## **Supporting Information**

# Phosphindole Fused Pyrrolo[3,2-b]pyrroles: New Single-Molecule Junction for Charge Transport

Di Wu,#a Jueting Zheng,#b Chenyong Xu,a Dawei Kang,\*c Wenjing Hong,\*b Zheng Duan\*a and François Mathey\*a

<sup>a.</sup> International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

<sup>b</sup>-State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, NEL, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

<sup>c</sup> School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471003, P. R. China

<sup>#</sup> D. Wu and J. Zheng contributed equally to this work.

## **Corresponding Author**

\*E-mail: duanzheng@zzu.edu.cn (Z. Duan)

\*E-mail: whong@xmuu.edu.cn (W. Hong)

\*E-mail: kdw@haust.edu.cn (D.Kang)

\*E-mail: frmathey@yahoo.fr (F. Mathey)

## **Table of Contents**

| General methods                                                                                                              | 2     |
|------------------------------------------------------------------------------------------------------------------------------|-------|
| Synthesis of the starting materials                                                                                          | 2     |
| Synthesis of phosphindol-pyrrolo[3,2-b]pyrroles and bisphosphindol-pyrrolo[3,2-b]pyrroles                                    | 2-5   |
| Single-molecule conductance measurements                                                                                     | 5     |
| DFT calculations on <b>3a</b> -trans/cis and <b>3b</b> -trans/cis and their frontier molecular orbits                        | 5     |
| TGA & DSC graphs, melting point and decomposition temperature of <b>1a</b> , <b>1b</b> , <b>2a</b> -trans and <b>2a</b> -cis | 6     |
| Cyclic voltammograms                                                                                                         | 6     |
| Conductance histogram, 2D conductance-distance histogram and the relative distance distribution                              | 7     |
| Calculated and experiment conductance of <b>3a</b> -trans/cis and <b>3b</b> -trans/cis                                       | 8-9   |
| X-ray Crystallographic Studies of 2a- <i>trans</i> and 2a- <i>cis</i>                                                        | 9-15  |
| NMR spectra                                                                                                                  | 16-28 |
| References                                                                                                                   | 29    |

## **Experimental Procedures**

**General methods.** All air- and moisture-sensitive manipulations were carried out routinely performed under an inert atmosphere of nitrogen by using standard Schlenk techniques and dry deoxygenated solvents. <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR spectra were recorded on a Bruker DRX-300 Spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were reported in parts per million (ppm) relative to tetramethylsilane (TMS) as internal standard. <sup>31</sup>P NMR downfield chemical shifts were expressed with a positive sign, in ppm, relative to external 85% H<sub>3</sub>PO<sub>4</sub>. All coupling constants (*J* values) are reported in Hertz (Hz). HRMS were obtained on an Agilent 1290-6540 Q-Tof spectrometer by electrospray ionization (ESI). Element analytic data were obtained on a Thermo Electron Corporation flash EA 1112 element spectrometer. UV-Visible spectra were recorded at room temperature on a VARIAN Cary 5000 spectrophotometer. The emission spectra were recorded on a Hitachi Fluorescence spectrophotometer F-4600 or F-7000. The electrochemical studies were carried out under nitrogen using an RST3000 electrochemical workstation for cyclic voltammetry with the three-electrode configuration: the working electrode was a glassy carbon electrode, the reference electrode was a saturated calomel electrode and the counter-electrode was a platinum wire. All potential were referenced to the ferrocene/ferrocenium (Fe/Fe<sup>+</sup>) couple. For the measurements, concentrations of 0.5 µM of the electroactive species were used in freshly distilled and degassed dichloromethane and 0.1 M tetrabutylammonium hexafluorophosphate (Bu<sub>4</sub>NPF<sub>6</sub>). Decomposition point determination were performed by using a thermogravimetric analysis (on a NETZSCH STA409 PC/PG TG-DTA) under dry argon flow at a heating rate of 10 °C/min. X-ray crystallographic analyses were performed on an Oxford diffraction Gemini E diffractometer.

Synthesis of the starting materials. TAPP-1 was synthesized according to the literature procedure<sup>[1]</sup>.



2,5-Bis(2-bromo-4-(methylthio)phenyl)-1,4-bis(4-butylphenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole (TAPP-2). To a solution of 2-bromo-4-(methylthio)benzaldehyde (920 mg, 4 mmol) and 4-butylaniline (0.63 mL, 4 mmol) in glacial acetic acid (4 mL) was added TsOH monohydrate (76 mg, 0.4 mmol, 10 mol %). After stirring at 90 °C for 30 min, 2,3-butanedione (0.175 mL, 2 mmol) was added dropwise. The mixture was heated at 90 °C for 3 h. The mixture was diluted with ethyl acetate and the organic phase was washed with water, brine and dried with anhydrous MgSO<sub>4</sub>. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography (petroleum ether :  $CH_2CI_2 = 5:1$ ) on silica gel to give **2** as a yellow solid (390 mg, 25%).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.92 (t, *J* = 7.2 Hz, 6H, CH<sub>3</sub>), 1.29-1.41 (m, 4H, CH<sub>2</sub>), 1.54-1.64 (m, 4H, CH<sub>2</sub>), 2.47 (s, 6H, SCH<sub>3</sub>), 2.58 (t, *J* = 7.8 Hz, 4H, CH<sub>2</sub>), 6.43 (s, 2H, ArH), 7.03-7.14 (m, 12H, ArH), 7.41 (d, *J* = 1.8 Hz, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 13.98 (2CH<sub>3</sub>), 15.47 (2SCH<sub>3</sub>), 22.40 (2CH<sub>2</sub>), 33.45 (2CH<sub>2</sub>), 35.11 (2CH<sub>2</sub>), 96.42 (2CH), 123.97 (4CH), 124.62 (2C), 124.67 (2CH), 128.85 (4CH), 129.69 (2C), 129.72 (2CH), 131.51 (2C), 132.88 (2CH), 132.94 (2C), 137.42 (2C), 139.37 (2C), 139.78 (2C); HRMS(ESI) Calcd. for C<sub>40</sub>H<sub>41</sub>Br<sub>2</sub>N<sub>2</sub>S<sub>2</sub> [M+H]<sup>+</sup> 771.1072, found 771.1066.





To a solution of TAPP-1 (600 mg, 1 mmol) in anhydrous tetrahydrofuran (THF) (30 mL) was added *n*-BuLi (0.63 mL, 1 mmol, 1.6 M in *n*-hexane) dropwise under nitrogen at -78 °C. After stirring at -78 °C for 30 min, PhPCl<sub>2</sub> (136  $\mu$ L, 1 mmol) was added. The mixture was kept at -78 °C for 10 min and then warmed to room temperature. After stirring 2 h at rt, H<sub>2</sub>O<sub>2</sub> (0.5 mL, 30 % aq) or S<sub>8</sub> (32 mg, 1

mmol) was added. Once the reaction was finished (monitored by TLC or <sup>31</sup>P NMR spectroscopy), the mixture was diluted with AcOEt, and the organic phase was washed with water, brine and dried with anhydrous MgSO<sub>4</sub>. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel and recrystallization.

