Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Luminescence color alteration induced by trapped solvent molecules in crystals of tetrahedral gold(I) complexes: Near-unity luminescence mixed with thermally activated delayed fluorescence and phosphorescence

Masahisa Osawa,*a Hiroto Yamayoshi,a Mikio Hoshino,a Yuya Tanaka,b and Munetaka Akita^b

^{*a*} Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan

^b Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Contents

Expe	erimental Detail	page
1.	General Information	S3–S4
2.	NMR Experiments	S5–S6
	Fig. S7 ¹ H NMR spectrum of L_{tBu} in CD ₂ Cl ₂ at 293 K.	
	Fig. S8 ³¹ P { ¹ H} NMR spectrum of L_{tBu} in CD ₂ Cl ₂ at 293 K.	
	Fig. S9 ¹ H NMR spectrum of 1 in CD_2Cl_2 at 293 K.	
	Fig. S10 ³¹ P { ¹ H} NMR spectrum of 1 in CD_2Cl_2 at 293 K.	
3.	Crystal Structure determination	S7–S8
	Table S15 Crystallographic data for 1BG, 1OR and 1YL.	
	Table S16 Selected bond distances (Å) and angles (°) for 1BG, 1OR and 1YL.	
4.	Thermogravimetric Analyses	S 8
	Fig. S11 TGA data for 1BG, 1OR, and 1YL under argon atmosphere	
5.	Photophysical Measurements	S9
	Fig. S4 Temperature-dependent change of (A) corrected emission spectra and (B) emiss	ion lifetime
	for $[Au(L)_2]Cl$.	
	Fig. S5 Temperature-dependent change of (A) corrected emission spectra and (B) emiss	ion lifetime

for 1BG.

Fig. S6 Temperature-dependent change of (A) corrected emission spectra and (B) emission lifetime for **10R.**

6. Theoretical Studies

S10-S24

Fig. S1 The optimized S_0 geometry of $[Au(L)_2]^+$ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Fig. S2 The optimized S_0 geometry of 1^+ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Fig. S3 The optimized T_1 geometry of 1^+ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Table S1 The optimized T_1 geometry of 1^+ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Table S2 Composition of hole and electron for the $S_0 \rightarrow S_5$ of $[Au(L)_2]^+$ in CH_2Cl_2 .

Table S3 Composition of hole and electron for the $S_0 \rightarrow S_5$ of $[Au(L)_2]^+$ in CH_2Cl_2 .

Table S4 Composition of hole and electron for the $S_0 \rightarrow S_6$ of $[Au(L)_2]^+$ in CH_2Cl_2 .

Table S5 Composition of hole and electron for the $S_0 \rightarrow S_{13}$ of $[Au(L)_2]^+$ in CH_2Cl_2 .

Table S6 Composition of hole and electron for the $S_0 \rightarrow S_{18}$ of $[Au(L)_2]^+$ in CH₂Cl₂.

Table S7 NTO analysis for selected transitions of $[(L_{tBu})_2Au]^+ 1^+$

Table S8 Composition of hole and electron for the $S_0 \rightarrow S_1$ of 1^+ in CH_2Cl_2 .

Table S9 Composition of hole and electron for the $S_0 \rightarrow S_5$ of 1^+ in CH₂Cl₂.

Table S10 Composition of hole and electron for the $S_0 \rightarrow S_6$ of 1^+ in CH₂Cl₂.

Table S11 Composition of hole and electron for the $S_0 \rightarrow S_{11}$ of 1^+ in CH_2Cl_2 .

Table S12 Composition of hole and electron for the $S_0 \rightarrow S_{17}$ of 1^+ in CH₂Cl₂.

Table S13 NTO analysis for selected transitions of 1⁺.

Table S14 Composition of hole and electron for the optimized T_1 of 1^+ in CH₂Cl₂.

 Table S17 Results of vertical excited state calculation using atomic coordinates extracted from X-ray crystallographic data

Table S18 Geometry data of $[Au(L)_2]^+$ for the optimized S₀ state in CH₂Cl₂.

Table S19 Geometry data of 1⁺ for the optimized S₀ state in CH₂Cl₂

Table S20 Geometry data of 1^+ for the optimized T_1 state in CH₂Cl₂

References

S25

1. General Information

¹H, ¹³C, and ³¹P NMR spectra were recorded on a Bruker AVANCE-400 spectrometer. ¹H chemical shifts were referenced to residual solvent peaks. ³¹P chemical shifts were referenced to an external standard, 85% phosphoric acid ($\delta = 0$ ppm). Elemental analyses (C and H) were carried out using an elemental analyser (Vario EL CHNOS) from Elementar. For the photo-physical studies, dissolved oxygen was removed by repeated freeze-pump-thaw cycles. Steady-state emission spectra were recorded at room temperature and at 77 K using a Hitachi F-7000 spectrofluorometer. The intensity distribution of the Xenon lamp incorporated in the spectrofluorometer was corrected using Rhodamine B in ethylene glycol. The output of the photomultiplier tube was calibrated between 300 and 850 nm with a secondary standard lamp.

