Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information for:

Phosphonium-stibonium and bis-stibonium cations as pnictogen-bonding catalysts for the transfer hydrogenation of quinolines

Mengxi Yang, Masato Hirai, and François P. Gabbaï*

Experimental Section Computational Details Crystallographic Details

Figure S1. ¹ H NMR of 3-I in CDCl ₃ .	S5
Figure S2. ${}^{13}C{}^{1}H{}$ NMR of 3 -1 in CDCl ₃	S5
Figure S3. ³¹ P{ ¹ H} NMR of 3-I in CDCl ₃	S6
Figure S4. ¹ H NMR of [3][BF ₄] in CDCl ₃	S6
Figure S5. ¹³ C{ ¹ H} NMR of [3][BF ₄] in CDCl ₃ .	S7
Figure S6. ¹⁹ F NMR of [3][BF ₄] in CDCl ₃	S7
Figure S7. ³¹ P{ ¹ H} NMR of [3][BF ₄] in CDCl ₃	S8
Figure S8. ¹ H NMR of 4-Br in CDCl ₃ .	S8
Figure S9. ¹³ C{ ¹ H} NMR of 4-Br in CDCl ₃ .	S9
Figure S10. ³¹ P{ ¹ H} NMR of 4-Br in CDCl ₃	S9
Figure S11. ¹ H NMR of [4][BF ₄] in CDCl ₃ .	S10
Figure S12. ¹³ C{ ¹ H} NMR of [4][BF ₄] in CDCl ₃ .	S10
Figure S13. ¹⁹ F NMR of [4][BF ₄] in CDCl ₃	S11
Figure S14. ³¹ P{ ¹ H} NMR of [4][BF ₄] in CDCl ₃	S11
Figure S15. ¹ H NMR of [5][BF ₄] ₂ in CD ₂ Cl ₂	S12
Figure S16. ¹³ C{ ¹ H} NMR of [5][BF ₄] ₂ in CD ₂ Cl ₂	S12
Figure S17. ¹⁹ F NMR of [5][BF ₄] ₂ in CD ₂ Cl ₂ .	S13
Figure S18. ³¹ P{ ¹ H} NMR of [5][BF ₄] ₂ in CD ₂ Cl ₂	S13
Figure S19. Representative ¹ H NMR spectrum collected during the transfer hydrogenation reaction involving 2-	
phenylquinoline and Hantzsch ester with [5][BF ₄] ₂ as a catalyst.	S14
Figure S20. Representative ¹ H NMR spectrum collected during the transfer hydrogenation reaction involving 3-	
bromoquinoline and Hantzsch ester with [5][BF ₄] ₂ as a catalyst	S14
Figure S21. Principle donor-acceptor interactions present in $[3]^+$ (left) and $[4]^+$ (right). A lp $\rightarrow \sigma^*$ donor-acceptor	r
interaction contributes $E_{del} = 1.0$ kcal/mol and $E_{del} = 8.3$ kcal/mol to the stability of the cations [3] ⁺ and [4] ⁺ ,	
respectively	S17
Figure S22. Natural Bond Orbital (NBO) plots of the donor-acceptor interactions in [5] ²⁺ - quinoline (isodensity value	0.05)
with the corresponding second order energies.	S19
Figure S23. Natural Bond Orbital (NBO) plots of the donor-acceptor interactions in [6] ²⁺ - quinoline (isodensity value	0.05)
with the corresponding second order energies.	S21
Table S1. XYZ coordinates of the optimized geometry of [3] ⁺ .	15
Table S2. XYZ coordinates of the optimized geometry of [4] ⁺ .	16
Table S3. XYZ coordinates of the optimized geometry of $[5]^{2+}$ - quinoline	18
Table S4. XYZ coordinates of the optimized geometry of [6] ²⁺ - quinoline	20

1 Experimental Section

General considerations. All syntheses involving organolithium derivatives and methylation reagents were carried out using standard glovebox or Schlenk techniques in the absence of oxygen and moisture. All glassware was dried in an oven and cooled under vacuum before use. 1,2-Dibromo benzene and iodomethane were purchased from Oakwood Chemical, 1-bromo-2-iodobenzene from ArkPharm, tetrakis(triphenylphosphine)palladium from Strem Chemicals, trimethylamine from TCI America, n-n-Butyllithium (2.2 M in hexanes) and iodomethane from Alfa Aesar, sodium tetrafluoroborate, triphenyl antimony, and triphenylphosphine from Millipore, antimony trichloride from Acros, tetraphenylantimony(V) bromide from Sigma-Aldrich, trimethyloxonium tetrafluoroborate from BeanTown Chemical, and Silver trifluoromethanesulfonate from Matrix scientific. All commercially available chemicals were used as received. $Ph_2SbCl_1^1 Ph_3SbBr_2^2$ (2-bromophenyl)diphenylphosphine,³ [6][BF₄]₂⁴, o-(Ph_2P)C₆H₄SbPh_2⁵, were synthesized according to reported procedures. The known complexes $[1][BF_4]^6$ was synthesized by treating PPh₃ with Me₃OBF₄, and [2][BF₄]⁷ was synthesized by treating Ph₄SbBr with AgOTf. Solvents were dried by passing through an alumina column (n-pentane and CH₂Cl₂), heating to reflux under N₂ over Na/K (Et₂O, hexanes, and THF), or over CaH₂ (1,2-dichloroethane). All other solvents were used as received. Deuterated solvents were bought from Cambridge Isotope. NMR spectra were recorded on a Varian Unity Inova 400 FT NMR (399.52 MHz for ¹H, 375.92 MHz for ¹⁹F, 161.74 MHz for ³¹P, 100.46 MHz for ¹³C) or Varian Unity Inova 500 FT NMR (499.42 MHz for ¹H, 469.86 MHz for ¹⁹F, 202.18MHz for ³¹P, 125.60 MHz for ¹³C) at ambient temperature. Chemical shifts (δ) are given in ppm and are referenced against residual solvent signals (¹H, ¹³C) or external standards (BF₃·Et₂O for ¹⁹F (-153 ppm), and 85% H₃PO₄ for ³¹P (0 ppm)). Elemental analyses were performed at Atlantic Microlab (Norcross, GA).

