.231306
F	-6.841739	1.439546	1.301580
F	-4.293895	-1.220654	-1.618048
F	-4.534821	2.578516	2.263889
F	0.855727	-2.319009	-3.750981
F	-6.655729	-0.460509	-0.644963
F	-0.154050	-4.762217	-3.048435
F	-1.999089	-4.916603	-1.052068
0	0.697429	3.055686	1.547793
Ν	-1.820099	-0.110100	-0.513977
С	-1.496449	-1.300728	-1.136107
С	-3.093894	0.170630	-0.105487
С	-3.265709	1.178886	0.858237
С	-0.061088	-2.416731	-2.789102
С	-0.520549	-1.284166	-2.142366

С	-4.482439	1.616742	1.339288
С	-1.955284	-2.579423	-0.780216
С	-5.649275	1.045956	0.850215
С	-4.309059	-0.339292	-0.608315
С	-1.522113	-3.729490	-1.421969
С	-0.573896	-3.657152	-2.434737
C	-5.546090	0.069145	-0.131967
Ċ	0 807410	4 869210	3 067715
н	0.256613	5 340363	3 883758
н	1 357631	5 6/0638	2 533032
$\hat{\mathbf{C}}$	1.357031	2 767541	2.555520
С Ц	2 701 404	4 450422	2.020229
	2.701494	4.150432	3.932372
Н	1.287980	3.152062	4.307164
C	1.960076	2.963547	2.263051
Н	2.742870	3.396300	1.630732
Н	2.174153	1.906993	2.425912
С	-0.113614	4.114136	2.121570
Н	-0.951736	3.654112	2.652050
Н	-0.504646	4.724587	1.304574
	77		
CaNF ₂	$(Et_2O)_2$		
Ca	-0.000078	-1.336326	0.000059
F	-2.185275	-1.767337	1.263750
F	-4.224197	1.269786	-1.737014
F	-2 798094	2 739652	0 145839
F	2 798316	2 739551	-0 145809
F	-0.095740	0.082721	2 472403
F	2 185045	-1 767/18	-1 263010
F	-1 623645	-2 528075	2 122286
	-4.023043	-2.320073	2.132200
Г	-0.021394	0.042133	-0.029000
	0.095763	0.062774	-2.472014
F	4.224281	1.269504	1.736815
F	-0.886633	-1.356326	1.108989
-	1.919268	4.935888	1.119925
F	-1.002504	2.306903	3.714743
F	0.012853	4.760061	3.055964
F	4.623340	-2.528345	-2.132540
F	-1.918818	4.936015	-1.119701
F	1.002767	2.306967	-3.714663
F	6.621412	0.541663	0.829538
F	6.886443	-1.356790	-1.109288
0	-0.619709	-3.075789	-1.578427
F	-0.012379	4.760160	-3.055716
0	0.619525	-3.075739	1.578604
Ν	1.795579	0.129532	0.561073
Ν	-1.795592	0.129614	-0.561202
С	-1.441351	1.316502	-1.174887
Ċ	1.441457	1.316416	1,174820
č	-4.278646	0.389870	-0.727758
č	0 460197	3 660698	2 451866
Č	-3.084874	-0.135259	-0.190161
-	0.00.00	000200	000.01

С	1.439280	3.744060	1.469845
С	-1.901016	2.599854	-0.837749
С	1.901244	2.599753	0.837784
С	3.296485	-1.143624	-0.765762
С	-5.677189	-0.977691	0.692067
С	-0.055153	2.415229	2.784291
С	-3.296650	-1.143446	0.765554
С	-0.433323	1.288946	-2.148388
С	0.433448	1.288885	2.148343
С	-5.533843	-0.002015	-0.286113
С	3.084825	-0.135431	0.189971
С	-4.532267	-1.565164	1.211972
C	-1.756404	-2.876471	-2.447267
H	-1.401614	-2.775045	-3.477282
Н	-2.160681	-1.908046	-2.148592
C	4.278647	0.389586	0.727555
C	-1.438940	3,744169	-1.469712
C	4 532058	-1 565439	-1 212212
C.	5 677041	-0.978063	-0 692327
C.	5 533803	-0.002390	0.285872
C	-0 459850	3 660791	-2 451724
C C	0.182056	-1 238067	-1 861128
ч	-0 426707	-4.230007	-1.001120
н	0.420707	-0.100947	-1.088806
C	0.954040	-4.234290	-7.784233
C	0.055594	2.410001	-2.104233
	1.700170	-2.070339	2.447404
п	1.401322	-2.774070	3.477434
	2.100000	-1.906007	2.140041
	-2.000990	-3.900750	-2.329930
п	-3.070733	-3.070070	-2.931079
п	-3.143746	-4.079607	-1.296202
	-2.401245	-4.928766	-2.699426
C	-0.183198	-4.237948	1.861418
н	0.426431	-5.135871	1.711144
H	-0.954868	-4.234227	1.089164
C	0.818015	-4.234953	-3.237986
н	0.084167	-4.352539	-4.038611
Н	1.511972	-5.077473	-3.307624
Н	1.384427	-3.317513	-3.409398
С	-0.818290	-4.234642	3.238259
Н	-1.512272	-5.077134	3.307987
Н	-1.384683	-3.317166	3.409543
Н	-0.084463	-4.352144	4.038917
С	2.808695	-3.960721	2.330441
Н	2.460854	-4.928631	2.700129
Н	3.676441	-3.676772	2.932377
Н	3.143495	-4.079826	1.296758
	74		
CONF .			

