Supporting Information

for

The effect of locking π -conjugation in organoboron moieties in the structures of luminescent tetracoordinate boron complexes.

Mateusz Urban^a*, Krzysztof Durka^a*, Patrycja Górka^a, Gabriela Wiosna-Sałyga^b, Krzysztof Nawara^c Piotr Jankowski^a, Sergiusz Luliński^a ^aDepartment of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland ^bDepartment of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland ^cFaculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland

Corresponding authors: Krzysztof Durka: kdurka@ch.pw.edu.pl Mateusz Urban: murban@ch.pw.edu.pl

Table of contents

1.	Crystal structures	2
2.	Thermal characterisation	4
3.	Electrochemical data	14
4.	UV-Vis spectra	15
5.	Fluorescence decay data	20
6.	Hydrolytic stability	21
7.	Quantum chemical calculations	23
8.	Synthesis	34
9.	Copies of NMR spectra	35
10.	References for Supporting Information	49

1. Crystal structures

	1a	2a	3a	5a
Formula	C ₂₁ H ₁₄ BNO	C ₂₁ H ₆ BF ₈ NO	C ₂₃ H ₁₆ BNO	$C_{25}H_{16}BNO_2$
Molecular mass, <i>M</i> _r / a.u.	307.14	451.08	333.18	373.20
Temperature, T / K	100	100	100	100
Crystal system	orthorhombic	triclinic	tetragonal	monoclinic
Space group	P212121	<i>P</i> -1	P41	P21/c
a / Å	12.5739(7)	8.8891(3)	8.7821(1)	12.2286(2)
<i>b</i> / Å	15.6280(9)	9.5342(3)	8.7821(1)	9.9535(2)
c / Å	16.2194(9)	11.7495(4)	21.8367(6)	15.6960(3)
α / °	90	81.488(3)	90	90
6 / °	90	68.282(3)	90	104.304(2)
γ/°	90	66.482(3)	90	90
Volume, V / ų	3187.2(3)	848.249	1684.2(1)	1851.2(1)
$d_{\rm calc}/{\rm gcm^{-3}}$	1.280	1.766	1.314	1.339
F(000)	1280	448	696	776
Absorption coefficient, μ / mm ⁻¹	0.078	0.169	0.617	0.666
No. of measured, independent	43050 /	34297 / 5510	8239 / 2889	9116 / 2790
reflections	7058			
R _{int} /%	8.96	3.92	5.43	2.14
GooF	1.033	1.033	1.069	1.065
	7.33 /	4.57 / 12.36	3.84 /	3.81/
r[r] / wr[r²] (I> 20(I)) / %	13.33		9.59	9.30
Max. and min. residual density /	-0.259 /	-0.256 / 0.511	-0.172 / 0.247	-0.222/ 0.244
eÅ⁻³	0.273			

 Table S1.
 Selected crystal data, data collection and refinement parameters for 1a-3a, 5a-8a, 8b.

	6a	7a	8a	8b
Formula	C ₂₅ H ₁₆ BNOS	C ₂₅ H ₁₈ BN O	$C_{48}H_{32}B_2N_2O_2$	$C_{51}H_{42}B_2N_2O_3$
Molecular mass, M _r / a.u.	389.26	359.21	690.37	752.48
Temperature, T / K	100	100	100	100
Crystal system	monoclinic	tetragonal	monoclinic	triclinic
Space group	P2 ₁ /c	P4 ₃	P21/c	<i>P</i> -1
a / Å	12.3956(1)	10.2453(1)	18.5530(2)	11.7219(4)
b/Å	10.4119(1)	10.2453(1)	10.96080(1)	13.1009(4)
c / Å	15.3378(2)	17.6924(5)	18.0089(2)	14.2731(5)
α/°	90	90	90	70.661(3)
6/°	106.166(1)	90	109.695(1)	85.036(3)
γ/°	90	90	90	82.674(3)
Volume, V / ų	1901.3(1)	1857.1(2)	3448.0(1)	2049.0(1)
$d_{\rm calc}$ / gcm ⁻³	1.360	1.285	1.330	1.220
F(000)	808	752	1440	792
Absorption coefficient, μ / mm ⁻¹	1.630	0.598	0.623	0.581
No. of measured, independent	13976 / 3796	8036 / 2591	25695 /	19365 / 7292
reflections			5205	
R _{int} /%	1.94	2.70	2.12	8.42
GooF	1.059	1.047	1.034	1.032
$D[r] / \dots D[r^2] / r = 2 - (1) / 0/$	3.25 /	4.33 / 10.98	5.05 /	6.90 /
R[F] / WR[F ²] (I> 20(I)) / %	9.46		19.35	19.63
Max. and min. residual density /	-0.318 / 0.358	-0.152 /	-0.323 / 1.700	-0.406 / 0.580
eÅ ⁻³		0.455		

Figure S1. Molecular structure of **8b**. Thermal motions given as ADPs at the 50% probability level. Hydrogens atoms are omitted for clarity. Compound crystallized as a solvate from acetone solution. Two molecules are present in asymmetric unit, symmetry centre is located on the inner C-C naphthalene bond.

Table S2. Comparison of bond length around boron atom in borafluorene complexes (**1a-8a**) and their nonannulated analogs (**1b-8b**).

