Supplementary Information

for

Bis(trimethylsilyl)amide Complexes of the s-Block Metals with Bidentate Ether and Amine Ligands

Philipp Schüler,^a Helmar Görls,^a Matthias Westerhausen,^{*,a} Sven Krieck^{*,a}

Content

Crystallographic and refinement details (Table S1)

Molecule representations and selected bonding parameters

Spectroscopic data of new complexes

Compound	1b	2a	2b	2c
formula	C ₁₁ H ₃₁ LiN ₂ OSi ₂	C24H68N6Na2Si4	$C_{16}H_{44}N_3NaO_2Si_2$	C ₁₄ H ₃₈ NNaO ₄ Si ₂
fw (g·mol ⁻¹)	270.50	599.18	389.71	363.62
T/° <i>C</i>	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	monoclinic	monoclinic	triclinic
space group	P 2 ₁ /n	P 2 ₁ /n	C 2/c	Ρī
<i>a</i> / Å	9.2104(2)	11.1441(3)	16.133(3)	9.559(3)
b∕ Å	12.9407(4)	11.4784(4)	10.266(2)	14.979(4)
<i>c</i> / Å	16.0186(4)	31.0449(9)	17.076(3)	17.510(6)
$\alpha/^{\circ}$	90	90	90	71.634(9)
$eta/^{\circ}$	101.408(2)	99.178(1)	116.86(3)	85.046(9)
y/°	90	90	90	78.137(9)
$V/Å^3$	1871.52(8)	3920.3(2)	2523.1(9)	2328.0(12)
Ζ	4	4	4	4
$\rho (g \cdot cm^{-3})$	0.960	1.015	1.026	1.037
μ (cm ⁻¹)	1.79	1.95	1.7	1.84
measured data	15714	24609	8384	46642
data with $I > 2\sigma(I)$	3122	6636	2415	12399
unique data (R _{int})	3540/0.0328	8784/0.0783	2865/0.0432	18961/0.0668
w R_2 (all data, on F^2) ^{a)}	0.1836	0.1380	0.1455	0.1662
$R_1 (I > 2\sigma(I))^{a}$	0.0660	0.0783	0.0558	0.0572
s ^{b)}	1.061	1.166	1.061	1.018
Res. dens./e·Å ⁻³	0.938/-0.444	0.320/-0.345	0.512/-0.398	0.780/-0.583
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} /max	0.6145/0.7456	0.6701/0.7456	0.6891/0.7456	0.6529/0.7456
CCDC No.	1907118	1907119	1907120	1907121

Table S1: Crystal data and refinement details for the X-ray structure determinations.

Compound	3 b	3c	4 a	4b	4c
formula	$C_{22}H_{62}K_2N_4O_2Si_4$	$C_{20}H_{56}K_2N_2O_4Si_4$	C24H68N6Rb2Si4	$C_{22}H_{62}N_4O_2Rb_2Si_4$	$C_{20}H_{56}N_2O_4Rb_2Si_4$
fw (g·mol⁻¹)	605.32	579.23	724.14	698.06	671.97
$^{\circ}C$	-140(2)	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	triclinic	triclinic	monoclinic	triclinic	triclinic
space group	Ρī	Ρī	C 2/c	Ρī	Ρī
<i>a</i> / Å	9.7712(3)	8.9461(3)	22.5359(18)	10.0974(3)	8.5102(3)
b∕ Å	10.4930(4)	10.7526(4)	9.0412(7)	10.2990(3)	11.0496(3)
<i>c</i> / Å	11.0190(4)	10.9069(4)	21.0299(16)	10.9912(4)	11.1416(3)
$\alpha/^{\circ}$	70.532(2)	106.864(2)	90	72.113(2)	108.386(2)
β^{\prime}	65.430(2)	102.532(1)	92.682(4)	65.759(1)	108.706(2)
$\gamma/^{\circ}$	73.177(2)	109.884(2)	90	72.496(2)	101.031(1)
$V/\text{\AA}^3$	953.62(6)	884.21(5)	4280.2(6)	971.55(5)	890.44(5)
Ζ	1	1	4	1	1
ρ (g·cm ⁻³)	1.054	1.088	1.124	1.193	1.253
μ (cm ⁻¹)	3.96	4.27	24.18	26.63	29.06
measured data	10927	10528	11214	12096	7116
data with $I > 2\sigma(I)$	3758	3717	2557	3665	3763
unique data (R _{int})	4327/0.0320	4002/0.0219	3954/0.0616	4388/0.0275	4038/0.0196
wR_2 (all data, on F^2) ^{a)}	0.0901	0.0839	0.1783	0.1363	0.0588
$R_1 (I > 2\sigma(I))^{a}$	0.0390	0.0328	0.0796	0.0529	0.0263
s ^{b)}	1.041	1.054	1.158	1.054	1.109
Res. dens./e·Å ⁻³	0.284/-0.279	0.644/-0.404	0.596/-0.532	0.877/-0.820	0.304/-0.442
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} /max	0.6829/0.7456	0.6802/0.7456	0.4438/0.7456	0.6768/0.7456	0.5858/0.7456
CCDC No.	1907122	1907123	1907124	1907125	1907126

Contd. Table S1: Crystal data and refinement details for the X-ray structure determinations.