2-(2-Bromophenyl)-9-phenyl-1,4-di-p-tolyl-1,4-dihydrophosphindolo[3,2-b]pyrrolo[2,3-d]pyrrole 9-oxide (1a): purified by column chromatography (CH<sub>2</sub>Cl<sub>2</sub> : AcOEt = 5:1) and recrystallization (from CH<sub>2</sub>Cl<sub>2</sub>/n-hexane/MeOH) to give a yellow solid (360 mg, 57 %). <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 19.2; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.23 (s, 3H, CH<sub>3</sub>), 2.48 (s, 3H, CH<sub>3</sub>), 6.20 (s, 1H, ArH), 6.80 (dd,  $J_1$  = 7.5 Hz,  $J_2$  = 3.3 Hz, 1H, ArH), 6.91-7.17 (m, 9H, ArH), 7.22-7.26 (m, 2H, ArH), 7.35-7.38 (m, 3H, ArH), 7.44-7.51 (m, 4H, ArH), 7.58 (dd,  $J_1$  = 13.2 Hz,  $J_2$  = 7.5 Hz, 1H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.99 (CH<sub>3</sub>), 21.32 (CH<sub>3</sub>), 95.86 (CH), 100.80 (d,  $J_{CP}$  = 128.9 Hz, C), 119.13 (d,  $J_{CP}$  = 8.8 Hz, CH), 124.20 (C), 124.63 (2CH), 126.25 (2CH), 126.82 (d,  $J_{CP}$  = 12.1 Hz, CH), 126.90 (CH), 127.81 (d,  $J_{CP}$  = 4.5 Hz, C), 128.13(d,  $J_{CP}$  = 13.0 Hz, 2CH), 128.92 (CH), 129.65 (2CH), 129.99 (d,  $J_{CP}$  = 9.1 Hz, CH), 130.31 (2CH), 131.36 (d,  $J_{CP}$  = 11.2 Hz, 2CH), 131.49 (CH), 131.77 (d,  $J_{CP}$  = 110.5 Hz, C), 131.95 (CH), 132.98 (d,  $J_{CP}$  = 4.4 Hz, 2CH), 134.32 (C), 134.77 (C), 135.55 (C), 135.69 (C), 135.87 (d,  $J_{CP}$  = 8.6 Hz, C), 136.32 (C), 136.67 (d,  $J_{CP}$  = 13.7 Hz, C), 137.73 (d,  $J_{CP}$  = 107.6 Hz, C), 138.52 (C), 143.69 (d,  $J_{CP}$  = 34.1 Hz, C); HRMS(ESI) Calcd. for C<sub>38</sub>H<sub>29</sub>BrN<sub>2</sub>OP [M+H]<sup>+</sup> 639.1195, found 639.1205.

2-(2-bromophenyl)-9-phenyl-1,4-di-p-tolyl-1,4-dihydrophosphindolo[3,2-b]pyrrolo[2,3-d]pyrrole 9-sulfide (**1b**): purified by column chromatography (petroleum ether :  $CH_2CI_2 = 1:1$ ) and recrystallization (from  $CH_2CI_2/n$ -hexane/MeOH) to give a yellow solid (440 mg, 68 %). <sup>31</sup>P NMR (121 MHz, CDCI<sub>3</sub>):  $\delta = 25.9$ ; <sup>1</sup>H NMR (300 MHz, CDCI<sub>3</sub>):  $\delta = 2.25$  (s, 3H, CH<sub>3</sub>), 2.49 (s, 3H, CH<sub>3</sub>), 6.24 (d, J = 0.8 Hz, 1H, ArH), 6.86-6.94 (m, 3H, ArH), 7.01-7.22 (m, 9H, ArH), 7.31-7.39 (m, 3H, ArH), 7.48-7.56 (m, 4H, ArH), 7.63 (dd,  $J_1 = 15.0$  Hz,  $J_2 = 6.0$  Hz, 1H, ArH); <sup>13</sup>C NMR (75 MHz, CDCI<sub>3</sub>):  $\delta = 21.06$  (CH<sub>3</sub>), 21.34 (CH<sub>3</sub>), 95.87 (CH), 102.03 (d,  $J_{CP} = 110.8$  Hz, C), 119.37 (d,  $J_{CP} = 8.3$  Hz, CH), 124.17 (C), 125.49 (2CH), 126.18 (d,  $J_{CP} = 14.3$  Hz, C), 126.27 (2CH), 126.87 (CH), 126.95 (d,  $J_{CP} = 12.0$  Hz, CH), 127.42 (d,  $J_{CP} = 5.0$  Hz, C), 128.10 (d,  $J_{CP} = 3.0$  Hz, CH), 128.90 (CH), 129.53 (2CH), 129.78 (d,  $J_{CP} = 10.6$  Hz, CH), 130.32 (2CH), 131.11 (d,  $J_{CP} = 12.2$  Hz, 2CH), 131.29 (d,  $J_{CP} = 3.0$  Hz, CH), 131.46 (d,  $J_{CP} = 1.7$  Hz, CH), 131.71 (d,  $J_{CP} = 86.5$  Hz, C), 133.01 (2CH), 134.23 (C), 135.16 (C), 135.67 (C), 135.80 (C), 136.10 (d,  $J_{CP} = 8.8$  Hz, C), 136.11 (C), 138.51 (C), 140.63 (d,  $J_{CP} = 91.3$  Hz, C), 142.23 (d,  $J_{CP} = 30.8$  Hz, C); HRMS(ESI) Calcd. for  $C_{38}H_{29}$ BrN<sub>2</sub>PS [M+H]<sup>+</sup> 655.0967, found 655.0972



6,12-Diphenyl-5,11-di-p-tolyl-5,11-dihydrophosphindolo[3,2-b]phosphindolo[2',3':4,5]pyrrolo[2,3-d]pyrrole 6,12-dioxide (**2a**-trans/cis). To a solution of TAPP-**1** (600 mg, 1 mmol) in anhydrous THF (30 mL) was added *n*-BuLi (1.25 mL, 2 mmol, 1.6 M in *n*-hexane) dropwise under nitrogen at -78 °C. After stirring at -78 °C for 30 min, PhPCl<sub>2</sub> (272  $\mu$ L, 2 mmol) was added. The mixture was kept at -78 °C for 10 min and then warmed to room temperature. After stirring 2 h at rt, H<sub>2</sub>O<sub>2</sub> (0.5 mL, 30 % aq) was added. The reaction was monitored by <sup>31</sup>P NMR spectroscopy after 30 min. The mixture was diluted with ethyl acetate, and the organic phase was washed with water, brine and dried with anhydrous MgSO<sub>4</sub>. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography (CH<sub>2</sub>Cl<sub>2</sub> : AcOEt = 5:1 for **2a**-trans and AcOEt for **2a**-cis) and recrystallization (both from CH<sub>2</sub>Cl<sub>2</sub>/*n*-hexane/MeOH) to give **2a**-trans as a yellow solid (265 mg, 37 %) and **2a**-cis as a yellow solid (293 mg, 43 %).