$Gain^{2}(1 \Pi \Gamma)^{2} \Gamma(-)$				
Ca	0.000370	-0.905961	-0.000495	
F	-0.505323	1.441632	1.294566	

F	-2.243718	-1.607504	-2.385508
F	-4.572392	1.686370	-1.132530
F	-6.350662	-3.578335	-1.209831
F	-4.646885	-0.040686	1.377973
F	-4.156394	-3.439996	-2.832171
F	-0.771186	4.027954	1.970528
F	-6.568380	-1.840337	0.885963
F	-2.949101	5.471073	1.138659
F	-4.830875	4.238755	-0.411744
0	0.818104	-1.402963	-2.351182
Ň	-2.298598	0.116055	-0.249574
С	-2.540985	1.415162	0.086358
C	-3.352846	-0.734688	-0.490594
C	-3.289596	-1.657854	-1.549823
C	-1.709885	3.448865	1,213905
C	-1.595449	2.118665	0.859691
C	-4.270988	-2.602969	-1.794074
C	-3.630109	2.213212	-0.330317
Ĉ	-5 392653	-2 669706	-0.980552
Ĉ	-4 502998	-0.850006	0.313326
Ĉ	-3 770038	3 545458	0.021717
Ĉ	-2 813489	4 181085	0 799513
Ĉ	-5 501667	-1 779627	0.077232
Ĉ	2 028027	-2 969651	-3 576717
н	1 985816	-3 798735	-4 287710
н	2 819809	-3 178527	-2 851199
C	2.010000	-1 611408	-4 252701
н	3 302281	-1 379656	-4 418071
н	1 744013	-1 587145	-5 224003
C	1 588249	-0.620122	-3 270020
н	2 321852	-0.020122	-2 702237
н	0 026047	0.085035	-3 70/207
C	0.520547	-2 7/6368	-2 8557/0
н	-0 136200	-2.740300	-2.000749
н	0.521551	-3 383602	-1 001715
F	0.521551	1 1/2535	-1.331713
, E	2 240347	-1 600100	2 383606
1 E	2.240347	1 683108	2.303000
1 E	4.374333	-3 58/288	1.133190
	0.540005	-3.304200	1.210424
Г С	4.040349	-0.043194	-1.370071
Г С	4.150054	-3.444329	2.030992
Г С	0.774701	4.030111	-1.907740
Г С	0.007007	-1.040407 5 470767	-0.004244
г г	2.934036	3.470707	-1.155200
	4.034930	4.233770	0.414111
N	-0.020032	-1.400942	2.347021
	2.299113	0.110024	0.249101
C C	2.042001	1.414433	-0.0000000
	3.37234U	-0.730055	0.490337
C C	3.201000	-1.0003/3	1.040900
C C	1.7 13104	3.44907 I	-1.211/20
0	1.09/0/0	2.119302	-0.000403

С	4.267074	-2.606805	1.793512
С	3.632510	2.211279	0.331325
С	5.389342	-2.674375	0.980858
С	4.502941	-0.852887	-0.312759
С	3.773502	3.543658	-0.019744
С	2.817387	4.180650	-0.796968
C	5 500292	-1 783861	-0.076352
C	-2 030810	-2 973727	3 573154
ч	-1 08857/	-3 803781	1 283000
н Ц	2 922045	2 120667	4.203003
п С	-2.023945	-3.100007	2.040000
С Ц	-2.247900	1 202254	4.201290
	-3.301776	-1.3033334	4.410040
Н	-1.742214	-1.593600	5.221581
C	-1.589029	-0.624366	3.278414
н	-2.323070	-0.058964	2.702299
Н	-0.926470	0.079848	3.792450
С	-0.714648	-2.751090	2.850576
Н	0.133647	-2.811460	3.546066
Н	-0.526747	-3.387537	1.985548
F	0.000856	-2.994701	-0.002129
	78		
CaN ^F ₂	·(Et ₂ O) ₂ -F(-)		
Са	0.069140	-1.597219	-0.163967
F	2.456702	-1.440665	-1.202610
F	3,770946	1.892815	1,913100
F	1 519971	2 841455	0 194603
F	-3 188762	2 621598	-0 594900
F	0.100702	0 136053	-2 316353
- -	-2 065665	-0 553820	1 087221
- -	1 888880	-0.00029	-2 326676
	4.000000	2 01 4 1 7 4	-2.320070
г г	0.101204	2.014174	0.749044
r r	0.079586	-0.576945	3.349324
F	-3.969457	0.213157	-2.274325
F	6.784447	0.426751	-1.384640
F	-2.539976	4.653091	-2.190985
F	1.127700	2.223675	-3.880231
F	-0.377286	4.516698	-3.854670
F	-4.468416	-1.329625	2.912141
F	0.289914	4.613925	1.800597
F	-0.569679	1.200975	4.931295
F	-6.373386	-0.502346	-1.318242
F	-6.655834	-1.299916	1.278808
0	1.359130	-3.322547	1.221821
F	-0.780130	3.814651	4.178138
0	-0.097396	-2.909788	-2.405434
Ν	-1.636737	0.153716	-0.630592
Ν	1.697058	0.091743	0.869979
С	1.146931	1.054750	1.701291
C	-1.416048	1.249052	-1,412215
Ċ	3.975248	1.119625	0.830588
С	-0.703988	3.475422	-3.074400