Compound	5b	5c	<u>6a</u>	6b	6с
formula	$C_{22}H_{62}Cs_2N_4O_2Si_4$	$C_{20}H_{56}Cs_2N_2O_4Si_4$	C ₁₈ H ₅₂ MgN ₄ Si ₄	C ₁₇ H ₄₉ MgN ₃ OSi ₄	$C_{16}H_{46}MgN_2O_2Si_4$
fw (g·mol ⁻¹)	792.94	766.85	461.31	448.26	435.22
$^{\circ}C$	-140(2)	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	triclinic	triclinic	monoclinic	monoclinic	monoclinic
space group	Ρī	Ρī	P 2 ₁ /n	C 2/c	P 2 ₁ /c
a∕ Å	8.6707(2)	10.9375(3)	8.6988(2)	8.8108(2)	8.3703(2)
b∕ Å	11.8156(2)	11.4382(4)	17.5010(4)	16.9986(4)	34.2576(7)
<i>c</i> / Å	20.4375(4)	16.0225(7)	19.7454(3)	19.5944(5)	19.6484(4)
$\alpha/^{\circ}$	106.144(1)	101.900(2)	90	90	90
$eta /^{\circ}$	95.431(1)	99.249(2)	102.331(1)	101.657(1)	100.452(1)
$\gamma/^{\circ}$	101.977(1)	108.487(2)	90	90	90
$V/\text{\AA}^3$	1941.43(7)	1804.14(11)	2936.65(11)	2874.15(12)	5540.6(2)
Ζ	2	2	4	4	8
ρ (g·cm ⁻³)	1.356	1.412	1.043	1.036	1.043
μ (cm ⁻¹)	20.23	21.77	2.35	2.4	2.49
measured data	24697	16971	21032	10702	36137
data with $I > 2\sigma(I)$	7998	5970	5868	2867	10134
unique data (R _{int})	8854/0.0276	7216/0.0680	6711/0.0365	3303/0.0360	12416/0.0428
w R_2 (all data, on F^2) ^{a)}	0.0578	0.2247	0.0883	0.1090	0.1042
$R_1 \left(I > 2\sigma(I) \right)^{a}$	0.0264	0.0837	0.0361	0.0444	0.0474
s ^{b)}	1.054	1.114	1.076	1.088	1.100
Res. dens./e·Å ⁻³	0.570/-0.521	2.543/-2.462	0.318/-0.221	0.400/-0.371	0.423/-0.274
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} / _{max}	0.6376/0.7456	0.4738/0.7456	0.7122/0.7456	0.6931/0.7456	0.6995/0.7456
CCDC No.	1907127	1907128	1907129	1907130	1907131

Contd. Table S1: Crystal data and refinement details for the X-ray structure determinations.

Compound	7b	8a	8b	9b
formula	C17H49CaN3OSi4	$C_{18}H_{52}N_4Si_4Sr$	C ₁₇ H ₄₉ N ₃ OSi ₄ Sr	C ₂₂ H ₆₂ BaN ₄ O ₂ Si ₄
fw (g·mol ⁻¹)	464.03	524.62	511.57	664.46
$^{\circ}C$	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	monoclinic	monoclinic	monoclinic
space group	C 2/c	C 2/c	C 2/c	C 2/c
<i>a</i> / Å	8.5730(2)	8.5757(1)	8.5565(3)	23.5555(4)
<i>b</i> / Å	17.0814(6)	17.6605(2)	17.3552(5)	10.2892(2)
<i>c</i> / Å	20.3873(7)	20.4099(3)	20.6264(6)	17.2253(3)
$\alpha/^{\circ}$	90	90	90	90
$eta/^{\circ}$	100.288(2)	101.900(1)	100.138(1)	118.317(1)
γ/°	90	90	90	90
$V/\text{\AA}^3$	2937.49(16)	3024.67(7)	3015.19(16)	3675.27(11)
Ζ	4	4	4	4
ρ (g·cm ⁻³)	1.049	1.152	1.127	1.201
μ (cm ⁻¹)	3.88	19.52	19.58	12.33
measured data	10364	6799	16826	14325
data with $I > 2\sigma(I)$	2910	3224	3006	4076
unique data (R _{int})	3336/0.0346	3471/0.0289	3446/0.0349	4201/0.0225
w R_2 (all data, on F^2) ^{a)}	0.0930	0.0549	0.0817	0.0398
$R_1 (I > 2\sigma(I))^{a}$	0.0405	0.0233	0.0366	0.0163
s ^{b)}	1.076	1.050	1.105	1.060
Res. dens./e·Å ⁻³	0.383/-0.274	0.446/-0.378	0.509/-0.440	0.316/-0.229
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} / _{max}	0.7032/0.7456	0.6239/0.7456	0.6706/0.7456	0.6958/0.7456
CCDC No.	1907132	1907133	1907134	1907135
Definition of the R indi	$\frac{1}{2000 \cdot \mathbf{P} - (\Sigma \mathbf{F} \mathbf{F})}$	/ <u> </u> <u>F</u> .		1707100

