TETRAHEDRAL NICKEL(II) AND COBALT(II) BIS-O-IMINOBENZOSEMIQUINONATES

Irina V. Ershova, Ivan V. Smolyaninov, Artem S. Bogomyakov, Matvey V. Fedin, Andrey G. Starikov, Anton V. Cherkasov, Georgy K. Fukin, and Alexandr V. Piskunov*

Table of contents

Table S1. Coordination geometry and electronic structure of four coordinate nickel and cobalt bis-ligand with different redox active ligands	complexes !
Table S2. Crystallographic data and structure refinement details for 1 and 2	3
Figure S1. Molecular structure and fragment of crystal packing of 2	4
Figure S2. Temperature-dependent EPR spectra of 2 at X-band (left) and Q-band (right) ($v_{mw} \approx 9.75$ and 3 respectively). All spectra are normalized, the values of temperature are indicated	3.33 GHz, 5
Figure S3. Temperature-dependent EPR spectra of 2 at X-band (top) and Q-band (bottom) ($v_{mw} \approx 9.75$ GHz, respectively). All spectra are normalized, the values of temperature are indicated in the legend	and 33.33 6
Table S3. Spin state (S), total energies (E_{total}), expectation values of the spin-squared operator (S^2) and	exchange

Table S3. Spin state (S), total energies (E_{total}), expectation values of the spin-squared operator (S^2) and exchangespin coupling parameters (J)in the electromers of the complexes 1 and 2 calculated by the DFT UB3LYP/6-311++G(d,p) method7

Figure S4. Optimized geometries of complex **1** and model complexes with N-*iso*-propyl substituents, calculated by the DFT UB3LYP/6-31G(d,p) method. Hydrogen atoms are omitted for clarity. The bond lengths are given in angstroms (Å) **8**

Table S4. The τ_4 , τ_4' parameters of four coordinate nickel and cobalt bis-ligand complexes with different redox activeligands9

References

13

Table S1. Coordination geometry and electronic structure of four coordinate nickel and cobalt bis-ligand complexes with different redox active ligands				
Ligand type	Coordination geometry	Electronic structure	Ref.	
o-diiminobenzoquinone	R N N N N N N N N N N N N N N N N N N N	$M = Ni^{II} (I.s.)$ $\uparrow \qquad \forall \qquad (S_t = 0)$ disq-Ni-disq $M = Co^{II} (I.s.) \text{ vs } Co^{III} (i.s.)$ $\uparrow \qquad \uparrow \qquad \forall \qquad \uparrow \uparrow$ disq-Co-disq $G_t = 1/2)$	1-4	
$\begin{array}{c c} R' \leftarrow NR & R' \leftarrow N \\ R' \leftarrow NR & R' \leftarrow N \\ R' \leftarrow NR & R' \leftarrow N \\ Ar \\ Ar \\ 1 & 2 & 3 \\ 4 \\ 1 & 0 - diiminobenzoquinone \\ 2 & 1,4 - diaza - 1,3 - butadiene \\ 3 & bis(arylimino)acenaphthene \\ 4 & \alpha - iminopyridine \\ \end{array}$	R R $(L^{-})_{2}M$ $(L = disq, DAD, BIAN, IP)$ From ideal to strongly distorted tetrahedron	$M = Ni^{\parallel} (h.s.)$ $\downarrow \uparrow \uparrow \downarrow \qquad (S_t = 0)$ $L^ Ni - L^-$ $M = Co^{\parallel} (h.s.)$ $\downarrow \uparrow \uparrow \uparrow \downarrow \qquad (S_t = 1/2)$ $L^ Co - L^-$	7-20 7, 8, 10, 11, 20, 21	
R o-benzoquinone	(SQ) ₂ M	$M = Ni^{ii} (l.s.)$ $\downarrow \qquad (S_t = 0)$ SQ-Ni-SQ	22, 23	
<i>t</i> -Bu <i>t</i> -Bu <i>R</i> <i>N</i> -Ar- <i>o</i> -iminobenzoquinone	Ar Ar (imSQ) ₂ M Square planar	$M = Ni^{II} (I.s.)$ $\uparrow \qquad \forall \qquad (S_t = 0)$ $IM = Co^{II} (I.s.) vs Co^{III} (i.s.)$ $\uparrow \qquad \downarrow \qquad \downarrow \qquad \uparrow \uparrow$ $IMSQ-Co-ImSQ \qquad IMSQ-Co-AP$ $(S_t = 1/2)$	6, 24-29 30-33	
<i>t</i> -Bu <i>t</i> -Bu <i>t</i> -Bu <i>t</i> -Bu <i>t</i> -Bu	t-Bu N t-Bu t-Bu (imSQ)₂M Distorted tetrahedron	$M = Ni^{\parallel} (h.s.)$ $\downarrow \uparrow \uparrow \downarrow (S_t = 0)$ $imSQ-Ni-imSQ$ $M = Co^{\parallel} (h.s.)$ $\downarrow \uparrow \uparrow \uparrow \downarrow (S_t = 1/2)$ $imSQ-Co-imSQ$	This work	