**2a**-*trans*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.2; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.43 (s, 6H, CH<sub>3</sub>), 6.78 (dd,  $J_1$  = 7.2 Hz,  $J_2$  = 3.0 Hz, 4H, ArH), 7.05-7.16 (m, 6H, ArH), 7.25-7.31 (m, 5H, ArH), 7.41-7.48 (m, 9H, ArH), 7.68 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.23 (2CH<sub>3</sub>), 101.43 (d,  $J_{CP}$  = 127.1 Hz, 2C), 119.39 (d,  $J_{CP}$  = 9.0 Hz, 2CH), 125.97 (4CH), 127.26 (d,  $J_{CP}$  = 12.1 Hz, 2CH), 128.22 (d,  $J_{CP}$  = 13.2 Hz, 4CH), 130.00 (d,  $J_{CP}$  = 9.4 Hz, 2CH), 130.38 (br, 4CH), 130.89 (d,  $J_{CP}$  = 111.1 Hz, 2C), 131.08 (d,  $J_{CP}$  = 11.3 Hz, 4CH), 131.71 (d,  $J_{CP}$  = 2.4 Hz, 2CH), 132.05 (2CH), 133.49-133.65 (m, 2C), 134.83 (2C), 136.08 (d,  $J_{CP}$  = 13.9 Hz, 2C), 137.33 (d,  $J_{CP}$  = 107.8 Hz, 2C), 138.71 (2C), 144.61 (d,  $J_{CP}$  = 33.0 Hz, 2C); HRMS(ESI) Calcd. for C<sub>44</sub>H<sub>33</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub> [M+H]<sup>+</sup> 683.2012, found 683.2021. Anal. Calcd. for C<sub>44</sub>H<sub>32</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>: C, 77.41; H, 4.72; N, 4.10, found: C, 77.06; H, 4.76; N, 3.88.

**2a**-*cis*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.2; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.48 (s, 6H, CH<sub>3</sub>), 6.79 (dd,  $J_1$  = 7.2 Hz,  $J_2$  = 3.0 Hz, 4H, ArH), 7.07-7.18 (m, 6H, ArH), 7.23-7.29 (m, 5H, ArH), 7.37-7.51 (m, 9H, ArH), 7.71 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.31 (2CH<sub>3</sub>), 101.85 (d,  $J_{CP}$  = 127.6 Hz, 2C), 119.50 (d,  $J_{CP}$  = 9.1 Hz, 2CH), 126.17 (br, 4CH), 127.26 (d,  $J_{CP}$  = 11.9 Hz, 2CH), 128.18 (d,  $J_{CP}$  = 13.1 Hz, 4CH), 130.16 (d,  $J_{CP}$  = 9.4 Hz, 2CH), 131.08 (d,  $J_{CP}$  = 11.3 Hz, 4CH), 131.43 (d,  $J_{CP}$  = 111.0 Hz, 2C), 131.62 (d,  $J_{CP}$  = 2.5 Hz, 2CH), 132.16 (2CH), 133.18-133.36 (m, 2C), 134.88 (2C), 136.37 (d,  $J_{CP}$  = 14.0 Hz, 2C), 136.96 (d,  $J_{CP}$  = 12.5 Hz, 2CH), 132.16 (d,  $J_{CP}$  = 13.1 Hz, 4CH), 132.16 (d,  $J_{CP}$  = 13.1 Hz, 4CH), 132.16 (d,  $J_{CP}$  = 9.4 Hz, 2CH), 134.88 (2C), 136.37 (d,  $J_{CP}$  = 14.0 Hz, 2C), 136.96 (d,  $J_{CP}$  = 13.1 Hz, 4CH), 132.16 (2CH), 133.18-133.36 (m, 2C), 134.88 (2C), 136.37 (d,  $J_{CP}$  = 14.0 Hz, 2C), 136.96 (d,  $J_{CP}$  = 12.5 Hz, 2CH), 132.16 (2CH), 133.18-133.36 (m, 2C), 134.88 (2C), 136.37 (d,  $J_{CP}$  = 14.0 Hz, 2C), 136.96 (d,  $J_{CP}$  = 14.0 Hz, 2C)

107.9 Hz, 2C), 138.83 (2C), 144.14 (d,  $J_{CP}$  = 33.6 Hz, 2C), one CH broad peak missing; HRMS(ESI) Calcd. for C<sub>44</sub>H<sub>33</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub> [M+H]<sup>+</sup> 683.2012, found 683.2014. Anal. Calcd. for C<sub>44</sub>H<sub>32</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>: C, 77.41; H, 4.72; N, 4.10, found: C, 77.13; H, 4.74; N, 3.96.



5,11-Bis(4-butylphenyl)-2,8-bis(methylthio)-6,12-diphenyl-5,11-dihydrophosphindolo[3,2-b]phosphindolo[2',3':4,5]pyrrolo[2,3-d]pyrrole 6,12-dioxide (**3a**-trans/cis): To a solution of TAPP-**2** (385 mg, 0.5 mmol) in anhydrous THF (15 mL) was added n-BuLi (0.63 mL, 1 mmol, 1.6 M in n-hexane) dropwise under nitrogen at -78 °C. After stirring at -78 °C for 30 min, PhPCl<sub>2</sub> (136  $\mu$ L, 1 mmol) was added. The mixture was kept at -78 °C for 10 min and then warmed to room temperature. After stirring 2 h at rt, H<sub>2</sub>O<sub>2</sub> (0.12 mL, 1 mmol, 30 % aq) was added. The reaction was monitored by <sup>31</sup>P NMR spectroscopy after 30 min. The mixture was diluted with ethyl acetate, and the organic phase was washed with water, brine and dried with anhydrous MgSO<sub>4</sub>. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography (CH<sub>2</sub>Cl<sub>2</sub> : AcOEt = 5:1 for **3a**-trans and AcOEt for **3a**-cis) and recrystallization (both from CH<sub>2</sub>Cl<sub>2</sub>/n-hexane/MeOH) to give **3a**-trans as a yellow solid (93 mg, 22 %) and **3a**-cis as a yellow solid (113 mg, 26 %).