С	2.943190	0.267842	0.363150
С	-1.804915	3.534241	-2.233080
С	1.014113	2.410196	1.358255
С	-2.140147	2.462247	-1.421600
С	-3.109564	-0.546920	1.147172
С	5,565780	0.368203	-0.825597
C	0.057917	2.315599	-3.080964
C	3.355646	-0.546950	-0.714301
C	0.581125	0.693740	2.932090
C	-0.300917	1.255333	-2.273678
C	5.231894	1,178169	0.249730
C	-2.910656	-0.122253	-0.175986
C	4 604152	-0.512366	-1 300142
C C	2 565363	-3.085704	1 953804
н	2 398589	-3 311490	3 013138
Н	2,000000	-2 012453	1 880726
C	-4 064683	-0 131038	-0.976813
C C	- 1.001000 ∩ 383301	3 333178	2 17/810
C C	-4 340385	-0.042064	1 637476
C C	-4.340303	-0.942904	0.812840
C C	5 200007	-0.923393	0.012040
C C	-5.309007	2 020204	-0.302009
C C	-0.104305	2.930304	3.304447
с ц	0.030493	-4.311141	1.010093
П	0.045070	-5.541195	1.090000
	-0.043676	-4.707104	0.001200
	-0.062139	1.599889	3.759843
	-1.355941	-2.597629	-3.024017
п	-1.209149	-2.000238	-4.114171
H A	-1.571456	-1.570475	-2.725495
	3.748004	-3.874235	1.415772
н	4.644423	-3.631882	1.995633
н	3.943787	-3.622198	0.370984
H	3.589724	-4.954347	1.486479
C	0.392427	-4.194755	-2.770696
н	0.279171	-4.313151	-3.859047
Н	-0.211428	-4.972740	-2.286703
C	-0.136343	-4.334768	2.900666
Н	0.497701	-4.084760	3.756142
Н	-0.655696	-5.270357	3.134316
Н	-0.886375	-3.555431	2.760858
С	1.845592	-4.333644	-2.377485
Н	2.207305	-5.325837	-2.665003
Н	1.971672	-4.227945	-1.297887
Н	2.462334	-3.581925	-2.873568
С	-2.495305	-3.509134	-2.604110
Н	-2.385463	-4.523201	-3.000326
Н	-3.434706	-3.104517	-2.993190
Н	-2.546583	-3.545370	-1.511982
F	-1.453972	-2.928343	0.347064

110

(MgN"₂)₂

Mg	1.473650	0.000024	-0.000008
Mg	-1.466396	-0.000008	0.000025
Ν	3.478950	0.000011	0.000058
Ν	-0.001021	-1.598674	-0.042620
Ν	-3.473178	-0.000013	0.000076
Si	4.395863	0.708193	-1.304104
Si	0.472124	-2.411907	-1.566189
Si	-0.498394	-2.808263	1.195956
Si	-4.367826	-0.451837	-1.424851
С	3.342501	1.903756	-2.335139
Н	4.006590	2.568755	-2.901871
Н	2.700397	2.539023	-1.716868
Н	2.715644	1.391117	-3.072996
С	5.876738	1.749767	-0.726583
Н	6.384151	2.177839	-1.600912
Н	6.624426	1.176945	-0.167604
Н	5.554789	2.583588	-0.091132
С	5.055691	-0.561294	-2.552616
Н	5.559916	-0.050184	-3.383426
Н	4.240703	-1.158126	-2.979791
Н	5.773838	-1.258288	-2.108662
С	0.755419	-1.104909	-2.906930
Н	1.230252	-1.607647	-3.759223
Н	1.443798	-0.296339	-2.627815
Н	-0.161939	-0.642948	-3.279043
С	2.139637	-3.297608	-1.457547
Н	2.429310	-3.616353	-2.467621
Н	2.141387	-4.185433	-0.821511
Н	2.918884	-2.616630	-1.095271
С	-0.810506	-3.617452	-2.257968
Н	-0.497320	-3.918025	-3.266134
Н	-1.808116	-3.173582	-2.341365
Н	-0.900390	-4.531733	-1.662535
С	0.462279	-4.443755	1.204633
Н	0.036341	-5.039877	2.022778
Н	1.531394	-4.334312	1.408315
Н	0.345842	-5.032447	0.289589
С	-2.307177	-3.307511	0.964237
Н	-2.625387	-3.907716	1.826737
Н	-2.453384	-3.920931	0.069221
Н	-2.981090	-2.447571	0.884580
С	-0.368374	-2.173250	2.969139
Н	-0.729640	-2.981048	3.619122
Н	-0.994193	-1.302634	3.178801
Н	0.654450	-1.944474	3.276892
С	-3.259141	-0.357046	-2.963215
Н	-3.769963	-0.815991	-3.819056
Н	-2.307637	-0.892023	-2.849989
Н	-3.041841	0.681205	-3.236970
С	-5.063731	-2.217481	-1.398306
Н	-5.632385	-2.409736	-2.317593
Н	-5.738368	-2.386277	-0.552282

