Supporting Information

A phosphorescent iridium probe for sensing polarity in endoplasmic reticulum and in vivo

Qian Tang,^a Xuepeng Zhang,^c Huiqun Cao,^a Chen Ge,^a Huaiyi Huang,^{*b} Pingyu Zhang,^{*a} Qianling Zhang^{*a}

^aCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060,
P. R. China. E-mail: <u>p.zhang6@szu.edu.cn</u> (P. Z.); zhql@szu.edu.cn (Q. Z.)
^bSchool of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, P. R.
China. E-mail: <u>huanghy87@mail.sysu.edu.cn</u> (H.H.)
^cLab of Computational and Drug Design, School of Chemical Biology & Biotechnology, Peking

University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.

Contents

Figures

Fig. S1. The ESI-MS spectrum of complex 1.

Fig. S2. The ¹H NMR spectrum of complex **1**.

Fig. S3. The ¹³C NMR spectrum of complex **1**.

Fig. S4. The UV-vis absorbance of complex 1 at 0 h and 72 h.

Fig. S5. The emission intensity at 617 nm of complex 1 as a function of dielectric constant ε .

Fig. S6. The UV-vis absorbance of complex 1 in 1,4-dioxane-water systems.

Fig. S7. The ¹H NMR spectra of complex 1 in different solvents.

Fig. S8. The emission spectra of complex 1 in glycerol-water systems.

Fig. S9. The emission intensity of complex **1** in the presence of kinds of biological molecules.

Fig. S10. The emission intensity of complex **1** in the presence of kinds of common metal ions and anions.

Fig. S11. The emission intensity of complex 1 with different pH values.

Fig. S12. The changes of emission intensity of complex 1 under light irradiation.

Fig. S13. Iridium concentrations determined in kinds of organelles by ICP-MS.

Fig. S14. The cell viabilities of different cell lines treated with complex 1.

Tables

Table S1. The photophysical properties of complex 1 in different solvents.

Table S2. The phosphorescence lifetimes of complex 1 in 1,4-dioxane-water systems.

Fig. S1. The ESI-MS of complex 1 (CH₃OH, negative mode).

Fig. S2. The 400 MHz ¹H NMR spectrum of complex 1 in the DMSO-d⁶ solution.

Fig. S3. The 101 MHz ¹³C NMR spectrum of complex 1 in the DMSO-d⁶ solution.

Fig. S4. The stability of **1** in the cell culture medium (RPMI-1640) for 72 h via UV-vis spectrophotometer.

Fig. S5. The emission intensity at 617 nm of 1 as a function of dielectric constant ε .

Fig. S6. The UV-vis absorbance of 1 in 0% and 90% 1,4-dioxane-water systems.

Fig. S7. The ¹H NMR spectra of 1 in DMSO-d⁶ and MeOD solution, respectively.

Fig. S8. The emission spectra of 1 in various proportional glycerol-water systems (0%-90%), compare to the emission spectra in 90% 1,4-dioxane-water system. The wavelength of excitation was 405 nm.

Fig. S9. The emission intensity I/I_0 at 600 nm of 1 in the absence of (I_0) and in the presence of kinds of biological molecules (I). The wavelength of excitation was 405 nm.

Fig. S10. The emission intensity I/I_0 at 600 nm of 1 in the absence of (I_0) and in the presence of kinds of common metal ions and anions (I). The wavelength of excitation was 405 nm.

Fig. S11. The emission intensities at 600 nm of **1** in PBS solution with different pH values. The wavelength of excitation was 405 nm.

Fig. S12. The changes in emission intensity of 1 (10 μ M) in 50% 1,4-dioxane-water system under 465 nm light irradiation for 60 minutes. The spectra were measured every 5 min. The power of the light was 6.5 mW/cm². The wavelength of excitation was 405 nm.

Fig. S13. Iridium concentrations determined in ER, lysosome, mitochondria and nucleus of the A549 cells with exposure to the iridium complex (10 μ M) for 1 h and 12 h by ICP-MS.

Fig. S14. The cell viabilities of A549, MRC-5, Hep-G2 and HL-7702 cells treated with **1** at different concentrations for 1 h, 12 h, 24 h and 48 h, respectively.

Solvents	Emission maximum (nm)	Quantum yield Φ
water	632	0.001
methanol	611	0.023
acetonitrile	594	0.064
acetone	588	0.201
chloroform	585	0.243

Table S1. Photophysical properties of 1 in different solvents (Polarity: water >methanol > acetonitrile > acetone > chloroform).

Table S2. The phosphorescence lifetimes of 1 in various 1,4-dioxane-water systems.

Percentage of 1,4-dioxane	Dielectric	Emission maximum	Lifetime τ (ns)
	constant ϵ	(nm)	
0%	79.6	627	53
10%	70.2	626	118
20%	62.1	624	170
30%	56.7	621	239
40%	43.8	621	368
50%	36.8	618	415
60%	28.7	614	580
70%	21.5	612	673
80%	12.2	606	759
90%	7.1	606	837