$d_{B\cdot N} / Å$ $d_{B-C1} / Å$ $d_{B-C2} / Å$ $1a^a$ $1.612(4)$ $1.514(4)$ $1.613(4)$ $1.613(4)$ $1618(4)$ $1.518(4)$ $1.627(4)$ $1.628(4)$ $1b^1$ 1.615 1.561 1.575 1.593 $2a$ $1.620(1)$ $1.493(1)$ $1.619(1)$ $1.615(1)$ $2b^2$ 1.637 1.494 1.629 1.624 $3a$ $1.613(4)$ $1.465(4)$ $1.617(4)$ $1.615(4)$ $3b^{a^3}$ 1.627 1.48 1.616 1.607 1.631 1.484 1.607 1.614 $4a^4$ 1.591 1.480 1.616 1.617 $4b^4$ 1.595 1.506 1.603 1.608 $5a$ $1.594(2)$ $1.492(2)$ $1.611(2)$ $1.613(2)$ $5b^5$ 1.605 1.505 1.600 1.597 $6a$ $1.603(2)$ $1.491(2)$ $1.619(2)$ $1.617(2)$ $6b^5$ 1.640 1.488 1.614 1.614 $7a$ $1.601(5)$ $1.488(5)$ $1.599(5)$ $1.637(5)$ $7b^6$ 1.635 1.509 1.613 1.614 $8a^a$ $1.613(3)$ $1.517(3)$ $1.618(3)$ $1.615(3)$ $8b^{a^7}$ $1.630(1)$ $1.503(1)$ $1.609(1)$ $1.620(1)$ $1.626(1)$ $1.517(1)$ $1.608(1)$ $1.619(1)$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		d _{B-N} / Å	d _{B-O} / Å	d _{B-C1} / Å	<i>d</i> _{B-C2} ^b ∕ Å
$1.618(4)$ $1.518(4)$ $1.627(4)$ $1.628(4)$ $1b^1$ 1.615 1.561 1.575 1.593 $2a$ $1.620(1)$ $1.493(1)$ $1.619(1)$ $1.615(1)$ $2b^2$ 1.637 1.494 1.629 1.624 $3a$ $1.613(4)$ $1.465(4)$ $1.617(4)$ $1.615(4)$ $3b^{a^3}$ 1.627 1.48 1.616 1.607 1.631 1.484 1.607 1.614 $4a^4$ 1.591 1.480 1.616 1.617 $4b^4$ 1.595 1.506 1.603 1.608 $5a$ $1.594(2)$ $1.492(2)$ $1.611(2)$ $1.613(2)$ $5b^5$ 1.605 1.505 1.600 1.597 $6a$ $1.603(2)$ $1.491(2)$ $1.619(2)$ $1.617(2)$ $6b^5$ 1.640 1.488 1.614 1.614 $7a$ $1.601(5)$ 1.509 1.613 1.614 $8a^a$ $1.613(3)$ $1.517(3)$ $1.618(3)$ $1.615(3)$ $1.601(3)$ $1.510(3)$ $1.615(3)$ $1.620(1)$ $8b^{a^7}$ $1.630(1)$ $1.503(1)$ $1.608(1)$ $1.619(1)$	1a ^a	1.612(4)	1.514(4)	1.613(4)	1.613(4)
$1b^1$ 1.6151.5611.5751.593 $2a$ 1.620(1)1.493(1)1.619(1)1.615(1) $2b^2$ 1.6371.4941.6291.624 $3a$ 1.613(4)1.465(4)1.617(4)1.615(4) $3b^{a^3}$ 1.6271.481.6161.607 1.631 1.4841.6071.614 $4a^4$ 1.5911.5061.6031.608 $5a$ 1.594(2)1.492(2)1.611(2)1.613(2) $5b^5$ 1.6051.5051.6001.597 $6a$ 1.603(2)1.491(2)1.619(2)1.617(2) $6b^5$ 1.6401.4881.6141.614 $7a$ 1.601(5)1.488(5)1.599(5)1.637(5) $7b^6$ 1.6351.5091.6131.614 $8a^a$ 1.613(3)1.517(3)1.618(3)1.615(3) $1.601(3)$ 1.510(3)1.615(3)1.620(1) $8b^{a^7}$ 1.630(1)1.503(1)1.608(1)1.619(1)		1.618(4)	1.518(4)	1.627(4)	1.628(4)
2a1.620(1)1.493(1)1.619(1)1.615(1)2b²1.6371.4941.6291.6243a1.613(4)1.465(4)1.617(4)1.615(4)3b ^{a 3} 1.6271.481.6161.6071.6311.4841.6071.6144a ⁴ 1.5911.4801.6161.6174b ⁴ 1.5951.5061.6031.6085a1.594(2)1.492(2)1.611(2)1.613(2)5b ⁵ 1.6051.5051.6001.5976a1.603(2)1.491(2)1.619(2)1.617(2)6b ⁵ 1.6401.4881.6141.6147a1.601(5)1.488(5)1.599(5)1.637(5)7b ⁶ 1.6351.5091.6131.6148a ^a 1.613(3)1.517(3)1.618(3)1.615(3)1.601(3)1.510(3)1.615(3)1.620(1)8b ^{a 7} 1.630(1)1.503(1)1.608(1)1.619(1)	1b ¹	1.615	1.561	1.575	1.593
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2a	1.620(1)	1.493(1)	1.619(1)	1.615(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2b ²	1.637	1.494	1.629	1.624
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3a	1.613(4)	1.465(4)	1.617(4)	1.615(4)
1.631 1.484 1.607 1.614 $4a^4$ 1.591 1.480 1.616 1.617 $4b^4$ 1.595 1.506 1.603 1.608 $5a$ 1.594(2) 1.492(2) 1.611(2) 1.613(2) $5b^5$ 1.605 1.505 1.600 1.597 $6a$ 1.603(2) 1.491(2) 1.619(2) 1.617(2) $6b^5$ 1.640 1.488 1.614 1.614 $7a$ 1.601(5) 1.488(5) 1.599(5) 1.637(5) $7b^6$ 1.635 1.509 1.613 1.614 $8a^a$ 1.613(3) 1.517(3) 1.618(3) 1.615(3) $1.601(3)$ 1.510(3) 1.615(3) 1.620(3) $8b^{a^7}$ 1.630(1) 1.503(1) 1.609(1) 1.620(1) $1.626(1)$ 1.517(1) 1.608(1) 1.619(1)	3b ^{a 3}	1.627	1.48	1.616	1.607
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		1.631	1.484	1.607	1.614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4a ⁴	1.591	1.480	1.616	1.617
5a $1.594(2)$ $1.492(2)$ $1.611(2)$ $1.613(2)$ 5b ⁵ 1.605 1.505 1.600 1.597 6a $1.603(2)$ $1.491(2)$ $1.619(2)$ $1.617(2)$ 6b ⁵ 1.640 1.488 1.614 1.614 7a $1.601(5)$ $1.488(5)$ $1.599(5)$ $1.637(5)$ 7b ⁶ 1.635 1.509 1.613 1.614 8a ^a $1.613(3)$ $1.517(3)$ $1.618(3)$ $1.615(3)$ $1.601(3)$ $1.510(3)$ $1.615(3)$ $1.620(3)$ 8b ^{a 7} $1.630(1)$ $1.503(1)$ $1.609(1)$ $1.620(1)$	4b ⁴	1.595	1.506	1.603	1.608
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5a	1.594(2)	1.492(2)	1.611(2)	1.613(2)
6a 1.603(2) 1.491(2) 1.619(2) 1.617(2) 6b ⁵ 1.640 1.488 1.614 1.614 7a 1.601(5) 1.488(5) 1.599(5) 1.637(5) 7b ⁶ 1.635 1.509 1.613 1.614 8a ^a 1.613(3) 1.517(3) 1.618(3) 1.615(3) 8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)	5b⁵	1.605	1.505	1.600	1.597
6b ⁵ 1.640 1.488 1.614 1.614 7a 1.601(5) 1.488(5) 1.599(5) 1.637(5) 7b ⁶ 1.635 1.509 1.613 1.614 8a ^a 1.613(3) 1.517(3) 1.618(3) 1.615(3) 1.601(3) 1.510(3) 1.615(3) 1.620(3) 8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)	6a	1.603(2)	1.491(2)	1.619(2)	1.617(2)
7a 1.601(5) 1.488(5) 1.599(5) 1.637(5) 7b ⁶ 1.635 1.509 1.613 1.614 8a ^a 1.613(3) 1.517(3) 1.618(3) 1.615(3) 1.601(3) 1.510(3) 1.615(3) 1.620(3) 8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)	6b ⁵	1.640	1.488	1.614	1.614
$7b^6$ 1.635 1.509 1.613 1.614 $8a^a$ 1.613(3) 1.517(3) 1.618(3) 1.615(3) $1.601(3)$ 1.510(3) 1.615(3) 1.620(3) $8b^{a^7}$ 1.630(1) 1.503(1) 1.609(1) 1.620(1) $1.626(1)$ 1.517(1) 1.608(1) 1.619(1)	7a	1.601(5)	1.488(5)	1.599(5)	1.637(5)
8a ^a 1.613(3) 1.517(3) 1.618(3) 1.615(3) 1.601(3) 1.510(3) 1.615(3) 1.620(3) 8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)	7b ⁶	1.635	1.509	1.613	1.614
1.601(3) 1.510(3) 1.615(3) 1.620(3) 8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)	8a ^a	1.613(3)	1.517(3)	1.618(3)	1.615(3)
8b ^{a 7} 1.630(1) 1.503(1) 1.609(1) 1.620(1) 1.626(1) 1.517(1) 1.608(1) 1.619(1)		1.601(3)	1.510(3)	1.615(3)	1.620(3)
1.626(1) 1.517(1) 1.608(1) 1.619(1)	8b ^{a 7}	1.630(1)	1.503(1)	1.609(1)	1.620(1)
		1.626(1)	1.517(1)	1.608(1)	1.619(1)