Laser photolysis studies were performed using a Nd:YAG laser (Sure Light 400, Hoya Continuum Ltd.) equipped with second, third, and fourth harmonic generators. The laser pulses used for the emission lifetime measurements were of the third harmonic (355 nm). The duration and energy of the laser pulse were 10 ns and 30 mJ/pulse, respectively. The system used to monitor the emission decay was reported elsewhere.¹

An Optistat DN-V2 cryostat from Oxford Instruments was used to measure the emission spectra and lifetimes in the temperature range 309–83 K. Crystalline powders of samples used for emission measurements were sealed in quartz tubes with a diameter of 3 mm. Optical measurements at 77 K were carried out at the temperature of liquid nitrogen using a Dewar vessel with four optical windows. After filling the vessel with liquid nitrogen, the sample, which was placed in a quartz tube with a diameter of 5 mm, was immersed into the liquid nitrogen for rapid cooling, and luminescence spectra and lifetimes were measured.

Emission quantum yields were determined at 293 and at 77 K using an absolute PL quantum yield measurement system (C-9920-02G, Hamamatsu).²

A suitable crystal for was selected and mounted using Paratone-N oil on a Cryo-Loop. Data collections were performed at 90(2) K on a Bruker APEX-II CCD. The crystallographic data are summarized in Table S1 and S2. Lorentz and polarization corrections and empirical absorption corrections were carried out for data reduction. The structures were solved by direct methods (Shelxs)³ or charge flipping methods (olex2.solve)⁴ and were refined with all non-hydrogen atoms refined anisotropically. Hydrogen atoms were inserted at idealized positions and treated as fixed-atoms. CCDC reference numbers are 1902631 for **1BG**, 1902632 for **10R** and 1902633 for **1YL**, respectively.

Thermogravimetric analyses (TGA) measurements were performed under argon atmosphere on a .Rigaku TG-8120.

The structure in the singlet ground (S_0) was optimized by using density functional theory (DFT) and the

triplet excited (T₁) structure was optimized using time-dependent (TD)–DFT.⁵ The input coordinates were extracted from the X-ray crystallographic data without the anion and crystallization solvents. It was confirmed that crystallization solvent have little influence on the excited states of solvated complexes (Table S17). Vertical excited state calculations were performed to determine S₁ and T₁ energies, and HOMO and (HOMO-1) energies using TD-DFT without geometry optimizations. The B3LYP level of theory⁵ were used for all calculations. The LANL2DZ basis set⁶ for Au atom, 6-31+G* basis set for P atoms, and 6–31G* basis set for C and H atoms, were used. Solvent (CH₂Cl₂) effects were applied by the integral equation formalism⁷ for the polarizable continuum model (PCM)⁸ equipped in Gaussian16 B. 01.⁹ Natural transition orbitals (NTOs) were generated by orbital transformation followed by a singular value decomposition of the transition density matrix. In the NTO representation, the electronic transitions can be expressed by one single "hole (approximately HOMO) - electron (approximately LUMO)" pair with an associated eigenvalue of essentially one, even for transitions that are highly mixed in the canonical MO basis. This procedure can be a helpful strategy for obtaining a simple orbital interpretation of "what got excited to where".¹⁰

2. NMR Experiments

Fig. S7 ¹H NMR spectrum of L_{tBu} in CD₂Cl₂ at 293 K.

Fig. S8 ^{31}P $\{^{1}H\}$ NMR spectrum of L_{tBu} in $CD_{2}Cl_{2}$ at 293 K.

Fig. S9 ¹H NMR spectrum of 1 in CD_2Cl_2 at 293 K.

Fig. S10 ³¹P {¹H} NMR spectrum of 1 in CD_2Cl_2 at 293 K.

3. Crystal Structure determination

Table S15. Crystallographic data for 1BG and 1OR.

	1BG	10R	1YL
formula	$C_{188}H_{232}Au_2Cl_2OP_8$	C ₉₉ H ₁₂₇ Au ClO ₂ P ₄	$C_{187}H_{230}Au_2C_{18}O_5P_8$
formula weight	3220.35	1705.31	3483.02
cryst syst	monoclinic	monoclinic	triclinic
space group	C2/c	$P2_1/n$	Р
<i>a</i> / Å	44.658(6)	15.4826(19)	15.891(2)
b / Å	17.592(2)	21.679(3)	17.780(3)
<i>c</i> / Å	31.006(5)	27.598(3)	19.707(3)
α / \deg	90	90	100.322(2)
β / deg	133.755(3)	90.093(2)	106.859(2)
γ/\deg	90	90	111.240(2)
$V/\text{\AA}^3$	17594(4)	9263.4(19)	4707.9(12)
Ζ	4	4	1
d_{calcd} / g cm ⁻³	1.216	1.223	1.229
T/K	90(2)	90(2)	90(2)
radiation	Μο Κα	Μο Κα	Μο Κα
	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 0.71073 \text{ Å})$
μ / cm ⁻¹	1.818	1.730	1.788
diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD	Bruker APEX-II CCD
max 20 / deg	50	50	50
reflns collcd	42008	44032	22535
indep reflns	15560	16370	16621
	(Rint = 0.0182)	(Rint = 0.0167)	(Rint = 0.0240)
no. of param refined	960	1073	1096
$R1,^{[a]} wR2 (I > 2\sigma I)^{[b]}$	0.0307, 0.0755	0.0473, 0.1061	0.0631, 0.1443
S	1.064	1.019	1.035

[a] $RI = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$. [b] $wR2 = [\Sigma w(|Fo| - |Fc|)^2 / \Sigma w |Fo|^2]^{1/2}$

	1BG	10R	1YL
Au1–P1	2.3683(15)	2.3602(12)	2.3751(18)
Au1–P2	2.4025(10)	2.3983(12)	2.3785(16)
Au1–P3	2.4352(12)	2.3719(12)	2.4219(16)
Au1–P4	2.3957(13)	2.4114(12)	2.3736(17)
P1–Au1–P2	86.47(4)	86.58(4)	87.39(6)
P3-Au1-P4	80.66(4)	85.10(4)	82.83(5)

Table S16 Selected bond distances (Å) and angles (°) for 1BG, 1OR and 1YL.