Synthesis of [*o*-(MePPh₂)C₆H₄SbPh₂]I (3-I). Methyl iodide (0.05 mL, 0.80 mmol) was added to a solution of *o*-(Ph₂P)C₆H₄SbPh₂ (210 mg, 0.4 mmol) in CH₂Cl₂ (10 mL). After stirring under N₂ at room temperature overnight, the solution was concentrated to a volume of 3 mL. Et₂O (20 mL) was then added, resulting in a white precipitate, which was collected by filtration and washed with Et₂O ($2 \times 5 \text{ mL}$) to afford **3**-I as an off-white solid (220 mg, 83% yield). The product was judged to be spectroscopically pure and used as synthesized. ¹H NMR (499 MHz, CDCl₃) δ 7.85 – 7.75 (m, 4H), 7.73 – 7.59 (m, 6H), 7.58 – 7.43 (m, 4H), 7.39 – 7.23 (m, 6H), 7.12 (d, *J* = 6.7 Hz, 4H), 3.41 (d, *J*_{P-H} = 12.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.64 (d, *J*_{C-P} = 17.7 Hz, Sb-bound *o*-phenylene quaternary), 141.13 (d, *J*_{C-P} = 15.1 Hz, *o*-phenylene), 136.80 (d, *J*_{C-P} = 15.2 Hz, *o*-phenylene, overlapping with Sb*Ph* quaternary), 136.74 (s, Sb*Ph* quaternary, overlapping with *o*-phenylene), 135.96 (s, *o*-Sb*Ph*), 135.17 (d, *J*_{C-P} = 3.0 Hz, *p*-P*Ph*), 134.92 (d, *J*_{C-P} = 4.5, *m*-Phenylene), 129.58 (s, *p*-Sb*Ph*), 129.47 (s, *m*-Sb*Ph*), 126.92 (d, *J*_{C-P} = 91.0 Hz, P-bound *o*-phenylene quaternary), 119.71 (d, *J*_{C-P} = 87.1 Hz, P*Ph* quaternary), 14.11 (d, *J*_{C-P} = 56.5 Hz PCH₃). ³¹P NMR (162 MHz, CDCl₃) δ 23.9 (s).

Synthesis of [*o*-(MePPh₂)C₆H₄SbPh₂][**B**F₄] ([**3**][**B**F₄]). A solution of NaBF₄ (650 mg, 5.93 mmol) in mixed solvents (15 mL, water: MeOH = 1: 1) was added to a MeOH (20 mL) solution of [o-(MePPh₂)C₆H₄SbPh₂]I (500 mg, 0.74 mmol). The mixture was stirred for 4h, after which a white precipitate formed. The precipitate was collected by filtration then dissolved into 20 mL of CH₂Cl₂ and passed through a celite plug. The final product was crashed out with Et₂O and dried *in vacuo* to afford [**3**][BF₄] as a white powder (400 mg, 85% yield). Single crystals of [**3**][BF₄] were obtained as colorless blocks by diffusing hexanes into a CDCl₃ solution. ¹H NMR (499 MHz, CDCl₃) δ 7.71 – 7.64 (m, 7H), 7.64 – 7.55 (m, 3H), 7.55 – 7.49 (m, 4H), 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 4H), 7.11 (dd, *J* = 8.0, 1.3 Hz, 1H), 3.14 (d, *J*_{P-H} = 13.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ = 145.64 (d, *J*_{C-P} =18.0, Sb-bound *o*-phenylene quaternary), 141.13 (d, *J*_{C-P} =15.1, *o*-phenylene), 136.78 (s, SbPh quaternary), 136.55 (d, *J*_{C-P} =14.9, *o*-phenylene), 135.95 (s, *o*-SbPh), 135.17 (d, *J*_{C-P} =3.0, *p*-PPh), 134.91 (d, *J*_{C-P} =3.4, *o*-phenylene), 123.53 (d, *J*_{C-P} =10.3, *m*-PPh), 130.62 (d, *J*_{C-P} =12.8, *o*-PPh), 130.41 (d, *J*_{C-P} =12.9, *o*-phenylene), 129.59 (s, *p*-SbPh), 129.48 (s, *m*-SbPh), 126.99 (d,