**3a**-*trans*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.3; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.01 (t, J = 7.2 Hz, 6H, CH<sub>3</sub>), 1.35-1.47 (m, 4H, CH<sub>2</sub>), 1.60-1.70 (m, 4H, CH<sub>2</sub>), 2.37 (s, 6H, SCH<sub>3</sub>), 2.67 (t, J = 7.8 Hz, 4H, CH<sub>2</sub>), 6.69 (dd, J<sub>1</sub> = 8.1 Hz, J<sub>2</sub> = 3.6 Hz, 2H, ArH), 6.98 (d, J = 8.1 Hz, 6H, ArH), 7.27-7.43 (m, 14H, ArH), 7.69 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.05 (2CH<sub>3</sub>), 15.70 (2SCH<sub>3</sub>), 22.38 (2CH<sub>2</sub>), 33.54 (2CH<sub>2</sub>), 35.30 (2CH<sub>2</sub>), 100.70 (d, J<sub>CP</sub> = 128.3 Hz, 2C), 119.51 (d, J<sub>CP</sub> = 9.5 Hz, 2CH), 125.82 (4CH), 127.78 (d, J<sub>CP</sub> = 10.3 Hz, 2CH), 128.29 (d, J<sub>CP</sub> = 13.3 Hz, 4CH), 129.45 (2CH), 130.72 (d, J<sub>CP</sub> = 111.4 Hz, 2C), 131.05 (d, J<sub>CP</sub> = 11.5 Hz, 4CH), 131.77 (2CH), 132.70 (d, J<sub>CP</sub> = 13.7 Hz, 2C), 133.22-133.39 (m, 2C), 134.84 (2C), 138.22 (d, J<sub>CP</sub> = 12.8 Hz, 2C), 138.41 (d, J<sub>CP</sub> = 105.9 Hz, 2C), 143.65 (2C), 144.41 (d, J<sub>CP</sub> = 32.6 Hz, 2C), one CH broad peak missing; HRMS(ESI) Calcd. for C<sub>52</sub>H<sub>49</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub> [M+H]<sup>+</sup> 859.2705, found 859.2700. Anal. Calcd. for C<sub>52</sub>H<sub>48</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub>: C, 72.71; H, 5.63; N, 3.26, found: C, 72.60; H, 5.86; N, 2.92.

**3a**-*cis*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.4; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.02 (t, J = 7.2 Hz, 6H, CH<sub>3</sub>), 1.39-1.51 (m, 4H, CH<sub>2</sub>), 1.65-1.75 (m, 4H, CH<sub>2</sub>), 2.38 (s, 6H, SCH<sub>3</sub>), 2.72 (t, J = 7.5 Hz, 4H, CH<sub>2</sub>), 6.70 (dd, J<sub>1</sub> = 8.1 Hz, J<sub>2</sub> = 3.6 Hz, 2H, ArH), 7.01 (d, J = 8.1 Hz, 6H, ArH), 7.23-7.44 (m, 14H, ArH), 7.69 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.05 (2CH<sub>3</sub>), 15.73 (2SCH<sub>3</sub>), 22.43 (2CH<sub>2</sub>), 33.62 (2CH<sub>2</sub>), 35.35 (2CH<sub>2</sub>), 101.16 (d, J<sub>CP</sub> = 128.6 Hz, 2C), 119.67 (d, J<sub>CP</sub> = 9.4 Hz, 2CH), 125.94 (br, 4CH), 127.89 (d, J<sub>CP</sub> = 10.0 Hz, 2CH), 128.25 (d, J<sub>CP</sub> = 13.3 Hz, 4CH), 129.59 (2CH), 131.04 (d, J<sub>CP</sub> = 11.4 Hz, 4CH), 131.18 (d, J<sub>CP</sub> = 111.4 Hz, 2C), 131.73 (2CH), 132.98 (d, J<sub>CP</sub> = 13.8 Hz, 2C), 132.93-133.10 (m, 2C), 134.88 (2C), 138.04 (d, J<sub>CP</sub> = 106.1 Hz, 2C), 138.30 (d, J<sub>CP</sub> = 12.9 Hz, 2C), 143.81 (2C), 143.92 (d, J<sub>CP</sub> = 33.0 Hz, 2C), one CH broad peak missing; HRMS(ESI) Calcd. for C<sub>52</sub>H<sub>49</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub> [M+H]<sup>+</sup> 859.2705, found 859.2704. Anal. Calcd. for C<sub>52</sub>H<sub>48</sub>N<sub>2</sub>O<sub>2</sub>P<sub>2</sub>S<sub>2</sub>: C, 72.71; H, 5.63; N, 3.26, found: C, 72.80; H, 5.92; N, 2.94.



*5,11-Bis(4-butylphenyl)-2,8-bis(methylthio)-6,12-diphenyl-5,11-dihydrophosphindolo[3,2-b]phosphindolo[2',3':4,5]pyrrolo[2,3-d]pyrrole 6,12-disulfide* (**3b**-trans/cis): To a solution of TAPP-**2** (385 mg, 0.5 mmol) in anhydrous THF (15 mL) was added *n*-BuLi (0.63 mL, 1 mmol, 1.6 M in *n*-hexane) dropwise under nitrogen at -78 °C. After stirring at -78 °C for 30 min, PhPCl<sub>2</sub> (136 μL, 1 mmol) was added. The mixture was kept at -78 °C for 10 min and then warmed to room temperature. After stirring 2 h at rt, S<sub>8</sub> powder (32 mg, 1 mmol) was added. The reaction was monitored by <sup>31</sup>P NMR spectroscopy after 2 h. The mixture was diluted with ethyl acetate, and the

organic phase was washed with water, brine and dried with anhydrous MgSO<sub>4</sub>. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography (petroleum ether :  $CH_2CI_2 = 3:1$  for **3b**-*trans* and petroleum ether :  $CH_2CI_2 = 1:1$  for **3b**-*cis*) and recrystallization (both from  $CH_2CI_2/n$ -hexane) to give **3b**-*trans* as a yellow solid (120 mg, 30 %) and **3b**-*cis* as a yellow solid (98 mg, 24 %).

**3b**-*trans*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 25.1; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.02 (t, *J* = 7.2 Hz, 6H, CH<sub>3</sub>), 1.38-1.50 (m, 4H, CH<sub>2</sub>), 1.63-1.73 (m, 4H, CH<sub>2</sub>), 2.38 (s, 6H, SCH<sub>3</sub>), 2.72 (t, *J* = 7.5 Hz, 4H, CH<sub>2</sub>), 6.71 (dd, *J*<sub>1</sub> = 8.1 Hz, *J*<sub>2</sub> = 3.6 Hz, 2H, ArH), 6.84-7.06 (m, 6H, ArH), 7.24-7.44 (m, 10H, ArH), 7.51 (dd, *J*<sub>1</sub> = 15.0 Hz, *J*<sub>2</sub> = 7.2 Hz, 4H, ArH), 7.84 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.10 (2CH<sub>3</sub>), 15.70 (2SCH<sub>3</sub>), 22.31 (2CH<sub>2</sub>), 33.64 (2CH<sub>2</sub>), 35.34 (2CH<sub>2</sub>), 102.31 (d, *J*<sub>CP</sub> = 110.8 Hz, 2C), 119.72 (d, *J*<sub>CP</sub> = 9.1 Hz, 2CH), 126.04 (4CH), 127.28 (d, *J*<sub>CP</sub> = 12.0 Hz, 2CH), 128.26 (d, *J*<sub>CP</sub> = 13.7 Hz, 4CH), 129.06 (2CH), 130.60 (d, *J*<sub>CP</sub> = 86.9 Hz, 2C), 130.97 (d, *J*<sub>CP</sub> = 12.7 Hz, 4CH), 131.66 (2CH), 131.90 (d, *J*<sub>CP</sub> = 29.3 Hz, 2C), 143.82 (2C), one CH broad peak missing; HRMS(ESI) Calcd. for C<sub>52</sub>H<sub>49</sub>N<sub>2</sub>P<sub>2</sub>S<sub>4</sub>: C, 70.09; H, 5.43; N, 3.14, found: C, 70.10; H, 5.55; N, 2.76.