4. Thermogravimetric Analyses

Fig. S11 (A) TGA data for **1BG**, **1OR**, and **1YL** under argon atmosphere with a heating rate of 15 °C min⁻¹ for **1BG** and 20 °C min⁻¹ for **1OR** and **1YL** and (B) luminescence images before (left) and after (right) TGA analyses.

5. Photophysical data

Fig. S4 Temperature-dependent change of (A) corrected emission spectra and (B) emission lifetime for $[Au(L)_2]Cl; \lambda_{exc} = 355 \text{ nm}.$ Inset: Luminescence image of $[Au(L)_2]Cl$ at 293 and 77 K; $\lambda_{exc} = 355 \text{ nm}.$

Fig. S5 Temperature-dependent change of (A) corrected emission spectra and (B) emission lifetime for **1BG**; $\lambda_{exc} = 355$ nm. Inset: Luminescence image of **1BG** at 293 and 77 K; $\lambda_{exc} = 355$ nm.

Fig. S6 Temperature-dependent change of (A) corrected emission spectra and (B) emission lifetime for **10R**; $\lambda_{exc} = 355$ nm. Inset: Luminescence image of **10R** at 293 and 77 K; $\lambda_{exc} = 355$ nm.

6. Theoretical Studies

Fig. S1 The optimized S_0 geometry of $[Au(L)_2]^+$ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Fig. S2 The optimized S_0 geometry of 1^+ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

Fig. S3 The optimized T_1 geometry of 1^+ in CH_2Cl_2 and the dihedral angle between two planes, P1-Au-P2 and P3-Au-P4.

states	λ _{cal} /	f		NTO	pairs	Generation	Percentage
	nm(eV)				Isovalue = 0.035	probability	composition
			Hole	E	Electron	(%)	(%)
S ₁	374 (3.320)	0.041	L2 <		L2	100	$σ→π^*: 52$ $ππ^*: 32$ MC+LMCT: 2 Other: 14
S ₅	330 (3.753)	0.139	L2 C			98	$σ→π^*: 41$ ππ*: 34 MC+LMCT: 11 Other: 14
S ₆	326 (3.804)	0.141	L2			93	σ→π*: 42 ππ*: 31 MC+LMCT: 13 Other: 4
S ₁₃	300 (4.139)	0.102	L2		L1 L2	71	$σ→π^*: 39$ $ππ^*: 29$ MC+LMCT: 13 Other: 7
S ₁₈	289 (4.287)	0.133	L2			95	$σ→π^*: 50$ ππ*: 28 MC+LMCT: 12 Other: 10

Table S1 NTO analysis for selected transitions of $[(L)_2Au]^+$

Table S2 Composition of hole and electron for the $S_0 \rightarrow S_1$ of $[Au(L)_2]^+$ in CH_2Cl_2 .^{*a*}

percentage composition (%) ^b				
	hole	electron	Difference	
Au	29	2	27	
P (L1)	13	1	12	
P (L2)	27	10	17	
phenylene unit (L1)	2	1	1	
phenylene unit (L2)	2	57	-55	
phenyl groups (L1)	6	0	6	
phenyl groups (L2)	22	29	-7	

Table S3 Composition of hole and electron for the $S_0 \rightarrow S_5$ of $[Au(L)_2]^+$ in $CH_2Cl_2.^a$

percentage composition (%) ^b					
	hole	electron	Difference		
Au	30	11	19		
P (L1)	19	12	7		
P (L2)	20	2	18		
phenylene unit (L1)	3	18	-5		
phenylene unit (L2)	2	1	1		
phenyl groups (L1)	12	48	-36		
phenyl groups (L2)	17	8	9		

 a The optimized S₀ geometry was obtained by DFT. b The atomic component was evaluated by the Mulliken analysis.

Table S4 Composition of hole and electron for the $S_0 \rightarrow S_6$ of $[Au(L)_2]^+$ in CH_2Cl_2 .^{*a*}

percentage composition (%) ^b				
	hole	Electron	Difference	
Au	29	13	20	
P (L1)	18	5	9	
P (L2)	22	3	14	
phenylene unit (L1)	2	8	-4	
phenylene unit (L2)	2	11	-8	
phenyl groups (L1)	9	7	3	
phenyl groups (L2)	18	53	-33	

Table S5 Composition of hole and electron for the $S_0 \rightarrow S_{13}$ of $[Au(L)_2]^+$ in CH_2Cl_2 .^{*a*}

percentage composition (%) ^b				
	hole	Electron	Difference	
Au	27	16	11	
P (L1)	24	-2	26	
P (L2)	9	10	-1	
phenylene unit (L1)	4	3	1	
phenylene unit (L2)	2	36	-34	
phenyl groups (L1)	23	19	4	
phenyl groups (L2)	10	17	-7	

 a The optimized S₀ geometry was obtained by DFT. b The17atomic component was evaluated by the Mulliken analysis.