^aTwo non-equivalent boron centre in assymetric unit, ^bnegative values are used to distinguish between below and above the plane distortion.

2. Thermal characterisation

Thermal behaviour of all studied compounds was monitored by TGA and DSC techniques (Figure S2-20). All complexes expect **8** show distinct endothermic peak corresponding to sample melting (T_m) . The melting temperatures are higher as compared to BPh₂ analogs. In the case of $\mathbf{1}$, the difference is rather small (218.1 °C vs 206.6 °C), however it becomes more significant in the case of other studied compounds. Regarding complexes **3a-6a**, their melting points are systematically by 50-70 °C higher than **3b-6b**. The highest melting difference is observed for fluorinated systems, where 2a melts at 278 °C and its non-annulated analogue at only 161.1 °C. At this point it is quite interesting to note that melting point of 2b complex is smaller than 1b, whereas in the case of borafluorene complexes 1a, 2a, the melting relation is reversed indicating that fluorination significantly enhances thermal stability. Furthermore, melting process seems to be reversible for 2a, as exothermic peak near 221 °C corresponding to sample crystallization during cooling is observed. This behaviour is rather rare for tetracoordinated boron chelate complexes, where typically melting is followed by instant sample decomposition. The gathered TGA data suggest that compounds 1a and 7a are also thermally resistant after melting to some extent. Besides, other systems tend to decompose after melting as decomposition temperatures with a 5% weight loss (T_{dec}) cover with T_m . After decomposition, volatile products are produced, which fast evaporate from crucibles. Exceptionally, bis(boranil) complex 8 does not show typical melting behaviour. Instead the sample gradually darkens and slowly decompose above ca. 450 °C indicating its superior thermal stability.

Lab: METTLER Figure S2. TGA curve of 1a.

STAReSW 12.10

Figure S3. DSC curve of 1a.

Figure S4. TGA curve of 1b.

Figure S6. DSC curve of 2a.

Figure S7. TGA curve of 2b.

Figure S8. TGA curve of 3a.

Lab: METTLER Figure S9. DSC curve of 3a.

Lab: METTLER Figure S10. TGA curve of 5a.