Table S2. Crystallographic data and structure refinement details for 1 and 2

Compound	1	2
Empirical formula	$C_{36}H_{58}NiN_2O_2$	$C_{36}H_{58}CoN_2O_2$
Formula weight	609.55	609.77
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
Unit cell dimensions		
a [Å]	10.7752(6)	10.806(3)
b [Å]	11.5077(6)	11.558(3)
<i>c</i> [Å]	15.6525(13)	15.589(3)
<i>α</i> [°]	79.537(6)	79.570(4)
β [°]	76.217(7)	76.133(5)
γ[°]	72.440(5)	72.544(5)
V [Å ³]	1784.5(2)	1790.5(7)
Ζ	2	2
<i>d_{calc}</i> [g cm ⁻³]	1.134	1.131
μ [mm ⁻¹]	0.574	0.510
F ₀₀₀	664	662
Crystaldimensions [mm ³]	0.43 × 0.25 × 0.08	$0.80 \times 0.80 \times 0.05$
hetarange for data collection [°]	3.10-28.70	2.43-27.10
Reflections collected	11315	19410
Independent reflections (R _{int})	$11315(R_{int} = 0.1003)$	$7834(R_{int} = 0.0757)$
Completeness to $ heta$ [%]	99.8	99.5
Data/restraints/parameters	11315 / 0 / 389	7834 / 0 / 388
	$R_1 = 0.0741$	$R_1 = 0.0578$
Final Rindices $[I > 2\sigma(I)]$	$wR_2 = 0.1450$	$wR_2 = 0.1278$
Final R indices (all data)	$R_1 = 0.1080$	$R_1 = 0.0824$
	$wR_2 = 0.1573$	$wR_2 = 0.1393$
S(F ²)	1.031	1.014
Largest diff. peak and hole [e Å-3]	0.95 /-0.97	1.05 /-1.03

Figure S1. Molecular structure (left) and fragment of crystal packing of 2 (right). Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted.

Figure S2. Temperature-dependent EPR spectra of 2 at X-band (left) and Q-band (right) (v_{mw}≈9.75 and 33.33 GHz, respectively). All spectra are normalized, the values of temperature are indicated.

Figure S3. Temperature-dependent EPR spectra of 2 at X-band (top) and Q-band (bottom) ($v_{mw} \approx 9.75$ and 33.33 GHz, respectively). All spectra are normalized, the values of temperature are indicated in the legend.

Table S3. Spin state (S), total energies (E_{total}), expectation values of the spin-squared operator (S^2) and exchange spin coupling parameters (J) in the electromers of the complexes **1** and **2** calculated by the DFT UB3LYP/6-311++G(d,p) method

Electromer	S	E _{total} , a.u.	S ²	J _{SQ-SQ} , cm ⁻¹	J _{M-SQ} , cm ⁻¹
Co(imSQ)₂					
Single Point					
ααα	5/2	-3049.422395	8.779	33	-665
ααβ	3/2	-3049.431923	4.588		
αβα	1/2	-3049.441752	2.390		
Optimization					
ααα	5/2	-3050.012867	8.778	40	-484
ααβ	3/2	-3050.019638	4.633		
αβα	1/2	-3050.026772	2.473		
Ni(imSQ)₂					
Single Point					
ααα	4/2	-3174.946725	6.026	-64	-1018
ααβ	2/2	-3174.957366	2.793		
αβα	0	-3174.967419	1.567		
Optimization					
ααα	4/2	-3175.546763	6.025	-51	-496
ααβ	2/2	-3175.551873	2.860		
αβα	0	-3175.556512	1.711		
1	1	1	1	1	1