Table S6 Composition of hole and electron for the $S_0 \rightarrow S_{18}$ of $[Au(L)_2]^+$ in CH_2Cl_2 .^{*a*}

percentage composition (%) ^b					
	hole	Electron	Difference		
Au	28	12	12		
P (L1)	18	8	10		
P (L2)	15	2	13		
phenylene unit (L1)	3	6	-3		
phenylene unit (L2)	2	1	1		
phenyl groups (L1)	20	51	-31		
phenyl groups (L2)	14	10	4		

states	λ _{cal} /	f		NTO	pairs	Generation	Percentage
	nm(eV)				Isovalue = 0.035	probability	composition
			Hole		Electron	(%)	(%)
S ₁	377 (3.293)	0.067	L2		L2 L2	100	$σ→π^*: 53$ $ππ^*: 32$ MC+LMCT: 2 Other: 13
S ₅	356 (3.694)	0.195	L1 L2			99	$σ→π^*: 41$ ππ*: 34 MC+LMCT: 12 Other: 13
S ₆	330 (3.757)	0.220		sore sore	L1 L2	97	$σ→π^*: 44$ ππ*: 36 MC+LMCT: 9 Other: 11
S ₁₁	309 (4.012)	0.069	L1 L2	ser.		85	$\sigma \rightarrow \pi^*: 42$ $\pi \pi^*: 33$ MC+LMCT: 12 Other: 13
S ₁₇	293 (4.239)	0.232	L1 L2		L1 L2	91	$σ→π^*: 34$ $ππ^*: 39$ MC+LMCT: 12 Other: 15
S ₄₀	255 (4.867)	0.190	L1 L2	s sere	L1 L2	74	ππ*: 89% Other: 11%

Table S7 NTO analysis for selected transitions of $[(L_{tBu})_2Au]^+\,1^+$

Table S8 Composition of hole and electron for the $S_0 \rightarrow S_1$ of 1^+ in $CH_2Cl_{2.a}$

percentage composition (%) ^b				
	hole	electron	Difference	
Au	28	2	26	
P (L1)	11	0	11	
P (L2)	26	10	16	
phenylene unit (L1)	2	1	1	
phenylene unit (L2)	3	58	-55	
phenyl groups (L1)	7	1	6	
phenyl groups (L2)	22	19	3	

 a The optimized S₀ geometry was obtained by DFT. b The atomic component was evaluated by the Mulliken analysis.

Table S9 Composition of hole and electron for the $S_0 \rightarrow S_5$ of 1^+ in CH_2Cl_2 .^{*a*}

percentage composition (%) ^b				
	hole	electron	Difference	
Au	29	12	17	
P (L1)	17	10	7	
P (L2)	20	3	17	
phenylene unit (L1)	3	6	-3	
phenylene unit (L2)	2	4	-2	
phenyl groups (L1)	12	56	-44	
phenyl groups (L2)	17	9	8	

 a The optimized S₀ geometry was obtained by DFT. b The atomic component was evaluated by the Mulliken analysis.

Table STO Composition of note and electron for the $S_0 \rightarrow S_6$ of Γ in CH_2CI	$l_2.a$
---	---------

	percentage composition	on (%) ^b	
	hole	electron	Difference
Au	29	9	20
P (L1)	15	6	9
P (L2)	21	7	14
phenylene unit (L1)	3	7	-4
phenylene unit (L2)	2	10	-8
phenyl groups (L1)	11	8	3
phenyl groups (L2)	20	53	-33

Table S11 Composition	of hole and	lelectron	for the S ₀ –	\rightarrow S ₁₁ of	1 + in	CH ₂ Cl ₂ . ^a
-----------------------	-------------	-----------	--------------------------	----------------------------------	---------------	--

	percentage composition	on (%) ^b	
	hole	electron	Difference
Au	29	12	17
P (L1)	19	9	10
P (L2)	18	3	15
phenylene unit (L1)	3	4	-1
phenylene unit (L2)	2	1	1
phenyl groups (L1)	13	77	-64
phenyl groups (L2)	16	8	8

 a The optimized S₀ geometry was obtained by DFT. b The atomic component was evaluated by the Mulliken analysis.

	percentage composition	on (%) ^b	
	hole	electron	Difference
Au	27	12	15
P (L1)	18	9	9
P (L2)	14	4	10
phenylene unit (L1)	4	6	-2
phenylene unit (L2)	2	9	-7
phenyl groups (L1)	19	51	-32
phenyl groups (L2)	16	9	7

Table S12 Composition of hole and electron for the $S_0 \rightarrow S_{17}$ of 1^+ in $CH_2Cl_{2.a}$

 a The optimized S₀ geometry was obtained by DFT. b The atomic component was evaluated by the Mulliken analysis.

Table S13 NTO analysis for selected transitions of 1^+

states	λ _{cal} /	f		NTO	pairs	Generation	Percentage
	nm(eV)				Isovalue = 0.035	probability	composition
			Hole		Electron	(%)	(%)
T ₁	852 (1.460)	0.000	L1	L2	L1 L2	100	MC+LMCT: 53 (MC \leq 25) $\sigma \rightarrow \pi^*$: 12 $\pi \pi^*$: 27 Others: 8

	percentage composition	on (%) ^b	
	hole	Electron	Difference
Au	25	46	-21
P (L1)	24	8	16
P (L2)	24	12	13
phenylene unit (L1)	2	5	-3
phenylene unit (L2)	2	4	-2
phenyl groups (L1)	11	15	-4
phenyl groups (L2)	12	9	-3

Table S14 Composition of hole and electron for the optimized T_1 of 1^+ in CH_2Cl_2 .^{*a*}

^{*a*} The optimized T₁ geometry was obtained by TD-DFT. ^{*b*} The atomic component was evaluated by the Mulliken analysis.