Contd. Table S1: Crystal data and refinement details for the X-ray structure determinations.

^{a)} Definition of the *R* indices: $R_1 = (\Sigma || F_0| - |F_c||)/\Sigma |F_0|$; $wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2}$ with $w^{-1} = \sigma^2(F_0^2) + (aP)^2 + bP$; $P = [2F_c^2 + Max(F_0^2)/3;$ ^{b)} $s = \{\Sigma[w(F_0^2 - F_c^2)^2]/(N_0 - N_p)\}^{1/2}$.

Molecule representations

Figure S1. Molecular structure and numbering scheme of $[(dmmea)LiN(SiMe_3)_2]_2$ (**1b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Selected bond lengths (pm): Li1-N1 189.1(5), Li1-N2 204.4(5), Li1-O1 194.5(6), N1-Si1 167.3(2), N1-Si2 167.4(2), Li1- \cdot Si1 305.4(5), Li1 \cdot Si2 293.8(5); angles (deg.): N1-Li1-N2 139.6(3), N1-Li1-O1 134.3(3), N2-Li1-O1 85.0(2), Li1-N1-Si1 117.8(2), Li1-N1-Si2 110.9(3).

Figure S2. Molecular structure and numbering scheme of [(tmeda)NaN(SiMe₃)₂]₂ (**2a**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Selected bond lengths (pm): Na1-N1 252.5(3), Na1-N2 250.4(3), Na1-N3 258.3(3), Na1-N4 260.7(3), Na2-N1 254.2(3), Na2-N2 253.0(3), Na2-N5 259.6(3), Na2-N6 260.7(3), N1-Si1 170.0(3), N1-Si2 170.0(3), N2-Si3 169.7(3), N2-Si4 169.7(3), Na1-··Na2 308.73(17), Na1-··Si2 346.30(15), Na1-··Si3 349.31(15), Na2-··Si1 341.89(15), Na2-··Si4 341.07(15); angles (deg.): N1-Na1-N2 105.26(9), N1-Na2-N2 103.99(9), Na1-N1-Na2 75.09(8), Na1-N2-Na2 75.66(8), Si1-N1-Si2 118.7(2), Si3-N2-Si4 117.1(2), N3-Na1-N4 73.75(9), N5-Na2-N6 72.19(9).

Figure S3. Molecular structure and numbering scheme of $[(dmmea)_2NaN(SiMe_3)_2]$ (**2b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+1.5) are marked with the letter "A". Selected bond lengths (pm): Na1-N1 234.2(3), Na1-N2 252.6(14), Na1-O1 241.98(19), N1-Si1 166.62(12), Na1...Si1 339.40(13); angles (deg.): Na1-N1-Si1 114.68(8), Si1-N1-Si1A 130.63(15), N2-Na1-O1 66.7(4), N2-Na1-N2A 166.0(2).

Figure S4. Molecular structure and numbering scheme of $[(dme)_2NaN(SiMe_3)_2]$ (**2c**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. The two molecules of the asymmetric unit are distinguished by the letters "A" and "B". Selected bond lengths of molecules A [and B] (pm): Na1-N1 230.22(18) [230.91(18)], Na1-O1 235.56(18) [243.05(19)], Na1-O2 246.48(17) [237.03(19)], Na1-O3 245.41(17) [236.33(17)], Na1-O4 237.05(17) [244.59(16)], N1-Si1 166.10(17) [166.93(18)], N1-Si2 167.09(17) [166.04(17)], Na1-··Si1 337.17(11) [337.89(14)], Na1-··Si2 334.07(14) [331.16(11)]; angles (deg.): Na1-N1-Si1 115.63(9) [115.33(9)]; Na1-N1-Si2 113.50(9) [112.04(9)], Si1-N1-Si2 130.86(10) [132.54(10)]; O1-Na1-O2 69.78(6) [69.29(6)]; O3-Na1-O4 70.27(6) [70.76(5)].