 J_{C-P} =91.1, P-bound *o*-phenylene quaternary), 119.81 (d, J_{C-P} =86.9, PPh quaternary), 12.05 (d, J_{C-P} =57.3, PCH₃). ¹⁹F NMR (470 MHz, CDCl₃) δ = -152.41 (s, 1F) -152.46 (s, 4F). ³¹P NMR (202 MHz, CDCl₃) δ = 23.6 (s). Elemental analysis calculated (%) for C₃₁H₂₇BF₄PSb: C, 58.26; H, 4.26; found C, 58.14; H, 4.40.

Synthesis of o-(PPh₂)C₆H₄SbPh₃Br (4-Br). Using a 50 mL Schlenk flask as a reaction vessel, n-butyllithium (2.2 M) in hexanes (0.8 mL, 1.8 mmol) was slowly added to a Et₂O solution (10 mL) of (2-bromophenyl)diphenylphosphine (0.613 g, 1.8 mmol) at -78 °C. After stirring for 1 h, the corresponding lithium salt formed as a white precipitate. The solvent was decanted off using a cannula fitted with a filter tip and the residue was washed with two portions of Et_2O (5 mL each). The lithium salt was then suspended in Et₂O (20 mL) and cooled down to -78 °C. This mixture was slowly transferred to a solution of Ph₃SbBr₂ in THF (5 mL) via cannula. After stirring at room temperature for 3 h, an offwhite solid precipitated out of solution. The solid was collected by filtration and washed with two portions of Et₂O (5 mL each) to afford 4-Br (0.848 g, 68 % yield). The product was judged to be spectroscopically pure and was used as synthesized. This stibonium bromide salt is highly soluble in CHCl₃, CH₂Cl₂, THF, MeOH, and MeCN and insoluble in Et₂O, pentane, and hexanes. ¹H NMR (399 MHz, CDCl₃) δ = 7.81 (d, J=7.1, 6H, o-SbPh), 7.70 - 7.61 (m, 1H, ophenylene), 7.58 – 7.45 (m, 3H), 7.46 – 7.39 (m, 3H), 7.36 (pseudo t, 6H), 7.30 – 7.25 (m, 2H, o-phenylene), 7.24 – 7.18 (m, 4H), 7.17 - 7.10 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 157.96 (d, $J_{C-P} = 83.7$ Hz, PPh quaternary), 136.91 (d, $J_{C-P} = 6.6$ Hz, SbPh quaternary), 135.97 (d, $J_{C-P} = 1.6$ Hz, o-phenylene), 135.52 (d, $J_{C-P} = 2.8$ Hz, o-SbPh), 134.27 (d, $J_{C-P} = 1.5$ Hz, o-phenylene), 133.10 (d, $J_{C-P} = 16.4$ Hz, o-PPh), 132.77 (d, $J_{C-P} = 11.1$ Hz, Sb-bound o-phenylene quaternary), 132.54 (d, J_{C-P} = 22.2 Hz, P-bound *o*-phenylene quaternary), 132.16 (s, *o*-phenylene), 131.37 (d, J_{C-P} = 1.5 Hz, o-phenylene), 130.88 (s, p-SbPh), 129.51 (s, m-SbPh), 129.24 (s, p-PPh), 128.67 (d, J_{C-P} = 7.4 Hz, m-PPh). ³¹P NMR (161.720 MHz, CDCl₃): δ 19.6. Elemental analysis calculated (%) for C₃₆H₂₉BrPSb: C, 62.28; H, 4.21; found C, 62.39; H, 4.24.

Synthesis of [*o*-(**PPh**₂)**C**₆**H**₄**SbPh**₃][**BF**₄] ([4][**BF**₄]). In the glove box, AgBF₄ (100 mg, 0.51 mmol) was added to a CH₂Cl₂ solution of *o*-(**PPh**₂)**C**₆**H**₄**SbPh**₃**Br** (340 mg, 0.49 mol). The reaction was stirred in the absence of light for 3 h, at which time it was filtered through Celite. All volatiles were removed from the filtrate under vacuum to give a sticky, colorless oil, which was triturated with two portions of Et₂O (3 mL each) to afford [4][BF₄] as a white powder (252 mg, 65% yield). Single crystals of [4][BF₄] were obtained as colorless blocks by diffusing hexanes into a CDCl₃ solution. ¹H NMR (499 MHz, CDCl₃) δ 7.82 – 7.76 (m, 2H), 7.75 – 7.70 (m, 1H), 7.71 – 7.66 (m, 6H), 7.67 – 7.59 (m, 4H), 7.59 – 7.53 (m, 6H), 7.36 – 7.30 (m, 2H), 7.27 – 7.22 (m, 3H), 6.98 – 6.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 142.59 (d, *J*_{C-P} = 2.8 Hz, Sb-bound *o*-phenylene quaternary), 137.22 (d, *J*_{C-P} = 1.1 Hz, *o*-phenylene), 137.09 (d, *J*_{C-P} = 19.5 Hz, P-bound *o*-phenylene quaternary), 135.29 (d, *J*_{C-P} = 16.7 Hz, *o*-SbP*h*), 132.81 (s, *o*-phenylene), 131.25 (s, *m*-SbP*h*), 129.98 (s, *p*-P*h*), 129.18 (d, *J*_{C-P} = 7.7 Hz, *m*-SbP*h*), 124.67 (d, *J*_{C-P} = 11.8 Hz, SbP*h* quaternary). ¹⁹F NMR (470 MHz, CDCl₃) δ -152.95 (s, 1F), -153.00 (s, 4F). ³¹P NMR (202 MHz, CDCl₃) δ 11.4 (s). Elemental analysis calculated (%) for C₃₆H₂₉BF₄PSb: C, 61.67; H, 4.17; found C, 61.55; H, 4.20.