STAReSW 12.10

Lab: METTLER

Figure S11. DSC curve of 5a.

Lab: METTLER Figure S12. TGA curve of 6a.

STAReSW 12.10

Figure S13. DSC curve of 6a.

Lab: METTLER Figure S14. . TGA curve of 7a.

STARe SW 12.10

^exo

Figure S16. TGA curve of 7b. Evaporation of acetone molecule is observed at ca. 90 °C.

Figure S17. DSC curve of 7b.

Lab: METTLER Figure S18. TGA curve of 8a.

Lab: METTLER

Lab: METTLER Figure S20. TGA curve of 8b.

3. Electrochemical data

Figure S21. Overlay of CV for 1a – 8a in DCM.

Figure S22. Overlay of CV for 1b and 2b in DCM.

4. UV-Vis spectra

Figure S23. Overlay of UV-Vis absorption, excitation and emission spectra of **1a** in DCM solution and solid state. Absorption spectra of solution is depicted in ε scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S24. Overlay of UV-Vis absorption, excitation and emission spectra of **2a** in DCM solution and solid state. Absorption spectra of solution is depicted in ε scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S25. Overlay of UV-Vis absorption, excitation and emission spectra of **3a** in DCM solution and solid state. Absorption spectra of solution is depicted in ε scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S26. Overlay of UV-Vis absorption, excitation and emission spectra of **4a** in DCM solution and solid state. Absorption spectra of solution is depicted in *e* scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S27. Overlay of UV-Vis absorption, excitation and emission spectra of **5a** in DCM solution and solid state. Absorption spectra of solution is depicted in ε scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S28. Overlay of UV-Vis absorption, excitation and emission spectra of **6a** in DCM solution and solid state. Absorption spectra of solution is depicted in *e* scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S29. Overlay of UV-Vis absorption, excitation and emission spectra of **7a** in DCM solution and solid state. Absorption spectra of solution is depicted in *e* scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized.

Figure S30. Overlay of UV-Vis absorption, excitation and emission spectra of **8a** in DCM solution and solid state. Absorption spectra of solution is depicted in *e* scale (left), and absorption of film sample is in absorbance scale (right); remaining spectra are normalized

Figure S31. Overlay of emission spectra of 1a,b, 3a,b, 4a,b and 7a,b in solid state (powder).

Figure S32. Overlay of emission spectra of 2a,b, 5a,b, 6a,b and 8a,b in solid state (powder).

5. Fluorescence decay data

Figure S33. TCSPC data for compound **5b** – double exponential decay, fluorescence lifetime 6.4 ns and 11.1 ns in dichloromethane; black - experimental fluorescence decay; red - modelled curve.

Figure S35. Overlay of absorption and fluorescence spectra of **4a**, b (left) and **5a**, **b** (right) with their corresponding ligands. Excitation wavelength used for lifetime measurements is marked with vertical dashed line.

6. Hydrolytic stability

Figure S36. Overlay of UV-Vis spectra of compound **7a** in CH_2Cl_2 measured over 7 days along and free ligand - salicylideneaniline (in ε scale).

Figure S37. Overlay of UV-Vis spectra of compound **7b** in CH_2Cl_2 measured over 4 hours and free ligand - salicylideneaniline (in ε scale). Data were taken for comparison from our previous work.⁶

Figure S38. Overlay of UV-Vis spectra of compound **8a** in CH_2Cl_2 measured over 7 days and free ligand (in ε scale).

Figure S39. Overlay of UV-Vis spectra of compound **8a** in CH_2Cl_2 measured over 4 days and free ligand (in ε scale). Data were taken for comparison from our previous work.⁷

7. Quantum chemical calculations

Figure S41. NTO orbitals for 2a and 2b

Figure S42. NTO orbitals for 3a and 3b.

Figure S43. NTO orbitals for 4a and 4b.

Figure S44. NTO orbitals for 5a and 5b.

Figure S45. NTO orbitals for 6a and 6b.

Figure S46. NTO orbitals for 7a and 7b.

Figure S47. NTO orbitals for 8a.

Figure S48. NTO orbitals for 8b.

	Experimental	Theoretical		
	$\lambda_{\scriptscriptstyle ext{em}}$ / nm	$\lambda_{\scriptscriptstyle em}$ / nm	f	Transition
1a	513	549.9	0.0047	HOMO (80)→LUMO (81)
		474.6	0.1476	HOMO-1 (79)→LUMO (81)
1b	511	479.2	0.0624	HOMO (81)→LUMO (82)
		204.2	0 0007	HOMO-1 (80)→LUMO (82)
		504.5	0.0007	HOMO-3 (78)→LUMO (82)
2 a	510	485.1	0.0617	HOMO (112)→LUMO (113)
		216 7	0 0022	HOMO-1 (111)→LUMO (113)
		510.7	0.0025	HOMO-2 (110)→LUMO (113)
2b	514	482.1	0.0531	HOMO (121)→LUMO (122)
		296.5	0.0095	HOMO-1 (121)→LUMO (122)
3a	482	520.0	0.0145	HOMO (87)→LUMO (88)
		477.1	0.0966	HOMO-1 (86)→LUMO (88)
3b	471	486.5	0.0777	HOMO (88)→LUMO (89)
		358.5	0.0051	HOMO-1 (87)→LUMO (89)
4a	443	500.3	0.0104	HOMO (117)→LUMO (118)
		437.8	0.1476	HOMO-1 (116)→LUMO (118)
· ·		455.0	0 1000	HOMO (118)→LUMO (119)
40	455	455.0	0.1009	HOMO (115)→LUMO (119)
				HOMO-1 (117)→LUMO (119)
		342.4	0.0260	HOMO-2 (116)→LUMO (119)
				HOMO-3 (115)→LUMO (119)
5a	461	543.8	0.0300	HOMO (97)→LUMO (98)
		458.0	0.2050	HOMO-1 (96)→LUMO (98)
5b	449	472.7	0.2074	HOMO (98)→LUMO (99)
		372.2	0.0123	HOMO-1 (97)→LUMO (99)
6a	496	579.6	0.0405	HOMO (101)→LUMO (102)
		478.0	0.1701	HOMO-1 (100)→LUMO (102)
6b	482	508.0	0.1948	HOMO (102)→LUMO (103)

Table S3. Comparison of experimental and calculates TD-DFT photophysical results.