Н	-4.270163	-2.970474	-1.337209
С	-5.830262	0.698359	-1.806076
Н	-6.296258	0.402222	-2.754883
Н	-5.506014	1.740839	-1.907377
н	-6.612117	0.666854	-1.038772
N	-0.001043	1.598697	0.042532
Si	4 395738	-0 708208	1 304288
Si	0.472083	2 412058	1.566037
Ci	0.472000	2.412000	1 106126
0	4 267000	2.000105	1 405017
0	-4.307000	0.401600	1.425017
	3.342240	-1.903726	2.335247
н	4.006268	-2.568774	2.902001
Н	2.700143	-2.538946	1./1692/
Н	2.715374	-1.391070	3.073080
С	5.876604	-1.749852	0.726870
Н	6.383939	-2.177947	1.601234
Н	6.624356	-1.177064	0.167942
Н	5.554660	-2.583659	0.091397
С	5.055531	0.561252	2.552846
Н	5.559672	0.050123	3.383695
Н	4.240535	1.158117	2.979959
Н	5.773740	1.258216	2.108946
С	0.755453	1.105178	2.906873
Ĥ	1.230278	1.608002	3,759119
н	1 443864	0.296618	2 627808
н	-0 161877	0.643205	3 279035
\hat{c}	2 130563	3 207807	1 457305
с ц	2.139003	3.297007	1.457305
	2.429230	3.010043 4 495570	2.407350
п	2.141279	4.180079	0.821196
	2.918820	2.010821	1.095074
0	-0.810587	3.617607	2.257730
Н	-0.497416	3.918269	3.265875
Н	-1.808180	3.173706	2.341155
Н	-0.900504	4.531841	1.662229
С	0.462148	4.443694	-1.204970
Н	0.036179	5.039716	-2.023172
Н	1.531267	4.334284	-1.408641
Н	0.345682	5.032469	-0.289982
С	-2.307261	3.307368	-0.964438
Н	-2.625504	3.907490	-1.826982
Н	-2.453477	3.920858	-0.069469
Н	-2.981146	2.447413	-0.884701
С	-0.368445	2.172985	-2.969262
Н	-0.729727	2.980711	-3.619325
н	-0.994243	1.302333	-3,178837
Н	0.654382	1.944197	-3.276998
C	-3 259111	0.357017	2 963373
н	-3 760000	0.815004	3 810211
н	-2 207506	0.010004	2 850120
Н	-2.007.000	-0 681224	2.000120
\hat{c}	-5.041031	-0.001204 0.017117	J.ZJ/14/ 1 200/77
с Ц	-0.003/1/	2.21/44/	1.0304//
п	-3.032352	2.409720	2.31///1

-5.738369	2.386231	0.552462
-4.270148	2.970437	1.337351
-5.830239	-0.698396	1.806248
-6.296229	-0.402257	2.755057
-5.505988	-1.740875	1.907551
-6.612100	-0.666894	1.038950
	-5.738369 -4.270148 -5.830239 -6.296229 -5.505988 -6.612100	-5.7383692.386231-4.2701482.970437-5.830239-0.698396-6.296229-0.402257-5.505988-1.740875-6.612100-0.666894

94

(CaNF2	2)2		
Ċa	1.599817	-0.528774	-0.747647
F	0.391688	-1.222511	-2.787726
F	2.230545	1.505066	0.713123
F	3.098942	-1.926446	-2.343295
F	-2.550235	2.433141	-2.321814
F	6.472858	1.054724	-1.312308
F	-1.072718	2.947458	0.496796
F	1.496056	1.937935	-3.321803
F	-1.012845	-2.073058	-4.931758
F	-0.186171	5.501947	0.414708
F	-3.903796	1.615957	-4.497055
F	-3.169251	-0.647730	-5.812702
F	2.890966	4.007385	1.520289
F	7.797105	-2.859377	0.203510
F	2.336998	4.501307	-3.430911
F	6.365806	-0.678862	0.823281
F	1.517069	6.297273	-1.562742
F	4.534987	-4.154596	-2.935034
F	6.916562	-4.625130	-1.668711
F	7.122332	3.511063	-0.490726
F	5.369728	5.033086	0.932801
Ν	3.889770	-0.103109	-0.575697
Ν	-0.287667	1.029362	-1.341253
С	-1.015219	0.645329	-2.492601
С	-0.690274	-0.507230	-3.202870
С	0.165811	2.367736	-1.422181
С	3.487345	1.993965	0.453037
С	4.362609	1.136451	-0.226989
С	4.730921	-1.169662	-0.820371
С	-0.208996	3.326107	-0.484872
С	4.305404	-2.138606	-1.737611
С	1.048258	2.814843	-2.412816
С	5.597311	1.726423	-0.557181
С	-2.481614	-0.237483	-4.755905
С	1.497038	4.126279	-2.474570
С	-2.850629	0.922353	-4.084765
С	3.788881	3.279327	0.854612
С	5.005566	-3.290159	-2.040422
С	6.663177	-2.618404	-0.448277
С	-1.388465	-0.966218	-4.305209
С	-2.134082	1.339595	-2.972290
С	5.927540	-1.480158	-0.154004