Synthesis of $[o-(MePPh_2)C_6H_4SbPh_3][BF_4]_2$ ([5][BF_4]_2) In a 25 mL Schlenk tube, Me₃OBF₄ (105 mg, 0.71 mol) was added to a solution of $[o-(PPh_2)C_6H_4SbPh_3][BF_4]$ (470 mg, 0.67 mmol) in toluene (2 mL) / 1,2-dichloroethane (1 mL). The Schlenk tube was sealed under N₂ atmosphere and the mixture was left to stir in a 90 °C bath for 12 h, during which time a white precipitate formed. The solid was filtered, washed with three portions of Et₂O (5 mL each), and dried *in vacuo* to afford [5][BF₄]₂ as a white powder (460 mg, 85 % yield). Single crystals of [5][BF₄]₂ were obtained as colorless blocks by diffusing pentane into a CH₂Cl₂ solution. ¹H NMR (399 MHz, CD₂Cl₂) δ 8.05 – 7.96 (m, 2H), 7.94 – 7.87 (m, 1H), 7.81 – 7.73 (m, 5H), 7.65 (t, *J* = 7.8 Hz, 6H), 7.58 – 7.40 (m, 15H), 2.50 (d, *J*_{P-H} = 13.3 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 142.10 (d, *J*_{C-P} = 12.9 Hz, *o*-phenylene), 136.22 (s, *o*-SbPh), 135.41 (s, *o*-phenylene), 134.81 (s, br, *p*-SbPh), 134.28 (d, *J*_{C-P} = 12.2 Hz, *o*-phenylene), 133.97 (d, *J*_{C-P} = 10.7 Hz, *m*-PPh), 131.98 (s, br, *m*-SbPh), 131.42 (d, *J*_{C-P} = 12.9 Hz, *o*-PPh), 129.83

(s, br, Sb-bound *o*-phenylene quaternary), 125.42 (d, $J_{C-P} = 91.0$ Hz, P-bound *o*-phenylene quaternary), 123.21 (s, br, Sb*Ph* quaternary), 118.33 (d, $J_{C-P} = 88.3$ Hz, P*Ph* quaternary), 10.11 (d, $J_{C-P} = 56.1$ Hz, P*C*H₃). ¹⁹F NMR (470 MHz, CD₂Cl₂) δ -149.96 (s, 1F), -150.02 (s, 4F). ³¹P NMR (202 MHz, CD₂Cl₂) δ 26.5 (s). Elemental analysis calculated (%) for C₃₇H₃₂B₂F₈PSb: C, 55.34; H, 4.02; found C, 54.85; H, 4.04.

Hydrogenation reaction of quinolines with Hantzsch ester. An NMR tube was charged with a dry CDCl₃ solution (0.7 mL) of the antimony catalyst (0.004 mmol), Hantzsch-ester (50 mg, 0.20 mmol), and 2-phenylquinoline or 3-bromoquinoline (0.08 mmol). The tube was then sealed and the formation of the products was monitored by ¹H NMR *in situ*. For 2-phenylquinoline, the yield of the product was calculated based on the integration of two resonances: 6.6 ppm (d, 1H) and 6.7 ppm (t, 1H). The amount of the unreacted substrate was calculated based on the integration of two resonances: 7.8 ppm (d, 1H) and 7.9 ppm (d, 1H). For 3-bromoquinoline, the yield of the product was calculated based on the integration of two resonances: 6.5 ppm (d, 1H) and 6.7 ppm (t, 1H). The amount of (t, 1H) and 6.7 ppm (t, 1H).

Crystallographic measurements.

All crystallographic measurements were performed at 110(2) K using a Bruker SMART APEX II diffractometer or a Brucker D8 QUEST diffractometer (graphite monochromated Mo-K α radiation, $\lambda = 0.71073$ Å) at 110 K. In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop. Integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.⁸ The semiempirical method SADABS was applied for absorption correction. The structures were solved by direct methods (ShelXS)⁹ and refined by the full-matrix least-squares technique against F^2 with anisotropic temperature parameters for all non-hydrogen atoms (ShelXL)⁹ using Olex2¹⁰ interface. All H-atoms were geometrically placed and refined using a riding model approximation. Diamond¹¹ was employed for the final data presentation and structure plots.