		486.6	0.0130	HOMO-1 (101)→LUMO (103)
7a	559	656.7	0.0300	HOMO (94)→LUMO (95)
		500.1	0.2050	HOMO-1 (93)→LUMO (95)
7b	534	480.9	0.2831	HOMO (95)→LUMO (96)
				HOMO-1 (94)→LUMO (96)
		336.2	0.0001	HOMO-2 (93)→LUMO (96)
				HOMO-3 (92)→LUMO (96)
8a	604	704.7	0.0812	HOMO (181)→LUMO (182)
		698.7	0.0808	HOMO-1 (180)→LUMO (182)
		639.7	0.3213	HOMO-2 (179)→LUMO (182)
8b	594	583.3	0.2831	HOMO (182)→LUMO (183)
		102 0	0 0001	HOMO-1 (181)→LUMO (183)
		403.9	0.0001	HOMO-2 (180)→LUMO (183)

Figure S49. The overlay of optimal ground (red) and excited (yellow) states geometries derived from TD-DFT calculations for **1-4**.

Figure S50. The overlay of optimal ground (red) and excited (yellow) states geometries derived from TD-DFT calculations for **5-8**.

The τ_{P1-P4} -constrained optimisation energy scan for 7a.

The τ_{P1-P4} -constrained optimisation energy scan (the τ_{P1-P4} angle varies from 0° to 90° in steps of 10°, all other parameters were fully optimised), performed at the CAM-B3LYP/6-311++G(d,p) level of theory for isolated molecule of **6a**, revealed that in the ground state the most stable is the conformation with τ_{P1-P4} close to 50°. However, the $\Delta E = f(\tau_{P1-P4})$ curve is flat for $\tau_{P1-P4} > 30°$ angles (Figure S48a) pointing to some molecular flexibility

in solution (below 5 kJmol⁻¹). In turn, flattening of ligand structure leads to significant steric repulsion between ligand and borafluorene moiety, which decreases system stability. In excited state (TD-DFT - CAM-B3LYP/6-311++g(d,p)) the $\Delta E = f(\tau_{p_1.p_4})$ minimum is shifted toward a lower $\tau_{p_1.p_4}$ angle (30°). Furthermore, the stability of a flat conformation increases, and destabilization of the twisted conformation is observed. According to our previous assumptions, the absorption wavelength decreases with twisting of ligand structure (Figure S48b). Similar effect is observed for emission, however, the function reaches the minimum at 60°, and then emission wavelength increases for the highest $\tau_{p_1.p_4}$ angle, which is somewhat confusing. On the basis of computations, we suppose that borafluorene ring plays more important role in the electron transition process when it is aligned parallel to the ligand plane. In such a case, charge transfer from the orbital located at the borafluorene moiety to the ligand may be promoted.

Figure S51. τ-Constrained optimization scan performed for **7a**. (a) Relative energy Δ*E* as a function of τ_{P1-P4} angle for ground and excited states. (b) Absorption and emission wavelength as a function of τ_{P1-P4} angle. The regression equations are given as follows: (GS) Δ*E* = 23.20962 – 0.88678 Ξ τ_{P1-P4} + 0.01022 Ξ τ_{P1-P4}² – 3.06106 Ξ 10⁻⁵ Ξ τ_{P1-P4}³ (R² = 0.9813); (ES) Δ*E* = 17.50096 – 1.11622 Ξ τ_{P1-P4} + 0.02199 Ξ τ_{P1-P4}² – 1.078 Ξ 10⁻⁴ Ξ τ_{P1-P4}³ (R² = 0.9733); λ_{abs} = 454.55041 – 0.38102 Ξ τ_{P1-P4} – 0.00806 Ξ τ_{P1-P4}² + 8.50777 Ξ 10⁻⁵ Ξ τ_{P1-P4}³ (R² = 0.9968); λ_{emi} = 572.63055 – 1.44053 Ξ τ_{P1-P4} + 0.01213 Ξ τ_{P1-P4}² (R² = 0.9917).

τ _{Ρ1-Ρ4} /°	Δ <i>E</i> (GS) /	Δ <i>Ε</i> (ES) /	$\lambda_{\scriptscriptstyle abs}$ / nm	$\lambda_{ m em}$ / nm
	kJmol⁻¹	kJmol⁻¹		
0	22.2	16.2	453.7	572.7
10	16.8	10.8	451.3	560.0
20	10.0	3.1	445.3	548.4
30	4.6	0.0	436.7	538.7
40	1.1	0.5	431.6	535.0
50	0.0	3.2	425.6	533.0
60	0.4	6.1	421.4	527.9
70	1.5	10.9	417.8	531.1
80	2.6	14.4	416.5	536.8
90	3.3	16.0	416.6	540.3

Table S4. Result of τ-Constrained optimization scan performed for 7a.

Figure S52. Dimeric motifs contributing the most in charge hopping processes in 1b.

Figure S53. Dimeric motifs contributing the most in charge hopping processes in 2b.

Figure S54. Dimeric motifs contributing the most in charge hopping processes in 6b.

Table S5. The energies of the neutral $(E_0^{GS(0)})$, cationic $(E_+^{GS(0)})$ and anionic $(E_-^{GS(0)})$ states of all studied systems with the optimized geometry of neutral species, energies of neutral $(E_0^{GS(+)})$, cationic $(E_+^{GS(+)})$ states with the optimized geometry of the cationic species, and energies of neutral $(E_0^{GS(-)})$, anionic $(E_-^{GS(-)})$ states with the optimized geometry of the anionic species. All energy values values are given in a.u.