* α corresponds to spin-up, β corresponds to spin-down; the ordering of paramagnetic centers: 1 – SQ, 2 – M, 3 – SQ

Figure S4. Optimized geometries of complex 1 and model complexes with N-*iso*-propyl substituents, calculated by the DFT UB3LYP/6-311++G(d,p) method. Hydrogen atoms are omitted for clarity. The bond lengths are given in angstroms (Å).

		<i>o</i> -iminobenzoquinonatecobaltcomplexes (imSQ)Co ^{III} (AP), imSQ ₂ Co ^{II}				
imSQ =	t-Eu		t-Bu t-Bu CF ₃	t-Bu t-Bu i-Pr i-Pr	t-Bu t-Bu NO CPh	t-Bu t-Bu t-Bu
τ_4, τ_4'	()	0	0.04; 0.03	0	0.73; 0.70
Ref.	3	2	31	30	33	This work

Bis(<i>a</i> -imin	Bis(<i>a</i> -iminopyridine)metal complexes (IP) ₂ M			
IP =	<i>i</i> -Pr <i>i</i> -Pr <i>i</i> -Pr			
τ_4, τ_4'	M = Ni	M = Co		
	0.67; 0.66	0.71; 0.71		
Ref.	20	20		

References

- 1. A. L. Balch and R. H. Holm, J. Am. Chem. Soc., 1966, 88, 5201-5209.
- 2. D. Herebian, E. Bothe, F. Neese, T. Weyhermüller and K. Wieghardt, *J. Am. Chem. Soc.*, 2003, **125**, 9116-9128.
- H.-Y. Cheng, C.-C. Lin, B.-C. Tzeng and S.-M. Peng, *Journal of the Chinese Chemical Society*, 1994, 41, 775-781.
- 4. A. A. Sidorov, P. V. Danilov, S. E. Nefedov, M. A. Golubnichaya, I. G. Fomina, O. G. Ellert, V. M. Novotortsev and I. L. Eremenko, *Russ. J. Inorg. Chem.*, 1998, **43**, 846.
- 5. S.-M. Peng, C.-T. Chen, D.-S. Liaw, C.-I. Chen and Y. Wang, *Inorg. Chim. Acta*, 1985, **101**, L31-L33.
- 6. E. Bill, E. Bothe, P. Chaudhuri, K. Chlopek, D. Herebian, S. Kokatam, K. Ray, T. Weyhermüller, F. Neese and K. Wieghardt, *Chem. Eur. J.*, 2005, **11**, 204-224.
- 7. M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, B. Sarkar, W. Kaim, J. v. Slageren, C. Duboc and J. Fiedler, *Dalton Trans.*, 2008, DOI: 10.1039/b714974c, 1355-1365.
- 8. K. Chłopek, E. Bothe, F. Neese, T. Weyhermuller and K. Wieghardt, *Inorg. Chem.*, 2006, **45**, 6298-6307.
- 9. T. M. Porter, G. B. Hall, T. L. Groy and R. J. Trovitch, *Dalton Trans.*, 2013, **42**, 14689-14692.
- 10. T. J. Knisley, M. J. Saly, M. J. Heeg, J. L. Roberts and C. H. Winter, *Organometallics*, 2011, **30**, 5010-5017.
- 11. M. M. Khusniyarov, K. Harms, O. Burghaus and J. Sundermeyer, *Eur. J. Inorg. Chem.*, 2006, DOI: 10.1002/ejic.200600236, 2985-2996.
- 12. H. Gorls, D. Walther and J. Sieler, *Cryst. Res. Technol.*, 1987, **22**, 1145-1151.
- 13. M. Svoboda and H. t. Dieck, *Z. Naturforschung*, 1981, **36b**, 814-822.
- 14. H. t. Dieck, M. Svoboda and T. Greiser, *Z. Naturforschung*, 1981, **36b**, 823-832.
- 15. N. Muresan, T. Weyhermuller and K. Wieghardt, *Dalton Trans.*, 2007, DOI: 10.1039/b709390j, 4390-4398.
