Supporting Information

Heterostructured NiFe Oxide/Phosphide Nanoflakes for Efficient

Water Oxidation

Ailing Yan,¹ Hao Wan,¹ Gen Chen,¹ Ning Zhang,¹ Wei Ma,² Xiaohe Liu,^{1*} Yijun Cao^{2*} &Renzhi Ma³

¹ State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. Email: liuxh@csu.edu.cn

² Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China. Email: yijuncao@126.com

³ International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

Figure S1. (a) The XRD pattern and (b) TEM image of $Ni_{2/3}Fe_{1/3}$ LDH.

Figure S2 (a) XRD patterns of monometallic Ni₂P/NiO and the Ni_{4/3}Fe_{2/3}P samples, (b) magnification of the (210) peak of Ni_{4/3}Fe_{2/3}P and Ni₂P phases as marked by the framework in (a). " \blacklozenge " and " \bigstar " refer to NiO phase and possible tetragonal Ni₁₂P₅ (a = 8.65 Å, c = 5.07 Å; space group: I4/m) impurity, respectively. A clear shift towards higher diffraction angle could be observed for Ni_{4/3}Fe_{2/3}P, indicating the successful doping of Fe atoms into the Ni₂P lattices.

Figure S3. TEM images of (a) $Ni_{4/3}Fe_{2/3}P$ -1and (b) $Ni_{4/3}Fe_{2/3}P$ -2.

Figure S4. EDS spectrum of $Ni_{2/3}Fe_{1/3}O/Ni_{4/3}Fe_{2/3}P$ (the Al signal was from the conductive Al foil substrate).

Figure S5. The CV curves of (a) $Ni_{2/3}Fe_{1/3}O/\ Ni_{4/3}Fe_{2/3}P$, (b) $Ni_{2/3}Fe_{1/3}O,$ (c) $Ni_{4/3}Fe_{2/3}P$ -1 and

(d) $Ni_{4/3}Fe_{2/3}P-2$.