	$E_{0}^{GS(0)}$	$E_{0}^{GS(-)}$	$E_{0}^{GS(+)}$	$E^{GS(-)}$	$E^{GS(+)}_{+}$	$E^{GS(0)}$	$E^{GS(0)}_{+}$
1a	-963.820916	-963.560096	-963.860152	-963.867067	-963.564564	-963.815891	-963.814227
1b	-965.022022	-965.017785	-965.015194	-965.068025	-964.749026	-964.746049	-965.060910
2a	-1757.927297	-1757.922913	-1757.919720	-1757.992058	-1757.639680	-1757.635451	-1757.984409
2b	-1957.648467	-1957.641592	-1957.640355	-1957.714994	-1957.353782	-1957.348061	-1957.705709
3a	-1041.259491	-1041.253648	-1041.252865	-1041.300107	-1041.006454	-1041.001080	-1041.293459
3b	-1042.461524	-1042.447268	-1042.454563	-1042.500733	-1042.191319	-1042.185440	-1042.493588
4a	-1403.979248	-1403.973900	-1403.968580	-1404.017823	-1403.736133	-1403.729947	-1404.007069
2a 2b 3a 3b 4a	-1757.927297 -1957.648467 -1041.259491 -1042.461524 -1403.979248	-1757.922913 -1957.641592 -1041.253648 -1042.447268 -1403.973900	-1757.919720 -1957.640355 -1041.252865 -1042.454563 -1403.968580	-1757.992058 -1957.714994 -1041.300107 -1042.500733 -1404.017823	-1757.639680 -1957.353782 -1041.006454 -1042.191319 -1403.736133	-1757.635451 -1957.348061 -1041.001080 -1042.185440 -1403.729947	-1757.98440 -1957.70570 -1041.29345 -1042.49358 -1404.00706

4b	-1405.180500	-1405.173926	-1405.169938	-1405.217434	-1404.923678	-1404.914977	-1405.206467
5a	-1192.738215	-1192.733010	-1192.730391	-1192.783915	-1192.485544	-1192.480377	-1192.775957
5b	-1193.939223	-1193.933741	-1193.931156	-1193.983903	-1193.670447	-1193.662614	-1193.975872
6a	-1515.713908	-1515.708783	-1515.707198	-1515.765623	-1515.462634	-1515.456806	-1515.758835
6b	-1516.914669	-1516.908789	-1516.907571	-1516.965209	-1516.648270	-1516.639409	-1516.957985
7a	-1118.684203	-1118.678492	-1118.674358	-1118.740799	-1118.432318	-1118.426701	-1118.729437
7b	-1119.883925	-1119.878026	-1119.873936	-1119.939954	-1119.613833	-1119.606459	-1119.928930
8a	-2158.740847	-2158.740819	-2158.733759	-2158.824959	-2158.498371	-2158.487771	-2158.816259
8b	-2161.139932	-2161.133908	-2161.131382	-2161.223276	-2160.890975	-2160.885080	-2161.214404

Table S6. Calculated electronic coupling energies for electrons (V_e) and holes (V_h), hopping rates (W_e/W_h), and drift mobilities contributions ($\%\mu_e/\%\mu_h$) given relative to the total value for all dimers in complexes **1a**, **1b**, **2a**, **2b**, **6a** and **6b**. *r* corresponds to the distance between centres of mass, *N* is the number of the same neighbour pairs found in the corresponding crystal structures.

	Dimer	r/Å	Ν	V _h /eV	V _e /eV	W _h ⊡10 ⁻¹² / s ⁻¹	W _e 210 ⁻¹² / s ⁻¹	$\%\mu_{ m h}$	$\%\mu_{ m e}$
1a	D1	6.138	2	0.2161	0.2112	32.49	207.54	61.28%	58.44%
	D2	7.499	2	0.1093	0.1714	8.31	136.79	5.98%	37.90%
	D3	8.590	1	0.2208	0.1112	33.94	57.51	32.74%	2.20%
	D4	9.892	2	0.0064	0.0616	0.03	17.68	0.00%	1.10%
	D5	7.803	_1	0.0116	0.0744	0.09	25.78	0.00%	0.36%
1b	D1	8.411	1	0.1079	0.4173	8.97	472.98	7.88%	69.82%
	D2	9.049	1	0.1833	0.0747	25.87	15.16	75.89%	0.08%
	D3	8.506	1	0.1263	0.3335	12.28	302.07	15.11%	29.12%
	D4	5.612	1	0.0580	0.0422	2.59	4.83	0.29%	0.00%
	D5	6.600	1	0.0684	0.1605	3.61	70.01	0.79%	0.94%
	D6	9.044	1	0.0137	0.0154	0.15	0.64	0.00%	0.00%
	D7	9.392	1	0.0261	0.0574	0.53	8.95	0.03%	0.03%
	D8	9.541	_1	0.0199	0.0166	0.30	0.75	0.01%	0.00%_
2a	D1	11.882	2	0.0969	0.2820	4.46	285.92	69.11%	91.60%
	D2	8.889	2	0.0453	0.1795	0.98	115.75	1.85%	8.40%
	D3	8.613	1	0.1295	0.0197	7.97	1.40	29.02%	0.00%
	D4	8.513	1	0.0222	0.0015	0.23	0.01	0.02%	0.00%
	D5	7.708	1	0.0027	0.0024	0.00	0.02	0.00%	0.00%
	D6	6.412	_1	0.0116	0.0018	0.06	0.01	0.00%	0.00%
2b	D1	7.805	2	0.2954	0.3154	21.94	103.75	85.40%	95.79%
	D2	9.440	2	0.1721	0.1293	7.45	17.43	14.40%	3.95%
	D3	9.981	1	0.0001	0.0004	0.00	0.00	0.00%	0.00%
	D4	9.965	2	0.0463	0.0586	0.54	3.59	0.08%	0.19%
	D5	10.606	2	0.0010	0.0001	0.00	0.00	0.00%	0.00%
	D6	7.757	2	0.0542	0.0453	0.74	2.14	0.10%	0.04%
	D7	8.517	_1	0.0524	0.0554	0.69	3.20	0.03%	0.03%
6a	D1	8.553	2	0.1321	0.1076	10.85	6.36	32.83%	5.79%
	D2	9.767	2	0.1188	0.1778	8.77	17.36	27.98%	56.33%
	D3	10.133	2	0.1264	0.1580	9.93	13.70	38.62%	37.75%
	D4	7.555	2	0.0471	0.0419	1.38	0.96	0.41%	0.10%
	D5	10.955	2	0.0306	0.0220	0.58	0.27	0.16%	0.02%
	D6	8.221	1	0.0170	0.0294	0.18	0.47	0.00%	0.01%
	D7	8.061	_1	0.0182	0.0001	0.21	0.00	0.00%	0.00%
6b	D1	8.036	2	0.1793	0.3757	25.57	243.08	86.71%	99.44%
	D2	10.412	2	0.0755	0.0801	4.53	11.06	4.58%	0.35%