Computational details

All computations were carried out using density functional theory (DFT) methods as implemented in the Gaussian 09 program.¹² All optimization and frequency calculations were carried out with the M06-2X¹³ functional and mixed basis sets (cc-pVTZ-PP¹⁴ with CRENBL ECP¹⁵ for Sb, cc-pVTZ for P, 6-31g(d') for H, C, N, F, 6-311g* for S, Cl) starting from the crystal structure geometries if available. No imaginary frequencies were found for the optimized structures, confirming that a local minimum on the potential energy hypersurface had in all cases been reached. The optimized structures were also subjected to natural bond orbital (NBO)¹⁶ analysis. The molecular orbitals and NBOs were visualized and plotted using the Jimp2 program.¹⁷ The electrostatic potential maps of [**5**]²⁺ and [**6**]²⁺ are based on the single-point calculations of these dications whose coordinates are from the optimization of their quinoline adduct.

1.1 NMR spectrum of 3-I

Figure S1. ¹H NMR of 3-I in CDCl₃.

Figure S2. ${}^{13}C{}^{1}H$ NMR of 3-I in CDCl₃.

Figure S3. ${}^{31}P{}^{1}H$ NMR of 3-I in CDCl₃.

1.2 NMR spectrum of [3][BF₄]

Figure S4. ¹H NMR of [3][BF₄] in CDCl₃.

Figure S5. ¹³C{¹H} NMR of [**3**][BF₄] in CDCl₃.

Figure S6. ¹⁹F NMR of [3][BF₄] in CDCl₃.

Figure S7. $^{31}P\{^{1}H\}$ NMR of [3][BF4] in CDCl3 .

1.3 NMR spectrum of 4-Br

Figure S8. ¹H NMR of 4-Br in CDCl₃.

Figure S9. ¹³C{¹H} NMR of 4-Br in CDCl₃.

Figure S10. ${}^{31}P{}^{1}H$ NMR of 4-Br in CDCl₃.

1.4 NMR spectrum of [4][BF₄]

Figure S11. ¹H NMR of [4][BF₄] in CDCl₃.

Figure S12. ¹³C{¹H} NMR of [4][BF₄] in CDCl₃.

Figure S14. ³¹P{¹H} NMR of [**4**][BF₄] in CDCl₃.

1.5 NMR spectrum of [5][BF₄]₂

Figure S15. ¹H NMR of [**5**][BF₄]₂ in CD₂Cl₂.

Figure S16. ${}^{13}C{}^{1H}$ NMR of [5][BF₄]₂ in CD₂Cl₂.

Figure S17. $^{19}\mathrm{F}$ NMR of $[5][\mathrm{BF}_4]_2$ in $\mathrm{CD}_2\mathrm{Cl}_2$.

Figure S18. $^{31}P\{^{1}H\}$ NMR of [5][BF₄]₂ in CD₂Cl₂.

1.6 Transfer hydrogenation

Figure S19. Representative ¹H NMR spectrum collected during the transfer hydrogenation reaction involving 2-phenylquinoline and Hantzsch ester with $[5][BF_4]_2$ as a catalyst.

Figure S20. Representative ¹H NMR spectrum collected during the transfer hydrogenation reaction involving 3-bromoquinoline and Hantzsch ester with $[5][BF_4]_2$ as a catalyst.

2 Computational Details

Table S1. XYZ coordinates of the optimized geometry of $[3]^+$.

Sb	1.464054	-0.133354	-0.966718
Р	-2.135792	-0.524358	-0.601000
С	-1.083802	-1.397194	0.581053
С	-1.721649	-2.148369	1.577068
Н	-2.805972	-2.188835	1.628810
С	-0.967241	-2.846155	2.516724
Н	-1.466210	-3.425446	3.288044
С	0.419497	-2.789932	2.455317
Н	1.020165	-3.332679	3.180681
С	1.051243	-2.032135	1.466017
Η	2.138731	-2.004100	1.445378
С	0.327038	-1.308802	0.512005
С	-1.908353	-1.164466	-2.279812
Η	-1.978831	-2.255592	-2.246706
Н	-0.927234	-0.879899	-2.668494
Η	-2.702198	-0.771420	-2.922261
С	-1.762106	1.226872	-0.547805
С	-1.546063	1.820897	0.703090
Н	-1.534495	1.212204	1.605903
С	-1.322650	3.191216	0.783561
Η	-1.141234	3.653013	1.749403
С	-1.298593	3.959532	-0.379657
Н	-1.108326	5.027522	-0.315213
С	-1.500171	3.366324	-1.626172
Н	-1.473313	3.968440	-2.529599
С	-1.738127	1.998212	-1.716033
Η	-1.892866	1.539862	-2.689936
С	-3.873250	-0.775542	-0.199826
С	-4.633442	0.260247	0.351308
Η	-4.186351	1.232875	0.538310