**3b**-*cis*: <sup>31</sup>P NMR (121 MHz, CDCl<sub>3</sub>):  $\delta$  = 25.4; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.03 (t, *J* = 7.2 Hz, 6H, CH<sub>3</sub>), 1.40-1.53 (m, 4H, CH<sub>2</sub>), 1.67-1.77 (m, 4H, CH<sub>2</sub>), 2.38 (s, 6H, SCH<sub>3</sub>), 2.75 (t, *J* = 7.5 Hz, 4H, CH<sub>2</sub>), 6.71 (dd, *J*<sub>1</sub> = 8.1 Hz, *J*<sub>2</sub> = 3.6 Hz, 2H, ArH), 6.89-7.06 (m, 6H, ArH), 7.21-7.27 (m, 4H, ArH), 7.32-7.51 (m, 10H, ArH), 7.86 (br, 2H, ArH); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  = 14.07 (2CH<sub>3</sub>), 15.77 (2SCH<sub>3</sub>), 22.34 (2CH<sub>2</sub>), 33.69 (2CH<sub>2</sub>), 35.38 (2CH<sub>2</sub>), 102.78 (d, *J*<sub>CP</sub> = 110.2 Hz, 2C), 119.78 (d, *J*<sub>CP</sub> = 9.1 Hz, 2CH), 127.54 (d, *J*<sub>CP</sub> = 11.7 Hz, 2CH), 128.19 (d, *J*<sub>CP</sub> = 13.6 Hz, 4CH), 129.21 (2CH), 130.89 (d, *J*<sub>CP</sub> = 12.5 Hz, 4CH), 131.46 (d, *J*<sub>CP</sub> = 87.0 Hz, 2C), 131.49 (2CH), 132.20 (d, *J*<sub>CP</sub> = 11.5 Hz, 2C), 132.68-132.86 (m, 2C), 134.80 (2C), 138.40 (d, *J*<sub>CP</sub> = 13.7 Hz, 2C), 141.17 (d, *J*<sub>CP</sub> = 89.3 Hz, 2C), 142.60 (d, *J*<sub>CP</sub> = 29.4 Hz, 2C), 143.96 (2C), two CH broad peaks missing; HRMS(ESI) Calcd. for C<sub>52</sub>H<sub>49</sub>N<sub>2</sub>P<sub>2</sub>S<sub>4</sub> [M+H]<sup>+</sup> 891.2248, found 891.2251. Anal. Calcd. for C<sub>52</sub>H<sub>48</sub>N<sub>2</sub>P<sub>2</sub>S<sub>4</sub>: C, 70.09; H, 5.43; N, 3.14, found: C, 69.93; H, 5.71; N, 2.85.

**Single-molecule conductance measurements.** The single-molecule junctions were fabricated using scanning tunneling microscope break junction (STM-BJ) technique. We carried out the STM-BJ experiments as following procedures. Oxidized Si substrate covered by 200 nm evaporated Au with 20 nm Cr as adhesion layer was chosen as the bottom electrode. A gold wire with a diameter of 0.25 mm (99.99%, Jiaming, Beijing) was flame-annealed and fixed on the STM-BJ setup as the top electrode. The electrodes were immersed in the solution with a concentration of 0.1 mM, in mixed solvent of 1:4 (v/v) tetrahydrofuran (THF, Aldrich, p.a.) and 1,3,5-trimethylbenzene (TMB, Aldrich, p.a.). The Au/molecule/Au junctions were formed and broken by the approaching and leaving of the top electrode. Recorded conductance values were analyzed by a lab-developed program (WA-BJ code) to construct the conductance histogram, 2D conductance-distance histogram and the relative distance distribution.<sup>[2]</sup>



## Results and Discussion

Figure S1. Calculated molecular orbits (MOs) of 3a-trans/cis and 3b-trans/cis<sup>[3]</sup>.



Figure S2. TGA (left Y axis) and DSC (right Y axis) of 1a, 1b and 2a-trans/cis under argon at a heating rate of 10 °C/min.

| Compd    | T <sub>m</sub> [°C] <sup>[a]</sup> | $T_d[^{\circ}C]^{[b]}$ |
|----------|------------------------------------|------------------------|
| 1a       | _[c]                               | 341                    |
| 1b       | _[c]                               | 362                    |
| 2a-trans | 441                                | 477                    |
| 2a-cis   | 372                                | 446                    |

Table S1. Melting point and decomposition temperature of 1a, 1b, 2a-trans and 2a-cis.

[a] Melting point were performed by DSC. [b] Decomposition temperature were defined as 5% of weight loss under argon, 10 °C/min. [c] Not observed.



Figure S3. Cyclic voltammograms of 1a, 1b, 2a-trans/cis, 3a-trans/cis and 3b-trans/cis (vs Fc/Fc<sup>+</sup>, 0.5 µM in CH<sub>2</sub>Cl<sub>2</sub>, scan rate: 100 mV/s).



Figure S4. (a) Conductance histogram, (b) 2D conductance-distance histogram and (c) the relative distance distribution of 3a-trans junctions.



Figure S5. (a) Conductance histogram, (b) 2D conductance-distance histogram and (c) the relative distance distribution of 3a-cis junctions.



Figure S6. (a) Conductance histogram, (b) 2D conductance-distance histogram and (c) the relative distance distribution of 3b-trans junctions.



Figure S7. (a) Conductance histogram, (b) 2D conductance-distance histogram and (c) the relative distance distribution of 3b-cis junctions.