С	6.212224	-3.529523	-1.395868
С	0.222212	4.640189	-0.505117
С	1.084124	5.045670	-1.516986
С	5.935434	3.011960	-0.159572
С	5.040619	3.799542	0.555511
Ca	-1.599720	0.528786	0.747830
F	-0.392054	1.222296	2.788245
F	-2.230529	-1.505450	-0.712985
F	-3.098974	1.926294	2.343379
F	2.550406	-2.432893	2.322049
F	-6.473023	-1.054505	1.311908
F	1.073030	-2.947221	-0.496581
F	-1.496091	-1.938143	3.321895
F	1.012302	2.072821	4.932399
F	0.186552	-5.501766	-0.414807
F	3.903780	-1.615748	4.497428
F	3.168867	0.647713	5.813272
F	-2.891170	-4.007675	-1.520196
F	-7.796688	2.859581	-0.204120
F	-2.336941	-4.501542	3.430710
F	-6.365437	0.679002	-0.823741
F	-1.516819	-6.297321	1.562437
F	-4.534954	4.154497	2.934950
F	-6.916325	4.625226	1.668284
F	-7.122734	-3.510739	0.490260
F	-5.370163	-5.033026	-0.933037
N	-3.889685	0.102995	0.575566
N	0.287754	-1.029328	1.341507
С	1.015156	-0.645303	2,492952
C	0.690014	0.507136	3.203325
C	-0.165688	-2.367717	1.422330
C	-3 487429	-1 994143	-0 453097
C	-4 362660	-1 136502	0 226809
C	-4 730767	1 169622	0.820179
C	0 209233	-3 326010	0 484979
C C	-4 305343	2 138531	1 737496
C	-1 048183	-2 814946	2 412862
C	-5 597478	-1 726306	0.556863
C C	2 481335	0 237475	4 756404
C	-1 496922	-4 126408	2 474462
C	2 850535	-0 922245	4 085166
C C	-3 789087	-3 279478	-0.854670
C	-5.005466	3 290127	2 040240
C.	-6 662874	2 618517	0 447832
C	1 388101	0.966103	4 305740
C	2 134087	-1 339469	2 972620
C	-5 927270	1 480234	0 153640
C	-6 212000	3 520588	1 305515
C	-0 221020	-4 640103	0.505062
C	-1 082010	-5 045701	1 516821
C	-5 935725	-3 011807	0 150237
č	-5.040933	-3,799522	-0.555722
-	5.5 10000	5 500LL	515001 LL

	47		
CaN ^F 2			
Ca	0.000036	-0.000278	-0.000229
Ν	-2.325633	-0.000047	0.000062
F	0.979173	-0.840178	2.117070
Ν	2.325705	-0.000207	-0.000191
F	-0.979389	-2.117445	-0.840044
F	-0.978810	2.117197	0.839639
F	4.921075	-1.264600	-0.453466
F	-4.921212	0.453346	-1.263832
F	0.979181	0.839672	-2.117494
F	4.920890	1.264521	0.453275
F	1.980996	-2.606351	3.918542
F	1.980880	2.606023	-3.918853
F	5.912292	-2.970409	1.354358
F	4.481974	-3.670670	3.558540
F	-1.981576	-3.918810	-2.606119
F	-5.911744	1.355093	2.970545
F	5.911986	2.970507	-1.354440
F	-4.920952	-0.452892	1.264632
F	4.481703	3.670652	-3.558683
F -	-1.980215	3.918843	2.605883
F -	-4.481084	3.559135	3.670553
	-5.912763	-1.354363	-2.969577
F	-4.482675	-3.558615	-3.670099
C	2.969765	-0.878210	0.837572
0	2.258174	-1.329585	1.959011
C	2.969699	0.877912	-0.837882
	-2.258428	-1.959257	-1.329321
	-2.969861	-0.837749	-0.877804
	-2.909485	0.837846	0.878089
	2.200114	1.329234	-1.909348
C	-2.207730	1.909200	1.329270
C	4.214271	0 655222	-0.0000347
C	-4.214017	-0.000202	-1.000000
C	3.909003	-2.791090	2.009339
C	4.721000	2.410000	1 568/55
C	4.722077	-2.410010	-2 247862
C	-2.723001	2 876877	2.247002
0	-2.724707 -4 721551	1 569010	2.247009
C C	2 725355	-2 2/8183	2.410020
C	<i>A</i> 21 <i>A</i> 20	-2.240100	0.655125
C	-4 214106	0 655577	1 505590
c	-3 989153	2 689826	2 791477
C	0.000100	2.000020	-2.876821
ĉ	2 7 25 2 28	//4/ ////	-/ ()///////
1.	2.725228	2.791487	-2 689535
C	2.725228 3.989645 -4.722460	2.791487	-2.689535 -2.417989