С	-5.977436	0.044520	0.648980
Н	-6.569057	0.850039	1.074071
С	-6.558898	-1.195554	0.397557
Η	-7.607579	-1.359648	0.629255
С	-5.801116	-2.230165	-0.153764
Η	-6.255899	-3.196795	-0.349688
С	-4.459972	-2.024212	-0.455436
Η	-3.874661	-2.839305	-0.877349
С	1.711757	1.605771	0.260487
С	1.666167	1.564561	1.660454
Н	1.507659	0.617837	2.175766
С	1.823111	2.730369	2.407505
Η	1.792465	2.686358	3.493412
С	2.027635	3.951255	1.762578
Η	2.156279	4.859765	2.345448
С	2.077880	4.002401	0.371662
Η	2.245060	4.950313	-0.133861
С	1.917688	2.834133	-0.375411
Η	1.951795	2.891961	-1.462943
С	3.339136	-1.073151	-0.557661
С	4.270619	-0.547955	0.345810
Н	4.061524	0.380594	0.873574
С	5.475625	-1.211616	0.576040
Н	6.194695	-0.796345	1.277235
С	5.758593	-2.401590	-0.091519
Η	6.698848	-2.915425	0.089276
С	4.838812	-2.929023	-0.996800
Н	5.059766	-3.853237	-1.523994
С	3.637260	-2.264244	-1.231846
Η	2.932192	-2.682868	-1.949751

Table S2. XYZ coordinates of the optimized geometry of $[4]^+$.

Sb	-1.441602	-0.139501	-0.028308
Р	1.882559	-0.268939	-0.141548
С	-0.237719	-0.548354	1.653283
С	-0.861496	-0.767374	2.884399
Н	-1.940312	-0.665271	2.988920
С	-0.090218	-1.130373	3.988129
Н	-0.568777	-1.308061	4.946931
С	1.288816	-1.272906	3.853321
Η	1.889071	-1.564332	4.711004
С	1.909265	-1.036812	2.625851
Н	2.988341	-1.140617	2.532604
С	1.157657	-0.660073	1.509716
С	3.500249	-1.113229	-0.091142
С	4.656274	-0.526436	0.436756
Н	4.620851	0.488899	0.826288
С	5.852720	-1.239917	0.455896
Н	6.748996	-0.779792	0.862999
С	5.902138	-2.538697	-0.049027
Н	6.837650	-3.091229	-0.035347
С	4.755796	-3.125653	-0.582162
Н	4.796814	-4.133101	-0.987134
С	3.560444	-2.412214	-0.610263
Н	2.669888	-2.859458	-1.050201
С	2.305684	1.503022	0.057708
С	2.264978	2.193656	1.273867
Н	1.995304	1.675184	2.191092
С	2.576114	3.552402	1.320019
Н	2.545514	4.079739	2.270010
С	2.938971	4.228075	0.156715
Н	3.189987	5.284808	0.196468
С	2.982554	3.545292	-1.058578
Η	3.261160	4.068964	-1.969500
С	2.656289	2.193096	-1.110090
Н	2.668515	1.668115	-2.064363

С	-1.469311	-1.811631	-1.286772
С	-2.379623	-1.860817	-2.347898
Н	-3.072447	-1.040119	-2.530513
С	-2.402964	-2.979269	-3.179518
Н	-3.103271	-3.020692	-4.008850
С	-1.533532	-4.042604	-2.941682
Н	-1.556547	-4.914302	-3.589697
С	-0.639267	-3.997606	-1.872439
Н	0.028756	-4.833333	-1.683132
С	-0.602066	-2.880437	-1.042088
Η	0.096369	-2.847646	-0.207044
С	-3.402803	0.111810	0.675706
С	-4.094712	-0.997092	1.179612
Η	-3.630237	-1.982827	1.196854
С	-5.394439	-0.840985	1.654716
Η	-5.934316	-1.699350	2.044615
С	-6.001169	0.414539	1.622282
Η	-7.015652	0.533254	1.992683
С	-5.316046	1.515632	1.112512
Η	-5.795063	2.490193	1.080698
С	-4.014038	1.368638	0.637033
Η	-3.488615	2.230163	0.228739
С	-0.925597	1.610543	-1.051385
С	-0.777341	2.807755	-0.342147
Η	-0.924963	2.843063	0.736719
С	-0.411532	3.965347	-1.024490
Η	-0.281563	4.895413	-0.478549
С	-0.198141	3.922844	-2.402066
Η	0.087896	4.827766	-2.931537
С	-0.338239	2.726339	-3.102934
Η	-0.163736	2.697188	-4.174853
С	-0.697911	1.560825	-2.428745
Η	-0.785011	0.621990	-2.973574

Figure S21. Principle donor-acceptor interactions (isovalue=0.05) present in [**3**]⁺ (left) and [**4**]⁺ (right). A lp $\rightarrow \sigma^*$ donor-acceptor interaction contributes $E_{del} = 1.0$ kcal/mol and $E_{del} = 8.3$ kcal/mol to the stability of the cations [**3**]⁺ and [**4**]⁺, respectively.

Table S3. XYZ coordinates of the optimized geometry of $[5]^{2+}$ - quinoline.