Calculated conductance of 3a-trans/cis and 3b-trans/cis. The structures of molecules in vacuum are optimized to a force threshold of 0.01eV/Å. The structures of the optimized molecules are shown in Figure S8. Then the optimized molecule is placed between two gold electrodes as depicted in Figure S9. The edge sulfur atoms near the gold electrodes are located at the top site of the [111] surface of the gold electrodes. The distance between the edge sulfur atoms and the nearest gold atoms are set to be 3.9 Å to fit the average conductance in the experiment. The charge transport through the device is modeled as a coherent tunneling. The transmission can be calculated from the Landauer-Büttiker formalism  $T(E) = Tr[\Gamma_L G(E)\Gamma_R G^+(E)]$ , where G(E) and

 $G^+(E)$  are retarded and advanced Green's function of the scattering region.  $\Gamma_{L/R}$  denotes the coupling matrix between the scattering region and the left/right electrode. The generalized gradient approximation with the Perdew-Burke-Ernzerhof parametrization is adopted for the exchange correlation functional and double zeta polarized basis sets are used for all the atoms. The k-mesh of 1×1×100 are used in the transport calculation. All the calculation are performed by the Atomistic Tookit<sup>[4,5]</sup> version

2017.2. The conductance is calculated as  $G = \frac{2e}{h}T(E_{fermi})$ , where  $\frac{2e}{h}$  is the quantum conductance and  $E_{fermi}$  is the Fermi

energy of the gold electrode. The calculated conductance is listed in Table S2.



Figure S8. The optimized structures of the molecule: (A) 3a-cis, (B) 3a-trans, (C) 3b-cis, (D) 3b-trans.



Figure S9. Structures of the gold-molecule-gold simulation models. To reduce the computational cost, the long butyl chains in the molecules were omitted. The initial Au-S distance is 3.9 Å and the adsorption configuration is "top" site of Au (111) surface.

 Table S2. The calculated transmission and its logarithm at the Fermi level of the gold electrode.

| Compd    | T <sub>cal</sub> | $\log(T)_{cal}$ | log(T) <sub>exp</sub> |
|----------|------------------|-----------------|-----------------------|
| 3a-trans | 0.00179          | -2.75           | -3.20                 |
| 3a-cis   | 0.00149          | -2.83           | -3.23                 |
| 3b-trans | 0.00166          | -2.78           | -3.25                 |
| 3b-cis   | 0.00122          | -2.91           | -3.40                 |

## X-ray Crystallographic Studies of Compound 2a-trans and 2a-cis



Figure S10. X-ray crystal structure of 2a-trans. CCDC reference number: 1553255.

| Identification code   | 1553255                   |
|-----------------------|---------------------------|
| Empirical formula     | $C_{44}H_{32}N_2O_2P_2\\$ |
| Formula weight        | 682.65                    |
| Temperature/K         | 293(2)                    |
| Crystal system        | triclinic                 |
| Space group           | P-1                       |
| a/Å                   | 8.4342(6)                 |
| b/Å                   | 9.2098(7)                 |
| c/Å                   | 12.2670(9)                |
| α/°                   | 68.985(7)                 |
| β/°                   | 88.068(6)                 |
| γ/°                   | 74.661(7)                 |
| Volume/Å <sup>3</sup> | 855.82(12)                |

Table S3. Crystal data and structure refinement for 2a-trans.

| Z                                 | 1                                                 |
|-----------------------------------|---------------------------------------------------|
| $\rho_{calc}g/cm^3$               | 1.325                                             |
| µ/mm <sup>-1</sup>                | 1.483                                             |
| F(000)                            | 356.0                                             |
| Crystal size/mm <sup>3</sup>      | 0.13 × 0.11 × 0.1                                 |
| Radiation                         | CuKα (λ = 1.54184)                                |
| 29 range for data collection/°    | 7.738 to 134.148                                  |
| Index ranges                      | -10 ≤ h ≤ 9, -9 ≤ k ≤ 10, -9 ≤ l ≤ 14             |
| Reflections collected             | 6012                                              |
| Independent reflections           | 3046 [ $R_{int}$ = 0.0317, $R_{sigma}$ = 0.0456]  |
| Data/restraints/parameters        | 3046/0/227                                        |
| Goodness-of-fit on F <sup>2</sup> | 1.043                                             |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0458, wR <sub>2</sub> = 0.1135 |
| Final R indexes [all data]        | R <sub>1</sub> = 0.0592, wR <sub>2</sub> = 0.1246 |
| Largest diff. peak/hole / e Å-3   | 0.36/-0.30                                        |

## Table S4. Bond Lengths for 2a-trans.

| Atom | Atom | n Length/Å | Atom Atom Length/Å |                  |            |  |  |
|------|------|------------|--------------------|------------------|------------|--|--|
| C1   | C2   | 1.386(3)   | C13                | N1               | 1.381(3)   |  |  |
| C1   | C6   | 1.387(3)   | C14                | C15              | 1.406(3)   |  |  |
| C1   | P1   | 1.803(2)   | C14                | P1               | 1.787(2)   |  |  |
| C2   | C3   | 1.386(4)   | C15                | C15 <sup>1</sup> | 1.384(4)   |  |  |
| C3   | C4   | 1.367(4)   | C15                | N1 <sup>1</sup>  | 1.390(3)   |  |  |
| C4   | C5   | 1.382(4)   | C16                | C17              | 1.387(3)   |  |  |
| C5   | C6   | 1.381(4)   | C16                | C21              | 1.378(3)   |  |  |
| C7   | C8   | 1.373(3)   | C16                | N1               | 1.435(3)   |  |  |
| C7   | C12  | 1.408(3)   | C17                | C18              | 1.383(3)   |  |  |
| C7   | P1   | 1.818(2)   | C18                | C19              | 1.381(4)   |  |  |
| C8   | C9   | 1.390(4)   | C19                | C20              | 1.384(4)   |  |  |
| C9   | C10  | 1.375(4)   | C19                | C22              | 1.517(4)   |  |  |
| C10  | C11  | 1.398(3)   | C20                | C21              | 1.380(3)   |  |  |
| C11  | C12  | 1.388(3)   | N1                 | C15 <sup>1</sup> | 1.390(3)   |  |  |
| C12  | C13  | 1.473(3)   | 01                 | P1               | 1.4761(16) |  |  |
| C13  | C14  | 1.389(3)   |                    |                  |            |  |  |

Table S5. Bond Angles for 2a-trans.