CaN^F2-F Са 0.674228 -1.146519 0.181535 Ν 2.214227 -0.175700-0.102097F -1.509090-0.910392-2.596557 Ν -2.1591210.524410 -0.422713F -1.915834 0.231666 -0.517109F 2.187471 2.527190 -0.123378 F -4.225471 -0.608770 1.260883 F 4.095744 -0.879804 2.013524 F -0.5455682.167907 0.922582 F -4.953189 1.347027 -0.587554F -2.722505 -3.233707 -3.256586 F -1.404612 4.407729 2.172374 F -5.448372 -2.8881430.569941 F -4.724639 -4.240006 -1.685878 F -0.056532 -4.208034 0.884538 F 0.091129 -1.3289696.886067 F -5.789910 3.539181 0.688030 F 4.735965 -1.403541-0.745328F -4.051935 5.109641 2.085179 F 4.349310 4.018839 -0.758582 F -1.356106 6.727279 2.813270 F 3.822013 -3.1735223.351006 F 1.755295 -4.8766442.831512 С -2.875392 -0.611218 -0.694826 С -2.514937-1.374952-1.819151С -2.7197841.603985 0.196410 С 1.146150 -2.2293440.438600 С 2.206689 -1.3242630.632337 С 3.381274 0.506580 -0.357730 С 2.483381 -1.866600 0.889443 С 3.348121 1.910018 -0.413770С -4.0604592.037490 0.138842 С 3.090081 -1.6991591.666784 С -4.125184 -3.086531 -1.366219С -4.502041 3.187738 0.772922 С -4.497410 -2.388022 -0.226761 С 0.973871 -3.4002581.148611 С 4.443044 2.686871 -0.743837 С 5.731760 0.692532 -1.017733 С -3.110936-2.572592-2.162845С -3.875069 -1.1956200.105809 С 4.618896 -0.067423 -0.696842 С 5.653738 2.077232 -1.042746 С -2.280040 3.640617 1.518195 С -3.620856 3.998775 1.473734 С 2.946874 -2.8762602.383764 С 1.891484 -3.741811 2.133029 F 1.708468 0.605890 -2.838196

110

(CaN"2)2

Ca	1.730035	0.000155	-0.000480
Ca	-1.729935	-0.000273	-0.000928
Ν	3.997185	0.000219	0.000959
Ν	0.000130	-1.786128	-0.001286
Ν	-3.997012	-0.000063	0.001015
Si	4,783862	0.730689	-1.344020
Si	0 492854	-2 745604	-1 397067
Si	-0.402004	-2 7/9282	1 302178
Si	-032210	-0.726/13	-1 3/6370
0	-4.703309	1 1 9 9 7 0 0	-1.340379
С Ц	3.442230	1.102/09	-2.010400
	3.074000	1.750100	-3.441910
п	2.051010	1.816036	-2.194715
Н	2.984925	0.294216	-3.066869
С	5.700951	2.337538	-0.946948
Н	6.121635	2.780713	-1.856751
Н	6.529019	2.166282	-0.252589
Н	5.038673	3.078444	-0.488920
С	6.011298	-0.389987	-2.248985
Н	6.361942	0.083848	-3.172844
Н	5.560728	-1.351581	-2.513854
Н	6.894599	-0.597116	-1.636372
С	0.488827	-1.698617	-2.971979
Н	0.938879	-2.294514	-3.773843
н	1.074693	-0.775503	-2.918852
Н	-0.517952	-1.428943	-3.300721
C	2 276475	-3 351351	-1 219369
н	2 580176	-3 883300	-2 128079
н	2.306187	-0.000000	-0 379555
Ц	2.0050107	-2 535074	-1.075330
п С	2.995912	-2.555074	1 706207
С Ц	-0.303040	-4.247104	-1.790207
	-0.191732	-4.721030	-2.703221
н	-1.622922	-3.972802	-1.994832
H	-0.580948	-5.005246	-1.009066
C	0.584200	-4.251687	1.786761
Н	0.192882	-4.729210	2.692160
Н	1.623944	-3.977599	1.986434
Н	0.582451	-5.007192	0.997167
С	-2.275622	-3.355147	1.212785
Н	-2.579172	-3.889755	2.119982
Н	-2.395035	-4.041686	0.371045
Н	-2.995257	-2.538661	1.071024
С	-0.488362	-1.706636	2.969887
Н	-0.937915	-2.304816	3.770322
Н	-1.074859	-0.783818	2.918955
Н	0.518300	-1.437088	3.299077
С	-3.441288	-1.175300	-2.619496
H	-3.873616	-1.747851	-3.446931
н	-2 650784	-1 810581	-2 199225
н	-2 083030	-0 285801	-3 066042
C	-5 701120	-2 33/15/	-0 954553
ч	-6 121002	-2 77/722	-1 865088
н	-6 520811	-2 164634	-0 2605/2
••	0.020044	2.101004	0.200072