D3	9.984	1	0.0044	0.0479	0.02	3.95	0.00%	0.01%
D4	8.489	1	0.0007	0.0140	0.00	0.34	0.00%	0.00%
D5	11.091	2	0.0852	0.0668	5.77	7.69	8.41%	0.19%
D6	8.067	2	0.0435	0.0376	1.51	2.43	0.30%	0.01%
D7	7.051	1	0.0008	0.0011	0.00	0.00	0.00%	0.00%

8. Synthesis

2-(2'-hydroxyphenyl)-N-phenyl-benzoimidazole

Mixture of salicylaldehyde (1.6 mL, 15 mmol), *N*-Phenyl-o-phenylenediamine (2.26 g, 15 mmol) and Na₂S₂O₅ (2.85 g, 15 mmol) in DMF (20 mL) was stirred at 150 °C for 3 hours. After cooling, water (100 mL) was added and precipitated solid was filtered off, washed with water and dried. Crude product was recrystallised from EtOH with activated carbon and dried under vacuum. Beige crystalline solid was obtained with yield 3.02 g (70%). ¹H NMR (400 MHz, CDCl₃) δ = 13.54 (s, 1H), 7.82 (ddd, *J* = 8.0, 1.1, 0.7 Hz, 1H), 7.66 – 7.58 (m, 3H), 7.46 – 7.39 (m, 2H), 7.36 (ddd, *J* = 8.2, 7.2, 1.2 Hz, 1H), 7.27 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.11 (dddd, *J* = 8.1, 6.3, 1.2, 0.6 Hz, 2H), 6.86 (ddd, *J* = 8.1, 1.6, 0.4 Hz, 1H), 6.54 (ddd, *J* = 8.1, 7.2, 1.3 Hz, 1H).

2-(2'-hydroxyphenyl)-1,3-benzothiazole

Mixture of salicylaldehyde (2.0 ml, 19 mmol), 2-aminotiophenol (2.0 mL, 19 mmol) and Na₂S₂O₅ (3.61 g, 19 mmol) in DMF (20 mL) was stirred at 150 °C for 3 hours. After cooling water (100 mL) was added and precipitated solid was filtered off, washed with water and dried. Crude product was recrystallised from MeOH/CHCl₃ mixture with activated carbon and dried under vacuum. Beige crystalline solid was obtained with yield 3.09 g (72%). ¹H NMR (300 MHz, CDCl₃) δ = 12.52 (s, 1H), 7.99 (ddd, *J* = 8.2, 1.2, 0.6 Hz, 1H), 7.90 (ddd, *J* = 7.9, 1.4, 0.6 Hz, 1H), 7.70 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (ddd, *J* = 8.0, 7.2, 1.3 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.11 (dd, *J* = 8.3, 1.2 Hz, 1H), 6.96 (ddd, *J* = 7.7, 7.2, 1.2 Hz, 1H) ppm.

Complex 2b

Bromopentafluorobenzene (0.50 g, 2.0 mmol) was added dropwise to solution of *n*-BuLi (1.25 ml, 2.0 mmol, 1.6 M) in anhydrous Et₂O (10 ml) at -78 °C and stirred at this temperature for 30 min. $C_6F_5B(OEt)_2$ (0.53 g, 2.0 mmol) was added dropwise at -78°C. White precipitate was formed. After 30 min. HCl/Et₂O (1.0 ml, 2.0 mmol, 2M) was added; mixture clarified. After warming up to rt white precipitate was formed. 1 hour later 8-hydroxyquinoline (0.29 g, 2.0 mmol) was added and stirred for 4 hours. Mixture was extracted with water; organic phase was dried with Na₂SO₄ and volatiles were removed under reduced pressure. To obtained crude solid EtOH (5 ml) was added and after cooling in the freezer crystalline product was collected by filtration. Solid was washed with cold EtOH/pentane mixture and dried under vacuum. Yield 0.60 g (66%) ¹H NMR (300 MHz, CDCl₃) δ = 8.87 (dd, *J* = 5.3, 1.1 Hz, 1H), 8.59 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.77 (dd, *J* = 8.3, 5.3 Hz, 1H), 7.71 (dd, *J* = 8.4, 7.7 Hz, 1H), 7.40 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.23 (dd, *J* = 7.6, 0.7 Hz, 1H) ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ = -134.75 (dd, *J* = 23.9, 9.2 Hz), -155.79 (tt, *J* = 20.3, 2.4 Hz), -162.92 (ddd, *J* = 23.9, 20.3, 9.4 Hz) ppm.