| Aton | n Aton | n Atom | n Angle/°  | Atom             | n Atom | n Atom           | Angle/°    |
|------|--------|--------|------------|------------------|--------|------------------|------------|
| C2   | C1     | C6     | 119.5(2)   | C15              | C14    | P1               | 144.74(17) |
| C2   | C1     | P1     | 119.16(19) | C15 <sup>1</sup> | C15    | C14              | 108.9(2)   |
| C6   | C1     | P1     | 121.35(19) | C15 <sup>1</sup> | C15    | N1 <sup>1</sup>  | 108.4(2)   |
| C1   | C2     | C3     | 120.0(3)   | N1 <sup>1</sup>  | C15    | C14              | 142.7(2)   |
| C4   | C3     | C2     | 120.1(3)   | C17              | C16    | N1               | 120.4(2)   |
| C3   | C4     | C5     | 120.5(3)   | C21              | C16    | C17              | 120.0(2)   |
| C6   | C5     | C4     | 119.7(3)   | C21              | C16    | N1               | 119.5(2)   |
| C5   | C6     | C1     | 120.2(3)   | C18              | C17    | C16              | 119.5(2)   |
| C8   | C7     | C12    | 121.4(2)   | C19              | C18    | C17              | 121.2(2)   |
| C8   | C7     | P1     | 126.40(19) | C18              | C19    | C20              | 118.2(2)   |
| C12  | C7     | P1     | 111.93(16) | C18              | C19    | C22              | 120.3(3)   |
| C7   | C8     | C9     | 118.8(2)   | C20              | C19    | C22              | 121.5(3)   |
| C10  | C9     | C8     | 120.4(2)   | C21              | C20    | C19              | 121.5(2)   |
| C9   | C10    | C11    | 121.4(2)   | C16              | C21    | C20              | 119.6(2)   |
| C12  | C11    | C10    | 118.4(2)   | C13              | N1     | C15 <sup>1</sup> | 106.65(17) |
| C7   | C12    | C13    | 109.9(2)   | C13              | N1     | C16              | 128.56(17) |
| C11  | C12    | C7     | 119.5(2)   | C15 <sup>1</sup> | N1     | C16              | 124.07(17) |
| C11  | C12    | C13    | 130.4(2)   | C1               | P1     | C7               | 108.67(10) |
| C14  | C13    | C12    | 116.71(19) | C14              | P1     | C1               | 106.68(10) |
| N1   | C13    | C12    | 132.6(2)   | C14              | P1     | C7               | 91.44(10)  |
| N1   | C13    | C14    | 110.67(18) | 01               | P1     | C1               | 111.71(10) |
| C13  | C14    | C15    | 105.35(19) | 01               | P1     | C7               | 116.13(10) |
| C13  | C14    | P1     | 109.57(15) | 01               | P1     | C14              | 120.18(10) |



Figure S11. X-ray crystal structure of 2a-cis. CCDC reference number: 1578987.

 Table S6. Crystal data and structure refinement for 2a-cis.

| Identification code                             | 1578987                       |  |  |  |  |
|-------------------------------------------------|-------------------------------|--|--|--|--|
| Empirical formula                               | $C_{45}H_{34}Cl_2N_2O_2P_2\\$ |  |  |  |  |
| Formula weight                                  | 767.58                        |  |  |  |  |
| Temperature/K                                   | 293(2)                        |  |  |  |  |
| Crystal system                                  | triclinic                     |  |  |  |  |
| Space group                                     | P-1                           |  |  |  |  |
| a/Å                                             | 10.2229(5)                    |  |  |  |  |
| b/Å                                             | 10.3244(7)                    |  |  |  |  |
| c/Å                                             | 19.8604(11)                   |  |  |  |  |
| α/°                                             | 91.554(5)                     |  |  |  |  |
| β/°                                             | 104.445(4)                    |  |  |  |  |
| ץ/°                                             | 108.309(5)                    |  |  |  |  |
| Volume/Å <sup>3</sup>                           | 1914.41(19)                   |  |  |  |  |
| Z                                               | 2                             |  |  |  |  |
| $\rho_{calc}g/cm^3$                             | 1.332                         |  |  |  |  |
| µ/mm <sup>-1</sup>                              | 2.639                         |  |  |  |  |
| F(000)                                          | 796.0                         |  |  |  |  |
| Crystal size/mm <sup>3</sup>                    | 0.2 × 0.16 × 0.1              |  |  |  |  |
| Radiation                                       | CuKα (λ = 1.54184)            |  |  |  |  |
| 2O range for data collection/° 9.082 to 134.152 |                               |  |  |  |  |

| Index ranges                      | $-8 \le h \le 12$ , $-12 \le k \le 12$ , $-23 \le l \le 23$   |
|-----------------------------------|---------------------------------------------------------------|
| Reflections collected             | 13658                                                         |
| Independent reflections           | 6833 [R <sub>int</sub> = 0.0344, R <sub>sigma</sub> = 0.0520] |
| Data/restraints/parameters        | 6833/0/480                                                    |
| Goodness-of-fit on F <sup>2</sup> | 1.026                                                         |
| Final R indexes [I>=2σ (I)]       | R <sub>1</sub> = 0.0666, wR <sub>2</sub> = 0.1767             |
| Final R indexes [all data]        | R <sub>1</sub> = 0.0870, wR <sub>2</sub> = 0.2006             |
| Largest diff. peak/hole / e Å-3   | 0.43/-0.74                                                    |

## Table S7. Bond Lengths for 2a-cis.

| Atom | Length/Å |          |     |     |          |
|------|----------|----------|-----|-----|----------|
| C1   | C2       | 1.401(5) | C21 | C22 | 1.382(7) |
| C1   | C6       | 1.378(5) | C22 | C23 | 1.367(7) |
| C2   | C3       | 1.370(5) | C23 | C24 | 1.379(5) |
| C3   | C4       | 1.376(5) | C25 | C26 | 1.366(5) |
| C4   | C5       | 1.381(4) | C25 | C30 | 1.383(5) |
| C5   | C6       | 1.405(4) | C25 | P2  | 1.815(3) |
| C5   | P1       | 1.822(3) | C26 | C27 | 1.382(6) |
| C6   | C7       | 1.475(4) | C27 | C28 | 1.373(7) |
| C7   | C8       | 1.391(4) | C28 | C29 | 1.338(7) |
| C7   | N1       | 1.378(4) | C29 | C30 | 1.384(6) |
| C8   | C9       | 1.406(4) | C31 | C32 | 1.378(5) |
| C8   | P1       | 1.786(3) | C31 | C36 | 1.354(5) |
| C9   | C10      | 1.390(4) | C31 | N1  | 1.434(4) |
| C9   | N2       | 1.384(4) | C32 | C33 | 1.375(5) |
| C10  | C11      | 1.408(4) | C33 | C34 | 1.383(6) |
| C10  | N1       | 1.393(4) | C34 | C35 | 1.356(6) |
| C11  | C12      | 1.391(4) | C34 | C37 | 1.514(5) |
| C11  | P2       | 1.787(3) | C35 | C36 | 1.385(6) |
| C12  | C13      | 1.463(4) | C38 | C39 | 1.369(5) |
| C12  | N2       | 1.366(4) | C38 | C43 | 1.367(5) |
| C13  | C14      | 1.419(4) | C38 | N2  | 1.443(4) |
| C13  | C18      | 1.380(5) | C39 | C40 | 1.377(5) |
| C14  | C15      | 1.380(4) | C40 | C41 | 1.376(6) |

| C14 | P2  | 1.821(3) | C41 | C42 | 1.372(6) |
|-----|-----|----------|-----|-----|----------|
| C15 | C16 | 1.393(5) | C41 | C44 | 1.513(5) |
| C16 | C17 | 1.373(5) | C42 | C43 | 1.380(5) |
| C17 | C18 | 1.384(5) | 01  | P1  | 1.483(2) |
| C19 | C20 | 1.383(5) | 02  | P2  | 1.486(2) |
| C19 | C24 | 1.387(5) | C45 | CI1 | 1.687(7) |
| C19 | P1  | 1.808(3) | C45 | CI2 | 1.730(7) |
| C20 | C21 | 1.373(6) |     |     |          |