	\Box S ₁ / nm (eV) ^{<i>a</i>}	T ₁ / nm (eV) ^a	$\Delta E(S_1-T_1) / cm^{-1} (eV)$	HOMO-(HOMO-1) / eV	HOMO / eV	(HOMO-1) / eV	LUMO / eV
[Au(L) ₂]0	CI 349(3.55)	367(3.38)	1371(0.17)	0.06	-7.58959	-7.65000	-3.34800
1B(G 361(3.45)	377(3.29)	1130(0.14)	0.39	-7.05814	-7.45162	-2.95931
10	R 394(3.15)	410(3.03)	968(0.12)	0.73	-6.79147	-7.52101	-2.99495
10F	R ^b 394(3.15)	410(3.03)	956(0.12)	0.73	-6.81035	-7.54942	-3.02978
1Y	L 369(3.36)	384(3.23)	1080(0.13)	0.42	-7.02794	-7.34087	-2.97338

 Table S17 Results of vertical excited state calculations using atomic coordinates extracted from X-ray crystallographic data.

^a Vertical (Franck-Condon) excited states. ^b Calculation results including crystallization solvents (THF and *n*-hexane).

Table S18 Geometry data of $[Au(L)_2]^+$ for the optimized S₀ state in CH₂Cl₂ Au -0.078704 -0.126130 -0.110725 P -0.075565 0.052358 2.967185 P 2.150280 -0.038701 0.400337 Cl -2.298020 -0.199193 -0.907157 C 2.513045 -0.753231 2.058036 C 1.331383 2.051973 4.412936 С 3.924919 -2.867228 -2.027642 3.856816 3.447093 1.727810 С 3.406436 2.137195 1.608937 С 1.590956 -0.730820 3.131532 С C 3.037254 -2.279109 -1.119054 С 3.760967 -1.368110 2.235150 С 0.194305 1.744399 3.650824 С -0.755214 2.755364 3.383509 5.024226 -2.184901 -2.535853 С С 2.768209 1.691337 0.443274 С 3.277152 -0.940724 -0.738419 С -2.032759 2.499770 2.604549 С 1.930595 2.192986 -1.957645 С 4.398200 -0.263556 -1.240187 С 0.910505 -3.501062 -1.692518 С 1.956033 -1.357805 4.331469 0.601886 2.931553 -2.146057 С С 1.892815 -3.119161 -0.581762 С 2.856723 2.431453 -3.154793 С -0.516100 4.039085 3.889032 С -2.137275 3.399363 1.370930 С 0.617434 4.335015 4.637101 С 4.105096 -1.971218 3.440083 С -1.570310 -2.074875 4.080097 C -1.049188 -0.780185 4.297375 3.671382 4.330190 0.670143 С С 3.194057 -1.972104 4.491117 С 2.410583 -4.358994 0.154408 С 5.270324 -0.876496 -2.132711 С 3.047030 3.891892 -0.492231 С 1.548007 3.334540 4.903736 С 2.586214 2.579180 -0.642357 -3.267934 2.643615 3.499547 С С -1.295451 -2.873818 2.818753 С -1.351692 -0.108704 5.491690 С -2.152001 -0.693899 6.467646 С -2.367430 -2.645416 5.078933 С -2.661582 -1.972046 6.259503 -0.503964 -4.148455 3.126178 С С -2.588389 -3.193452 2.063827 Н 2.057858 1.274351 4.630334 3.752033 -3.893710 -2.340780 Н 4.342508 3.770811 2.643657 Η 3.551813 1.453473 2.438307 Η H 4.471731 -1.383725 1.414210 H 5.690142 -2.678337 -3.238448

Н -2.008421 1.463508 2.244043 Н 1.705268 1.119556 -1.935170 Н 4.592597 0.757700 -0.927956 Н 0.504736 -2.610595 -2.184928 H 0.071563 -4.070426 -1.276491 Н 1.393470 -4.122946 -2.455258 H 1251994 -13600175158821 Н 0.756063 4.015616 -2.200414 Н -0.087569 2.725981 -1.320229 H 0.118988 2.611687 -3TGA.076243 H 1.335344 -2.521820 0.150300 H 2.369611 2.088246 -4.074319 H 3.801250 1.888169 -3.049204 Н 3.088279 3.495296 -3.280415 Н -1.240382 4.826200 3.693338 Н -2.222232 4.456837 1.648545 Н -3.024426 3.134779 0.784666 Н -1.258793 3.288742 0.726241 Н 0.770793 5.342960 5.013595 H 5.077268 -2.443038 3.549581 H 4.013552 5.358703 0.745675 H 3.444535 -2.445176 5.436571 H 2.954799 -5.029868 -0.520138 H 1.571435 -4.922971 0.576482 H 3.082690 -4.083596 0.974337 H 6.131731 -0.332004 -2.508759 H 2.913958 4.591361 -1.313488 H 2.436489 3.548162 5.491950 Н -3.215448 1.968948 4.361067 Н -4.175527 2.403924 2.933757 Н -3.368509 3.668586 3.876653 Н -0.679568 -2.258233 2.149449 Н -0.953987 0.887732 5.659884 Н -2.371522 -0.153346 7.384474 H -2.771681 -3.643346 4.925935 Н -3.287447 -2.444377 7.012035 H 0.446324 -3.918498 3.620379 Н -0.285030 -4.692089 2.199916 Н -1.071383 -4.821477 3.779856 Н -3.251049 -3.834318 2.657395 Н -2.361982 -3.720660 1.129906 H -3.134355 -2.278332 1.811940 Table S19 Geometry data of 1⁺ for the optimized S₀ state in CH₂Cl₂ Au 0.270929 -0.126094 0.290424 I -0.187192 -0.243471 2.889341 P 1.053110 -0.021096 -1.889437 P -2.279445 0.077316 -1.308690