Sb	1.817730	0.216676	0.049832
С	-1.149806	0.796509	-1.278611
С	0.223369	0.501808	-1.374323
С	0.781781	0.387316	-2.656006
Η	1.844195	0.179803	-2.777349
С	0.008010	0.502269	-3.810724
Η	0.479696	0.399962	-4.784076
С	-1.355527	0.746904	-3.707965
Н	-1.974007	0.834768	-4.596228
С	-1.918991	0.916916	-2.448057
Н	-2.974520	1.173938	-2.373204
С	-3.237353	-0.135244	0.663891
С	-3.803516	-0.099769	1.947936
Н	-3.468950	0.625414	2.686883
С	-4.822843	-0.986433	2.274326
Н	-5.265660	-0.958011	3.265748
С	-5.284169	-1.897885	1.321792
Н	-6.093367	-2.577888	1.574327
С	-4.715708	-1.936978	0.050735
Н	-5.067310	-2.654529	-0.685588
С	-3.686026	-1.059271	-0.285532
Н	-3.234503	-1.109073	-1.274378
С	-1.006844	1.552792	1.598240
С	3.134607	-1.106929	-0.903262
С	4.292941	-0.566387	-1.475564
Н	4.485241	0.504917	-1.445496
С	5.215196	-1.414024	-2.088057
Η	6.115752	-0.998703	-2.531105
С	4.982885	-2.787426	-2.125643
Η	5.704964	-3.445246	-2.601290
С	3.829916	-3.323095	-1.551310
Η	3.653344	-4.394559	-1.579570
С	2.900279	-2.487722	-0.936687
Η	2.002315	-2.912525	-0.493505
С	-0.851837	-2.847447	-0.411923
С	-1.863942	-3.788385	-0.070011
С	-2.281313	-3.864102	1.281753
Η	-3.054609	-4.576515	1.563503
С	-1.708059	-3.032856	2.206386
Н	-1.997486	-3.049432	3.252193
С	-0.701044	-2.140300	1.773193
Н	-0.222123	-1.499475	2.512952
Ν	-0.268457	-2.032795	0.531510
С	-2.450249	-4.591459	-1.081758

С	-0.446273	-2.756331	-1.768725
С	-1.038513	-3.538994	-2.730943
Η	-0.716475	-3.456596	-3.765637
Η	0.348015	-2.067829	-2.035241
С	-2.054202	-4.464425	-2.389535
Н	-3.217962	-5.308980	-0.799506
Н	-2.505522	-5.080057	-3.162150
С	1.946759	-0.218723	2.106606
С	1.857917	0.803595	3.058513
С	2.337209	-1.508092	2.486104
С	2.119348	0.521429	4.398212
Н	1.611939	1.823262	2.767135
С	2.604193	-1.777957	3.826637
Н	2.429036	-2.303523	1.750653
С	2.487654	-0.767909	4.781022
Η	2.048822	1.313007	5.138796
Н	2.908921	-2.777614	4.122719
Η	2.698376	-0.982827	5.824926
Р	-2.098133	1.172463	0.215400
С	2.661817	2.146392	-0.023794
С	3.782210	2.425267	0.772926
С	2.128375	3.141744	-0.852298
С	4.362603	3.690720	0.734403
Н	4.206645	1.663156	1.425678
С	2.710432	4.407973	-0.879686
Н	1.271025	2.935045	-1.490874
С	3.825135	4.680637	-0.088715
Н	5.233938	3.904620	1.346777
Н	2.299214	5.178333	-1.526025
Η	4.279798	5.667090	-0.115984
С	-3.033512	2.666920	-0.131227
С	-2.320612	3.827531	-0.468145
С	-4.429709	2.684154	-0.055280
С	-3.010613	5.006346	-0.719473
Η	-1.233531	3.811224	-0.543095
С	-5.111741	3.872416	-0.313969
Н	-4.983262	1.784484	0.201284
С	-4.405495	5.027198	-0.641551
Н	-2.465025	5.908837	-0.978428
Н	-6.196052	3.892613	-0.257986
Н	-4.942070	5.950550	-0.840896
Н	-0.235541	2.260055	1.267249
Н	-1.595609	2.041152	2.381106
Н	-0.559135	0.641138	1.999273

Figure S22. Natural Bond Orbital (NBO) plots of the donor-acceptor interactions in $[5]^{2+}$ - quinoline (isodensity value 0.05) with the corresponding second order energies.

Table S4. XYZ coordinates of the optimized geometry of $[6]^{2+}$ - quinoline.