## Table S8. Bond Angles for 2a-cis.

| Atom Atom Angle/° A |     |     | Atom Atom Angle/° |     |     |     |          |
|---------------------|-----|-----|-------------------|-----|-----|-----|----------|
| C6                  | C1  | C2  | 118.8(3)          | C26 | C25 | P2  | 123.2(3) |
| C3                  | C2  | C1  | 121.2(3)          | C30 | C25 | P2  | 117.9(3) |
| C2                  | C3  | C4  | 120.3(3)          | C25 | C26 | C27 | 120.2(4) |
| C3                  | C4  | C5  | 119.4(3)          | C28 | C27 | C26 | 120.1(4) |
| C4                  | C5  | C6  | 120.8(3)          | C29 | C28 | C27 | 120.1(4) |
| C4                  | C5  | P1  | 127.2(3)          | C28 | C29 | C30 | 120.5(4) |
| C6                  | C5  | P1  | 112.0(2)          | C25 | C30 | C29 | 120.1(4) |
| C1                  | C6  | C5  | 119.5(3)          | C32 | C31 | N1  | 120.2(3) |
| C1                  | C6  | C7  | 130.6(3)          | C36 | C31 | C32 | 119.6(3) |
| C5                  | C6  | C7  | 110.0(3)          | C36 | C31 | N1  | 120.1(3) |
| C8                  | C7  | C6  | 116.7(3)          | C33 | C32 | C31 | 119.8(4) |
| N1                  | C7  | C6  | 132.8(3)          | C32 | C33 | C34 | 120.9(4) |
| N1                  | C7  | C8  | 110.4(3)          | C33 | C34 | C37 | 121.0(4) |
| C7                  | C8  | C9  | 105.8(3)          | C35 | C34 | C33 | 118.3(4) |
| C7                  | C8  | P1  | 109.8(2)          | C35 | C34 | C37 | 120.7(4) |
| C9                  | C8  | P1  | 143.5(2)          | C34 | C35 | C36 | 121.3(4) |
| C10                 | C9  | C8  | 108.5(3)          | C31 | C36 | C35 | 120.1(4) |
| N2                  | C9  | C8  | 143.0(3)          | C39 | C38 | N2  | 119.9(3) |
| N2                  | C9  | C10 | 108.4(3)          | C43 | C38 | C39 | 119.6(3) |
| C9                  | C10 | C11 | 108.5(3)          | C43 | C38 | N2  | 120.5(3) |
| C9                  | C10 | N1  | 108.3(3)          | C38 | C39 | C40 | 119.5(4) |
| N1                  | C10 | C11 | 143.2(3)          | C41 | C40 | C39 | 122.1(4) |
| C10                 | C11 | P2  | 145.3(2)          | C40 | C41 | C44 | 120.9(4) |

| C12 | C11 | C10 | 105.1(2) | C42 | C41 | C40 | 117.3(4)   |
|-----|-----|-----|----------|-----|-----|-----|------------|
| C12 | C11 | P2  | 109.7(2) | C42 | C41 | C44 | 121.8(4)   |
| C11 | C12 | C13 | 117.3(3) | C41 | C42 | C43 | 121.4(4)   |
| N2  | C12 | C11 | 111.1(3) | C38 | C43 | C42 | 120.2(4)   |
| N2  | C12 | C13 | 131.6(3) | C7  | N1  | C10 | 107.0(2)   |
| C14 | C13 | C12 | 109.9(3) | C7  | N1  | C31 | 130.1(3)   |
| C18 | C13 | C12 | 130.4(3) | C10 | N1  | C31 | 122.8(2)   |
| C18 | C13 | C14 | 119.7(3) | C9  | N2  | C38 | 125.5(2)   |
| C13 | C14 | P2  | 111.7(2) | C12 | N2  | C9  | 106.9(2)   |
| C15 | C14 | C13 | 120.4(3) | C12 | N2  | C38 | 127.5(2)   |
| C15 | C14 | P2  | 127.8(3) | C8  | P1  | C5  | 91.39(14)  |
| C14 | C15 | C16 | 118.9(3) | C8  | P1  | C19 | 106.13(14) |
| C17 | C16 | C15 | 120.5(3) | C19 | P1  | C5  | 107.03(15) |
| C16 | C17 | C18 | 121.4(3) | 01  | P1  | C5  | 117.64(14) |
| C13 | C18 | C17 | 119.1(3) | 01  | P1  | C8  | 120.07(14) |
| C20 | C19 | C24 | 119.1(3) | 01  | P1  | C19 | 112.19(15) |
| C20 | C19 | P1  | 122.1(3) | C11 | P2  | C14 | 91.49(14)  |
| C24 | C19 | P1  | 118.8(3) | C11 | P2  | C25 | 109.41(14) |
| C21 | C20 | C19 | 120.3(4) | C25 | P2  | C14 | 109.82(15) |
| C20 | C21 | C22 | 120.1(4) | 02  | P2  | C11 | 119.53(14) |
| C23 | C22 | C21 | 120.1(4) | 02  | P2  | C14 | 115.32(15) |
| C22 | C23 | C24 | 120.1(4) | 02  | P2  | C25 | 109.93(15) |
| C23 | C24 | C19 | 120.3(4) | CI1 | C45 | CI2 | 113.7(3)   |
| C26 | C25 | C30 | 118.9(3) |     |     |     |            |

## NMR spectrum







Figure S13.  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>) and  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>) of 1a at 293 K.





Figure S14.  $^1\!H$  NMR (300 MHz, CDCl\_3) and  $^{13}\!C$  NMR (75 MHz, CDCl\_3) of 1b at 293 K.

wudi-718 S PROTON CDC13





Figure S15. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of 2a-trans at 293 K.

wudi-641 Z P31CPD CDC13





Figure S16. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of 2a-cis at 293 K.





Figure S17. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of 3a-trans at 293 K.





Figure S18. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of **3a**-cis at 293 K.





Figure S19. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of 3b-trans at 293 K.





Figure S20. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) and <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) of 3b-cis at 293 K.

## References

- [1] M. Krzeszewski, B. Thorsted, J. Brewer, D. T. Gryko, J. Org. Chem. 2014, 79, 3119.
- [2] W. Hong, H. Valkenier, G. Mészáros, D. Z. Manrique, A. Mishchenko, A. Putz, P. M. García, C. J. Lambert, J. C. Hummelen, T. Wandlowski, *Beilstein J. Nanotechnol.* 2011, 2, 699.
- [3] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- [4] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401.
- [5] M. S. José, A. Emilio, D. G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, J. Phys.: Condens. Matter 2002, 14, 2745.