- C 0.311613 -1.307082 -4.245061
- C -2.415237 -1.295810 -3.773840
- C -4.023744 -2.057193 -0.656738
- C 3.613649 -0.262344 -2.976821
- C -5.103018 -0.037999 -1.471234

C -3.928575 -0.742246 -1.164342 C -1.917379 -1.892853 -4.927701 C -1.570743 -0.687077 -2.834632 C -2.820023 2.090186 -3.232773 C -0.176292 -0.708406 -3.074593 C 2.986952 2.154058 -0.447494 C 4.822913 -0.883038 -3.268403 -2.715070 1.781295 -1.867738 С C -0.547324 -1.892818 -5.168755 C -5.297326 -2.612238 -0.487778 C 5.035213 -2.192408 -2.849126 C 1.358114 1.713231 -2.413775 C -6.358333 -0.608949 -1.288392 C -2.942845 2.793029 -0.908790 2.204191 2.576224 -1.679596 C 0.693455 2.191061 -3.551801 С -2.809946 -2.896843 -0.301244 С С 2.603821 -0.932381 -2.270351 C 2.800241 -2.271194 -1.867636 С 4.031699 -2.867357 -2.164047 4.494673 2.362137 -0.625062 С C 2.484457 2.885157 0.801022 С -6.455272 -1.906045 -0.794222 1.748527 -3.104600 -1.158471 С C 1.370579 -4.340119 -1.981641 C 0.838491 3.508777 -3.970721 C 2.200527 -3.491700 0.252187 C -2.806848 -3.283246 1.179997 C 2.329788 3.896915 -2.124780 С -3.137797 3.373095 -3.662884 С -3.266403 4.076809 -1.366636 C -3.362801 4.373206 -2.720833 C -1.909093 3.488427 1.288244 C 1.660467 4.367151 -3.249037 С -2.708935 -4.136344 -1.195603 C -4.283431 2.634886 1.215036 С -2.888292 2.543721 0.587634 Н 1.381229 -1.322998 -4.432443 Н -3.486773 -1.297962 -3.594599 H 3.451808 0.759985 -3.303984 Н -5.033909 0.973458 -1.860030 Н -2.600965 -2.352532 -5.636078 H -2.654029 1.312781 -3.972755 H 2.827305 1.081455 -0.281395 5.590409 -0.343893 -3.816346 Н Н -0.143501 -2.351943 -6.066484 Н -5.384056 -3.625468 -0.102488 Н 5.976647 -2.691903 -3.060806 Н -7.252252 -0.042050 -1.534254 H 0.048655 1.526690 -4.117271 Н -1.910110 -2.291782 -0.475207 H 4.205650 -3.894409 -1.853335 H 4.877503 1.821263 -1.496384 H 5.026360 1.996927 0.260714

Н 4.743349 3.422695 -0.746438 H 2.635964 3.967521 0.714142 Н 3.027302 2.538027 1.687312 Н 1.417736 2.701081 0.966949 Н -7.427827 -2.367956 -0.646427 Н 0.838817 -2.500747 -1.050760 H 1 007504 -4 060017 -2 976468 Н 0.577782 -4.901148 -1.474507 H 2.224410 -5.015358 -2.109418 Н 0.307549 3.857530 -4.851645 Н 3.100767 -4.116690 0.224792 H 1.412417 -4.059241 0.759952 H 2.418747 -2.603141 0.854545 Н -2.828923 -2.394962 1.819896 Н -1.899772 -3.849274 1.421728 Н -3.669846 -3.910807 1.431993 Н 2.973585 4.577060 -1.573072 Н -3.212433 3.586856 -4.725758 Н -3.450466 4.864429 -0.640083 Н -3.615184 5.381435 -3.038646 H -0.911216 3.426866 0.840613 Н -1.821766 3.221786 2.347216 H -2.241628 4.531776 1.232234 Н 1.784336 5.400977 -3.559669 Н -3.571667 -4.798396 -1.055816 Н -1.807671 -4.709501 -0.949825 Н -2.660939 -3.861962 -2.255008 H -4.700659 3.643609 1.107586 Н -4.233035 2.404137 2.285303 Н -4.978224 1.929103 0.746882 Н -2.519735 1.522741 0.750883