- 16. N. Muresan, K. Chlopek, T. Weyhermuller, F. Neese and K. Wieghardt, *Inorg. Chem.*, 2007, **46**, 5327-5337.
- 17. T. Schaub and U. Radius, Z. Anorg. Allg. Chem., 2006, 632, 807-813.
- 18. W. Bonrath, K. R. Pörschke, R. Mynott and C. Krüger, Z. Naturforschung, 1990, **45b**, 1647-1650.
- 19. M. J. Sgro and D. W. Stephan, *Dalton Trans.*, 2010, **39**, 5786-5794.
- 20. C. C. Lu, E. Bill, T. Weyhermuller, E. Bothe and K. Wieghardt, *J. Am. Chem. Soc.*, 2008, **130**, 3181-3197.
- 21. M. van der Meer, Y. Rechkemmer, I. Peremykin, S. Hohloch, J. v. Slageren and B. Sarkar, *Chem. Comm.*, 2014, **50**, 11104-11106.
- 22. G. A. Abakumov, V. K. Cherkasov, M. P. Bubnov, O. G. Ellert, Y. V. Rakitin, L. N. Zakharov, Y. T. Struchkov and Y. N. Saf'yanov, *Russ. Chem. Bull.*, 1992, 1813-1818.
- 23. M. P. Bubnov, N. A. Skorodumova, E. V. Baranov, A. S. Bogomyakov, V. K. Cherkasov and G. A. Abakumov, *Inorg. Chim. Acta*, 2013, **406**, 153-159.
- 24. P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller and K. Wieghardt, *J. Am. Chem. Soc.*, 2001, **123**, 2213-2223.
- 25. K. S. Min, T. Weyhermüller, E. Bothe and K. Wieghardt, *Inorg. Chem.*, 2004, **43**, 2922-2931.
- 26. A. Mukherjee and R. Mukherjee, *Indian Journal of Chemistry*, 2011, **50A**, 484-490.
- 27. A. Paretzki, M. Bubrin, J. Fiedler, S. Zalis and W. Kaim, *Chem. Eur. J.*, 2014, **20**, 5414-5422.
- 28. A. V. Piskunov, I. V. Ershova, M. V. Gulenova, K. I. Pashanova, A. S. Bogomyakov, I. V. Smolyaninov, G. K. Fukin and V. K. Cherkasov, *Russ. Chem. Bull.*, 2015, **64**, 642-649.
- 29. D. L. J. Broere, D. K. Modder, E. Blokker, M. A. Siegler and J. I. van der Vlugt, *Angew. Chem. Int. Ed.*, 2016, **55**, 2406-2410.
- 30. A. I. Poddel'sky, V. K. Cherkasov, G. K. Fukin, M. P. Bubnov, L. G. Abakumova and G. A. Abakumov, *Inorg. Chim. Acta*, 2004, **357**, 3632-3640.
- 31. E. Bill, E. Bothe, P. Chaudhuri, K. Chlopek, D. Herebian, S. Kokatam, K. Ray, T. Weyhermuller, F. Neese and K. Wieghardt, *Chem. Eur. J.*, 2005, **11**, 204-224.
- 32. A. L. Smith, L. A. Clapp, K. I. Hardcastle and J. D. Soper, *Polyhedron*, 2010, **29**, 164-169.

- 33. A. V. Piskunov, K. I. Pashanova, A. S. Bogomyakov, I. V. Smolyaninov, A. G. Starikov and G. K. Fukin, *Dalton Trans.*, 2018, **47**, 15049-15060.
- 34. C. Mukherjee, T. Weyhermüller, E. Bothe and P. Chaudhuri, *Inorg. Chem.*, 2008, **47**, 11620-11632.
- 35. A. M. Whalen, S. Bhattacharya and C. G. Pierpont, *Inorg. Chem.*, 1994, **33**, 347-353.