Н	-5.039428	-3.076424	-0.497898
С	-6.009840	0.397512	-2.248604
Н	-6.359431	-0.072759	-3.174679
Н	-5.558964	1.360113	-2.509259
Н	-6.893849	0.602295	-1.636222
N	-0.000287	1,785979	-0.000242
Si	4 783844	-0 730037	1 346096
Si	0.491667	2 745639	1 305606
Ci	0.407695	2.740000	1 202702
0	-0.492000	2.740371	1 240420
0	-4.704120	0.720009	1.340130
	3.442480	-1.182225	2.018085
н	3.875048	-1.757632	3.444021
Н	2.651244	-1.815545	2.196909
Н	2.985117	-0.293780	3.069094
С	5.701230	-2.336721	0.948987
Н	6.122001	-2.779849	1.858771
Н	6.529258	-2.165319	0.254615
Н	5.039066	-3.077730	0.490956
С	6.011167	0.390944	2.250852
Н	6.361880	-0.082715	3.174774
Н	5,560459	1.352507	2.515601
н	6.894439	0.598114	1.638209
С	0.488177	1.698425	2.970445
н	0.937571	2 294613	3 772463
н	1 07/0/1	0 775875	2 017202
	0 519299	1 407777	2.917292
п С	-0.516566	1.42////	3.299010
	2.274900	3.332401	1.210397
н	2.578016	3.884827	2.12/0/8
н	2.394606	4.041130	0.378441
Н	2.994854	2.536499	1.074922
С	-0.585261	4.246494	1.794768
Н	-0.194525	4.721046	2.701979
Н	-1.625039	3.971475	1.993004
Н	-0.583349	5.004677	1.007741
С	0.582907	4.252098	-1.787870
Н	0.191498	4.729520	-2.693284
Н	1.622851	3.978640	-1.987366
Н	0.580546	5.007482	-0.998165
С	-2.276517	3.353765	-1.214868
Н	-2.580373	3.887681	-2.122368
Н	-2.396307	4.040727	-0.373521
н	-2 995761	2 537028	-1 072529
C	-0 487477	1 706616	-2 971705
й	-0.937286	2 304548	-3 772181
	1 072066	0 792210	2 021160
п	-1.073000	1 429095	-2.921109
	0.019070	1.430000	-3.300572
	-3.443327	1.174822	2.022488
н	-3.8/639/	1.747242	3.449631
Н	-2.652493	1.810059	2.202844
Н	-2.985373	0.285241	3.070038
С	-5.701620	2.333834	0.955592
Н	-6.122273	2.774383	1.866681

H H	-6.529737 -5.039525	2.164357 3.076131	0.260854 0.499541
С	-6.011452	-0.398035	2.248976
Н	-6.361720	0.071980	3.174926
Н	-5.560841	-1.360741	2.509704
Н	-6.895008	-0.602564	1.635855
		0.00200	
	55		
CaN"2			
Ν	-2.251833	-0.000176	-0.000017
Si	-2.872464	1.113159	-1.131477
Ca	0.000012	0.000169	-0.001121
Si	2.872496	1.131989	1.113000
Si	2.872216	-1.131997	-1.112781
Ν	2.251860	0.000114	0.000041
Si	-2.872243	-1.113244	1.131876
С	-3.885852	-2.521649	0.385296
Н	-4.807518	-2.141394	-0.067262
Н	-4.172146	-3.259664	1.142694
Н	-3.327476	-3.041874	-0.399430
С	-3.885965	-0.343659	2.527717
H	-3.328060	0.450116	3.034541
Н	-4.171452	-1.088805	3.278406
Н	-4.808098	0.101705	2.140193
С	-3.886334	0.343962	-2.527419
Ĥ	-3.328097	-0.448967	-3.035204
Н	-4.172846	1.089489	-3.277339
Н	-4.807881	-0.102466	-2.139727
C	-3 885819	2 521548	-0.384558
н	-4 807621	2 141340	0.067761
н	-4 171862	3 259874	-1 141747
н	-3 327421	3 041379	0 400411
C	-1 337597	-1 921605	1 953553
н	-0 705838	-2 483213	1 249069
н	-1 648986	-2 657909	2 701714
Н	-0.705821	-1 208228	2 503784
C	-0.703021	1 921626	-1 053320
н	-0 705945	2 483258	-1 248080
н	-0.700040	2.403230	-2 701333
н	-0.706174	1 208/27	-2.701000
C	3 886010	-0 386137	-2.505950
C	3 88/5/6	-2 528606	-2.320733
C C	1 337/03	-2.320000	-0.342703
С Ц	1.557405	2 701064	2 659101
п	1.040079	-2.701004	-2.000101
П	0.704031	-2.302700	-1.209103
	0.706406	-1.247950	-2.404104
	4.171039	-3.278809	-1.088032
n u		-2.141490	0.104233
п	3.323419	-3.035908	0.449820
п	4.172004	-1.1430/0	-3.2588/0
П	3.329512	0.399298	-3.040923
п	4.809005	0.005349	-2.140193

С	3.886613	0.385576	2.521122
С	3.885845	2.527886	0.343015
С	1.338020	1.953613	1.921732
Н	4.171842	1.142815	3.259713
Н	3.328977	-0.400123	3.040667
Н	4.808912	-0.065659	2.140827
Н	4.172979	3.277795	1.088313
Н	4.807014	2.140134	-0.104138
Н	3.327023	3.035714	-0.449477
Н	1.649542	2.701901	2.657850
Н	0.705963	2.503743	1.208512
Н	0.706526	1.249073	2.483547