Table S20 Geometry data of $\mathbf{1}^+$ for the optimized T_1 state in CH₂Cl₂

Au -0.042222 -0.009961 0.155439 P -0.080756 2.517752 0.064097 P -2.595207 0.353502 0.050322 P 2.464768 -0.453964 0.606597 P 0.243643 -2.114686 -1.205918 C 0.125660 3.261776 -1.611463 C 1.062947 3.445913 1.150345 C 0.496050 -1.873859 -3.008193 С -3.428319 -0.628741 1.365641 -0.560763 -1.368205 -3.785542 С 2.028265 -4.274226 -0.951031 С С 2.298120 3.901704 0.668500 С -2.718030 -0.912916 2.544868 C 5.165765 0.566843 0.624835 C -0.389143 -1.112327 -5.146625 C -3.644473 0.186583 -1.442068 C 2.313745 -1.587995 3.187054 C -1.632617 -3.610419 0.209667 C 2.648234 -0.450460 2.430329 C 3.946551 0.423407 -0.059546 C 0.769167 3.643477 2.511320

C -1.771321 3.031732 0.597862 C 1.737390 -2.076632 -3.637132 С -2.443942 -5.185520 -1.925547 С -1.472436 -4.205669 -2.119425 С 1.784922 -2.931697 -0.618441 С -4.761986 -1.050317 1.281918 С 3.217288 -4.898994 -0.569293 C -3.946152 1.294965 -2.260362 С -4.113225 2.519282 0.988321 C 2.703474 -0.385084 5.281307 C -4.967047 -0.144821 -3.959790 C 2.894645 4.806595 2.860561 C 3.936994 -2.854933 0.498971 C 1.896331 -1.811237 -4.995776 C -1.053728 -3.398945 -1.048953 C -3.994845 -1.090699 -1.922912 C -5.358704 -1.747151 2.336458 C 0.323813 4.323929 -4.247953 C 0.840375 -1.329370 -5.790190 C 3.018629 0.746620 4.515985 C 0.189067 4.646308 -1.827921 C -2.024523 4.359411 0.979172 C 1.664300 4.317365 3.338170 C 3.841912 0.970972 -1.345619 C 2.348490 -1.551411 4.578152 C -4.593958 1.126161 -3.479950 С -4.658542 -2.042162 3.515488 -3.034022 -5.409068 -0.668083 С -2.831134 2.102256 0.592379 C C 3.192601 4.568118 1.510618 C -4.648373 -1.244178 -3.146919 C 6.236460 1.227948 0.027656 C -4.352303 3.842156 1.363785 C -3.323540 -1.602242 3.591854 C 4.176167 -4.185425 0.150074 C -3.306643 4.764697 1.356563 C 2.988814 0.722207 3.118730 C 2.741791 -2.216697 0.128154 C -2.600762 -4.599391 0.393563 C -5.687343 -0.278973 -5.311632 C 0.168386 2.414473 -2.728651 C 0.284913 5.161750 -3.121583 C 6.147399 1.771634 -1.267679 0.431888 4.863657 -5.684579 С С -6.010982 -1.744360 -5.659917 С 4.924595 1.624234 -1.939010 С 1.052628 -1.089170 -7.294660 С 0.265836 2.938525 -4.016962 C -7.017207 0.512449 -5.264991 С -4.103766 -6.501954 -0.502532 С -5.288759 -2.801808 4.695363 C 1.320833 -0.741770 7.354726 C 2.730277 -0.391187 6.819150 C 5.136398 6.015386 3.098581 C 3.836015 5.579621 3.800426 C 7.358268 2.493348 -1.883576 C -4.790232 0.298164 -6.433391

C -6.749348 -3.206456 4.419163 C 3.142824 0.973014 7.403970 C 8.551140 1.510191 -1.966698 C 7.746987 3.696573 -0.990586 C 3.109872 6.848791 4.309616 C 4.214338 4.689449 5.008155 C -0.775815 4.363699 -6.513638 C 0.444580 6.403555 -5.733819 C 7.067593 3.019762 -3.301944 C -3.493467 -7.874473 -0.877033 C 3.743560 -1.453821 7.309637 C -4.635400 -6.587495 0.941037 C 1.743291 4.347872 -6.324765 C -5.297017 -6.198511 -1.440665 C -4.474084 -4.088668 4.971847 C -0.190929 -0.482240 -7.972001 C -5.264839 -1.900740 5.953941 C 2.240452C 1.368240 -2.442486 -7.577H -1.532039 -1.180017 -3.335639H 1.287187 -4.833107 -1.514246H 2.572584 3.748208 -0.370183H -1.680341 -0.596684 2.634245H 5.285695 0.166870 1.626852H -1.240437 -0.738120 -5.704189H 2.027711 -2.510577 2.691624H -1.337041 -2.990814 1.051954H -0.167895 3.286889 2.928341H 2.583886 -2.453580 -3.072601H -2.741702 -5.788378 -2.778498H -1.044952 -4.070540 -3.107785H -5.348073 -0.843590 0.392384H 3.391217 -5.937174 -0.83644H -3.683080 2.298310 -1.93939H -4.929732 1.804075 1.00560H 4.684743 -2.313523 1.06987H 2.868642 -1.998367 -5.4422'H -3.763059 -1.977783 -1.34058H -6.391641 -2.055939 2.22210'H 3.293178 1.675729 5.001H 0.170265 5.337662 -0.99H -1.216210 5.082788 0.9955H 1.388250 4.467577 4.377H 2.904385 0.893759 -1.85H 2.092088 -2.455981 5.121H -4.817914 2.012530 -4.06H 4.130002 4.910546 1.05H 4.130002 4.910546 1.05H -4.908149 -2.249376 -3.46(H 7.162677 1.315598 0.5C 2.240452 -0.121570 -7.510999 Н -5.350930 4.145774 1.664244 Н -2.738052 -1.798485 4.485686 Н 5.106093 -4.661439 0.447148 Н -3.480723 5.795737 1.650105 Н 3.230488 1.629974 2.574378 Н -3.022791 -4.721535 1.384305 Н 0.120993 1.337065 -2.593645 Н 0.329740 6.238475 -3.239193