Complex 3b

To a solution of Ph₂BOEt (123 mg, 0.58 mmol) in anhydrous EtOH (3 ml) 2-(pyridine-2-yl)phenol (86 mg, 0.50 mmol) was added in one portion. Mixture was stirred at 50 °C for 3 h and left overnight in freezer. Crystalline precipitate was filtered off, washed with cold EtOH, hexane and dried. Pale yellowish crystalline solid waso obtained with yield 140 mg (84%). The product was further purified by recrystallization from acetone and dried under vacuum. ¹H NMR (400 MHz, CDCl₃) δ = 8.14 (ddd, *J* = 6.0, 1.7, 0.8 Hz, 1H), 8.00 (ddd, *J* = 8.3, 7.2, 1.6 Hz, 1H), 7.97 – 7.93 (m, 1H), 7.61 (ddt, *J* = 8.0, 1.7, 0.5 Hz, 1H), 7.37 (ddd, *J* = 8.3, 7.2, 1.6 Hz, 1H), 7.32 (ddd, *J* = 7.2, 5.9, 1.6 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.24 – 7.15 (m, 7H), 6.83 (ddd, *J* = 8.0, 7.2, 1.3 Hz, 1H) ppm.

Complex 4b

Compound **4b** was synthesized as described for **3a** using Ph₂BOEt (165 mg, 0.78 mmol), EtOH (5 ml) and 2-(2'-hydroxyphenyl)-1-phenyl-benzoimidazole (200 mg, 0.70 mmol). Whitish crystalline solid was obtained, yield 253mg (80%). ¹H NMR (400 MHz, CDCl₃) δ = 7.73 – 7.66 (m, 3H), 7.53 – 7.48 (m, 2H), 7.48 – 7.44 (m, 4H), 7.33 – 7.20 (m, 9H), 7.16 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.07 (ddd, *J* = 8.2, 1.2, 0.8 Hz, 1H), 6.99 (dt, *J* = 8.3, 1.0 Hz, 1H), 6.62 (ddd, *J* = 8.1, 1.6, 0.5 Hz, 1H), 6.43 (ddd, *J* = 8.2, 7.0, 1.4 Hz, 1H) ppm.

Complex 5b

Compound **5b** was synthesized as described for **3a** using Ph_2BOEt (127 mg, 0.61 mmol), EtOH (5 ml) and 2-(2'-hydroxyphenyl)-1,3-benzooxazole (106 mg, 0.55 mmol). Pale yellow crystalline solid was obtained , yield 182 mg (80%).¹H NMR (400 MHz, CDCl₃) δ = 7.80 (ddd, *J* = 7.9, 1.8, 0.6 Hz, 1H), 7.66 (ddd, *J* = 8.3, 1.1, 0.7 Hz, 1H), 7.53 (ddd, *J* = 8.4, 7.2, 1.8 Hz, 1H), 7.48 – 7.38 (m, 5H), 7.30 – 7.19 (m, 8H), 6.99 (ddd, *J* = 8.2, 1.3, 0.7 Hz, 1H), 6.90 (ddd, *J* = 8.1, 7.2, 1.0 Hz, 1H) ppm.

Complex 6b

Compound **6b** was synthesized as described for **3a** using Ph₂BOEt (211 mg, 1.0 mmol), EtOH (5 ml) and 2-(2'-hydroxyphenyl)-1,3-benzothiazole (205 mg, 0.90 mmol). Yellow crystalline solid with yield 320 mg (91%) was obtained. ¹H NMR (400 MHz, CDCl₃) δ = 7.86 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.52 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.45 (ddd, *J* = 8.7, 7.2, 1.6 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.39 – 7.35 (m, 4H), 7.30 – 7.24 (m, 2H), 7.24 – 7.20 (m, 6H), 7.17 (dd, *J* = 8.4, 1.1 Hz, 1H), 6.84 (ddd, *J* = 8.1, 7.2, 1.1 Hz, 1H) ppm.

9. Copies of NMR spectra

1a_11B

3a_13C

S41

5a_13C

Figure S73. ¹¹B NMR spectrum of 7a in CDCl₃

7a_1H

7a_13C

8a_1H pyridine

Dimethyl 2'-bromobiphenyl-2-boronate

Dimethyl 2'-bromo-octafluorobiphenyl-2-boronate

Dimethyl 2'-bromo-octafluorobiphenyl-2-boronate

Figure S82. ¹⁹F NMR spectrum of **12** in CDCl₃

10.References for Supporting Information

- 1 H. Höpfl, V. Barba, G. Vargas, N. Farfan, R. Santillan and D. Castillo, *Chem. Heterocycl. Compd.*, 1999, **35**, 912–927.
- 2 J. Ugolotti, S. Hellstrom, G. J. P. Britovsek, T. S. Jones, P. Hunt and A. J. P. White, *Dalton Trans.*, 2007, **0**, 1425–1432.
- 3 N. G. Kim, C. H. Shin, M. H. Lee and Y. Do, J. Organomet. Chem., 2009, 694, 1922–1928.
- 4 Z. Zhang, H. Zhang, C. Jiao, K. Ye, H. Zhang, J. Zhang and Y. Wang, *Inorg. Chem.*, 2015, 54, 2652–2659.
- 5 D. Li, H. Zhang, C. Wang, S. Huang, J. Guo and Y. Wang, *J. Mater. Chem.*, 2012, **22**, 4319–4328.
- 6 G. Wesela-Bauman, M. Urban, S. Luliński, J. Serwatowski and K. Woźniak, Org. Biomol. Chem., 2015, 13, 3268–3279.
- 7 M. Urban, K. Durka, P. Jankowski, J. Serwatowski and S. Luliński, J. Org. Chem., 2017, 82, 8234–8241.