56 CaN"2-F

Cain 2	-F		
Ν	2.074149	-0.110448	0.046903
Si	3.162429	1.038409	-0.584243
Ca	-0.006774	0.117287	-1.035645
Si	-3.153931	-1.055062	-0.621211
Si	-2.430673	1.410233	1.085223
Ν	-2.120321	0.159129	-0.021206
Si	2.404669	-1.435217	1.065641
С	0.903757	-1.843903	2.153592
Н	0.704910	-1.027900	2.856247
Н	1.074267	-2.755939	2.737851
Н	-0.012798	-1.993228	1.572250
С	3.857807	-1.193578	2.273331
Н	4.804095	-1.033676	1.744935
Н	3.981880	-2.077057	2.911123
Н	3.690819	-0.329867	2.925290
С	3.988396	2.153917	0.717855
Н	3.232640	2.644970	1.340197
Н	4.594642	2.935383	0.243535
Н	4.642808	1.581674	1.382956
С	4.576816	0.309410	-1.626359
Н	5.210215	-0.354636	-1.027408
Н	5.219809	1.093136	-2.044771
Н	4.173680	-0.278137	-2.457697
С	2.809023	-3.024883	0.098680
Н	1.988453	-3.297911	-0.574242
Н	2.990992	-3.876314	0.765868
Н	3.700873	-2.885152	-0.521811
С	2.214175	2.224194	-1.735528
Н	1.708838	1.707698	-2.562408
Н	2.908790	2.940432	-2.189015
Н	1.474301	2.822496	-1.187166
С	-3.991783	2.437312	0.718365
С	-2.601562	0.845509	2.892478
С	-0.980033	2.644232	1.054164
Н	-1.119391	3.434134	1.801060
Н	-0.020965	2.161343	1.280244
Н	-0.894448	3.141316	0.079844
Н	-2.741181	1.694865	3.572264
---	-----------	-----------	-----------
Н	-3.458265	0.174296	3.014714
Н	-1.709403	0.297603	3.211935
Н	-4.093240	3.276127	1.417723
Н	-3.962200	2.844615	-0.297759
Н	-4.898148	1.827199	0.801863
С	-4.148590	-1.982599	0.711394
С	-4.425766	-0.435516	-1.889993
С	-2.110467	-2.365613	-1.522627
Н	-4.731427	-2.802135	0.273789
Н	-3.484897	-2.407572	1.471640
Н	-4.851555	-1.315251	1.222672
Н	-5.038587	-1.254677	-2.285461
Н	-5.100215	0.305237	-1.447353
Н	-3.914747	0.042045	-2.732441
Н	-2.752053	-3.147098	-1.945845
Н	-1.544639	-1.934754	-2.359279
Н	-1.408666	-2.866580	-0.843899
F	-0.023563	-0.000130	-3.102919

3 References

- 1. A.-K. Kreyenschmidt, S. Bachmann, T. Niklas, D. Stalke, *ChemistrySelect,* 2017, **2**, 6957.
- 2. M. A. Beckett, D. S. Brassington, M. E. Light, M. B. Hursthouse, *Dalton Trans.*, 2001, 0, 1768.
- 3. V. Gutmann, *Coordin. Chem. Rev.*, 1976, **18**, 225.
- 4. U. Mayer, V. Gutmann, W. Gerger, *Monatshefte für Chemie*, 1975, **106**, 1235.
- 5. Rigaku Oxford Diffraction, 2015, *CrysAlisPro Software system, version 1.171.38.46*, Rigaku Corporation, Oxford, UK.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.*, 2009, *42*, 339.
- 7. G. M. Sheldrick, *Acta Crystallogr. A*, 2015, **71**, 3.
- 8. G. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112.
- 9. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- 10. Rigaku Oxford Diffraction, 2018, *CrysAlisPro Software system, version 1.171.39.46*, Rigaku Corporation, Oxford, UK.
- 11. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3.
- 12. A. Thorn, B. Dittrich, G. M. Sheldrick, *Acta Crystallogr. A*, 2012, **68**, 448.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E.N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.Foresman, D. J. Fox, *Gaussian 16 Rev. A.03*, Wallingford CT, 2016.
- 14. A. D. Becke, J. Chem. Phys., 1993, **98**, 1372.
- 15. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, *J. Comp. Chem.*, 1983, 4, 294.
- 16. J. Perdew, *Electronic Structure of Solids*, (Akademie Verlag Berlin, Berlin, 1991).
- 17. W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory by W.J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, John Wiley, New York, 1986.
- 18. F.Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.
- 19. A. E. Reed, R. B. Weinstock, F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 735.
- 20. N. van Eikema Hommes, *Molecule*, Erlangen, 2016.
- 21. R. F. W.Bader, *Chem. Rev.*, 1991, **91**, 893.
- 22. T. A. Keith, *AIMAII (Version 17.01.25)* TK Gristmill Software, Overland Park KS USA, 2017.