Н	-5.104405 -2.355480 -5.737659
Н	-6.672115 -2.204343 -4.916616
Н	-6.522170 -1.786659 -6.628074
Н	4.795487 2.026924 -2.937176
Н	0.296250 2.243724 -4.851012
Н	-6.852105 1.576036 -5.062954
Н	-7.539154 0.432271 -6.226130
Н	-7.679576 0.119779 -4.484787
Н	0.582285 0.000323 7.029578
Н	0.985317 -1.725364 7.009519
н	1 327089 -0 757255 8 451139
н	4 940599 6 686036 2 254272
н	5 771436 6 556073 3 808861
н	5 709130 5 156578 2 730119
н	4 552301 1 353533 6 263834
п п	2 845252 0 252082 6 502547
п п	5 208708 0 221722 7 402047
п п	6 821040 2 860400 2 550207
п	-0.851940 -5.809499 5.550297
п	-7.149751 -5.745011 5.285118
п	-7.390094 -2.334057 4.247495
н	4.148676 1.267593 7.083585
Н	2.444688 1./68243 /.118548
H	3.148337 0.915228 8.498030
Н	8.306904 0.650057 -2.600774
H	9.424502 2.013463 -2.398235
Н	8.838453 1.131260 -0.980320
Н	8.011777 3.383689 0.024851
Н	8.613131 4.217190 -1.416084
Н	6.921433 4.414371 -0.918585
Н	2.195726 6.602093 4.859794
Н	3.764809 7.412668 4.984455
Н	2.835778 7.504927 3.475428
Η	3.333185 4.372819 5.576234
Н	4.749232 3.790512 4.679913
Н	4.869697 5.241434 5.692218
Н	-1.719996 4.718616 -6.084632
Η	-0.707184 4.739134 -7.541435
Η	-0.816580 3.270312 -6.560737
Η	1.302071 6.823436 -5.195802
Н	0.515179 6.734721 -6.775661
Η	-0.470872 6.832977 -5.311110
Н	6.812128 2.209457 -3.994218
Н	6.248429 3.747906 -3.307980
Н	7.958471 3.521753 -3.694998
Н	-3.135728 -7.893809 -1.911844
Н	-2.648898 -8.119961 -0.222854
Н	-4.247260 -8.663403 -0.769450
Н	4.754409 -1.226496 6.951649
Н	3.767840 -1.473524 8.405732
Н	3.481648 -2.459267 6.963786
Н	-3.841245 -6.833302 1.655241
Н	-5.106063 -5.650004 1.259107
Н	-5.392805 -7.376380 1.005227
Н	2.617862 4.694995 -5.762476
Н	1.777219 3.253731 -6.359219
Н	1.831623 4.717675 -7.353155
Н	-4.993477 -6.168885 -2.492370

Η	-6.064121 -6.975031 -1.336902	
Н	-5.754945 -5.233695 -1.193327	
Н	-4.484374 -4.754280 4.100605	
Н	-3.429688 -3.867332 5.215511	
Н	-4.906266 -4.633634 5.819572	
Н	-0.461905 0.485915 -7.534472	
Н	0.014586 -0.319313 -9.035660	
Н	-1.060724 -1.145326 -7.902873	
Н	-5.841292 -0.982921 5.790079	
Н	-5.705990 -2.431739 6.805910	
Н	-4.245159 -1.613578 6.231157	
Н	2.047362 0.849861 -7.041032	
Н	3.173943 -0.516237 -7.097001	
Н	2.397662 0.046507 -8.582958	
Н	0.538489 -3.147720 -7.852890	
Н	2.270003 -2.905077 -7.562916	
Н	1.530441 -2.295271 -9.052576	

References

- M. Hoshino, H. Sonoki, Y. Miyazaki, Y. Iimura and K. Yamamoto, *Inorg. Chem.*, 2000, 39, 4850-4857.
- M. Osawa, I. Kawata, S. Igawa, M. Hoshino, T. Fukunaga and D. Hashizume, *Chem. Eur. J.*, 2010, 12114-12126.
- 3. G. M. Sheldrick Acra cryst., 2008, A64, 112-122.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. *J. Appl. Cryst.* 2009, 42, 339- 341.
- (a) C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170; (b) J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982-9985.
- (a) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283; (b) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
- (a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041; (b) B. Mennucci, E. Cances and J. Tomasi, J. Phys. Chem. B, 1997, 101, 10506-10517.
- 8. S. Miertus, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, 55, 117-129.
- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (a) R. L. Martin, J. Chem. Phys., 2003, 118, 4775-4777; (b) E. R. Batista and R. L.; Martin, J. Phys. Chem. A, 2005, 109, 3128-3133; (c) E. R. Batista and R. L. Martin, J. Phys. Chem. A, 2005, 109, 9856-9859; (d) L.E. Roy, G. Scalmani, R. Kobayashi and E.R. Batista, Dalton Trans., 2009, 6719-6721.