Sb	1.572569	-1.823592	-0.826057
Sb	-1.860402	0.304221	0.399755
С	0.409966	-0.409329	-1.867294
С	-0.786471	0.204131	-1.457066
С	-1.479485	0.992504	-2.386890
Н	-2.414156	1.480440	-2.110776
С	-0.989483	1.210218	-3.675396
Н	-1.552383	1.832458	-4.365401
С	0.214662	0.636841	-4.061322
Н	0.618331	0.806065	-5.055293
С	0.896194	-0.181979	-3.162826
Н	1.823172	-0.650338	-3.493685
С	3.441895	-1.104277	-0.249624
С	4.266142	-1.913907	0.543946
Н	3.933598	-2.890360	0.893722
С	5.542460	-1.467989	0.875319
Н	6.187227	-2.087401	1.492026
С	5.995378	-0.236379	0.399855
Н	6.996932	0.101517	0.651380
С	5.178804	0.553474	-0.407898
Н	5.537278	1.508325	-0.783265
С	3.892518	0.126516	-0.735071
Н	3.255270	0.757415	-1.353809
С	0.439691	-2.697627	0.698204
С	-0.868206	-3.078743	0.367781
Н	-1.275940	-2.894971	-0.627559
С	-1.671950	-3.701191	1.322587
Н	-2.692552	-3.977227	1.069531
С	-1.155093	-3.974631	2.589352
Н	-1.774112	-4.473002	3.330297
С	0.156855	-3.618716	2.910206
Н	0.556172	-3.842718	3.895558
С	0.957708	-2.970505	1.969748
Н	1.972017	-2.677919	2.235665
С	1.897497	-3.370648	-2.227787
Н	0.935250	-3.752381	-2.579023
Н	2.451065	-4.173643	-1.732886
Η	2.482366	-2.998838	-3.072801
С	-2.483133	2.296857	0.574472
С	-3.706573	2.676429	0.007454
Н	-4.322609	1.954916	-0.527981

С	-4.151645	3.989075	0.149964
Η	-5.101104	4.287760	-0.285195
С	-3.383695	4.911915	0.858607
Η	-3.736171	5.933444	0.970873
С	-2.171493	4.529266	1.432497
Η	-1.580618	5.249481	1.991153
С	-1.715916	3.220346	1.294587
Η	-0.768595	2.929170	1.744509
С	1.710991	2.286984	0.479789
С	2.947688	2.794960	0.970027
С	3.560968	2.130029	2.059761
Н	4.506895	2.501649	2.448750
С	2.955451	1.025435	2.599687
Η	3.391341	0.481711	3.431700
С	1.722734	0.604536	2.052079
Н	1.228609	-0.264907	2.486165
С	-1.399990	-0.278951	2.371688
Н	-0.919524	0.562347	2.873741
Η	-0.786737	-1.176984	2.423045
Η	-2.375399	-0.478611	2.827139
С	-5.777315	-1.591037	0.559560
С	-4.639697	-0.833642	0.832012
С	-3.679385	-1.522127	-1.284899
С	-4.818042	-2.280814	-1.550604
Η	-6.597094	-1.610571	1.272082
Н	-4.595355	-0.260870	1.758196
Η	-2.875891	-1.490136	-2.019695
Н	-4.892290	-2.837234	-2.480770
С	-5.862968	-2.317154	-0.628284
Η	-6.750879	-2.906303	-0.839880
Ν	1.103626	1.188521	1.041466
С	-3.584469	-0.801472	-0.088975
С	3.542609	3.921355	0.345216
С	1.098493	2.938677	-0.621678
С	1.700840	4.023430	-1.212593
Η	1.220842	4.513960	-2.054939
Н	0.142659	2.575631	-0.983842
С	2.936595	4.520681	-0.730303
Н	4.485008	4.299451	0.735131
Н	3.394685	5.381667	-1.208041

Figure S23. Natural Bond Orbital (NBO) plots of the donor-acceptor interactions in $[6]^{2+}$ - quinoline (isodensity value 0.05) with the corresponding second order energies.

References

- 1. M. Nunn, D. B. Sowerby and D. M. Wesolek, J. Organomet. Chem., 1983, 251, C45-C46.
- 2. N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1994, DOI: 10.1039/DT9940001759, 1759-1763.
- 3. M. T. Whited, E. Rivard and J. C. Peters, *Chem. Commun.*, 2006, DOI: 10.1039/B516046D, 1613-1615.
- 4. M. Hirai, J. Cho and F. P. Gabbaï, *Chem. Eur. J.*, 2016, **22**, 6537-6541.
- 5. W. Levason and C. A. McAuliffe, *Inorg. Chim. Acta*, 1974, **11**, 33-40.
- 6. C. H. Winter, W. R. Veal, C. M. Garner, A. M. Arif and J. A. Gladysz, J. Am. Chem. Soc., 1989, 111, 4766-4776.
- 7. W. E. McEwen, G. H. Briles and B. E. Giddings, J. Am. Chem. Soc., 1969, 91, 7079-7084.
- 8. APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711-5373 USA
- 9. G. Sheldrick, *Acta Crystallographica Section C*, 2015, **71**, 3-8.
- 10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 11. K. Brandenburg, *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A.; , J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
- 13. Y. Zhao and D. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 14. K. A. Peterson, J. Chem. Phys., 2003, 119, 11099-11112.
- 15. B. Metz, H. Stoll and M. Dolg, J. Chem. Phys., 2000, 113, 2563-2569.
- 16. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, *NBO 5.9*, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2011.
- 17. J. Manson, C. E. Webster, L. M. Pérez and M. B. Hall, <u>http://www.chem.tamu.edu/jimp2/index.html</u>.