Figure S5. Molecular structure and numbering scheme of $[(dmmea)KN(SiMe_3)_2]_2$ (**3b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, -y+1, -z+1) are marked with the letter "A". Selected bond lengths (pm): K1-N1 278.53(15), K1-N1A 282.77(15), K1-O1 271.19(13), K1-N2 289.81(18), N1-Si1 167.57(14), N1-Si2 167.67(15), K1-···K1A 372.56(7), K1-···Si1 370.08(6), K1-··Si2 373.27(6), K1-··Si1A 365.31(6), K1-··Si2A 373.60(6); angles (deg.): N1-K1-N1A 96.83(4), O1-K1-N2 61.15(5), K1-N1-Si1 109.59(7), K1-N1-Si2 111.11(7), Si1-N1-Si2 128.45(9).

Figure S6. Molecular structure and numbering scheme of $[(dme)KN(SiMe_3)_2]_2$ (**3c**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, -y+1, -z+1) are marked with the letter "A". Selected bond lengths (pm): K1-N1 281.87(12), K1-N1A 281.07(12), K1-O1 275.53(13), K1-O2 278.07(13), N1-Si1 167.18(12), N1-Si2 166.97(12), K1...K1A 384.78(6), K1...Si1 363.81(5), K1...Si2 365.79(5), K1...Si1A 363.54(5), K1...Si2A 365.57(5); angles (deg.): N1-K1-N1A 93.76(3), K1-N1-Si1 105.36(5), K1-N1-Si2 106.33(5), Si1-N1-Si2 135.75(8), O1-K1-O2 60.62(4).

Figure S7. Molecular structure and numbering scheme of $[(\text{tmeda})\text{RbN}(\text{SiMe}_3)_2]_2$ (**4a**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+0.5, -y+1.5, -z+1) are marked with the letter "A". Selected bond lengths (pm): Rb1-N1 293.1(6), Rb1-N1A 303.1(6), Rb1-N2 316.1(7), Rb1-N3 308.1(7), N1-Si1 166.4(7), N1-Si2 166.7(6), Rb1…Rb1A 406.06(13), Rb…Si1 376.7(2), Rb…Si2 389.8(2), Rb1…Si1A 378.5(2), Rb1…Si2A 388.3(2); angles (deg.): N1-Rb1-N1A 94.16(15), Rb1-N1-Si1 106.9(3), Rb1-N1-Si2 113.1(3), Si1-N1-Si2 130.0(4), N2-Rb1-N3 58.8(2).

Figure S8. Molecular structure and numbering scheme of $[(dmmea)RbN(SiMe_3)_2]_2$ (**4b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. The second half of the molecule is generated by (-x+1, -y+1, -z+1). Selected bond lengths (pm): Rb1-N1 294.5(3), Rb1-N1A 296.7(4), N1-Si1 166.6(3), Rb1-O1 281.9(6), Rb1-N2 299.6(10); angles (deg.): N1-Rb1-N1A 92.96(9), Rb1-N1-Si1 107.34(15), Rb1-N1-Si2 105.14(15), Si1-N1-Si2 132.8(2), O1-Rb1-N2 59.6(2).

Figure S9. Molecular structure and numbering scheme of $[(dme)RbN(SiMe_3)_2]_2$ (**4c**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, -y+1, -z+1) are marked with the letter "A". Selected bond lengths (pm): Rb1-N1 297.09(15), Rb1-N1A 299.52(15), Rb1-O1 292.91(15), Rb1-O2 296.27(15), N1-Si1 166.98(16), N1-Si2 166.67(16), Rb1…Rb1A 415.04(4), Rb1…Si1 385.19(5), Rb1…Si2 377.87(5), Rb1…Si1A 376.22(5), Rb1…Si2A 376.74(5); angles (deg.): N1-Rb1-N1A 91.84(4), Rb1-N1-Si1 46.84(5), Rb1-N1-Si2 47.753(11), Si1-N1-Si2 135.62(9), O1-Rb1-O2 56.19(5).

Figure S10. Molecular structure and numbering scheme of $[(dmmea)CsN(SiMe_3)_2]_2$ (**5b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Selected bond lengths (pm): Cs1-N1 326.56(19), Cs1-N2 306.98(19), Cs1-O1 311.5(2), Cs1-N3 323.9(2), Cs2-N1 307.74(18), Cs2-N2 324.48(19), Cs2-O2 307.0(2), Cs2-N4 320.2(2), N1-Si1 167.0(2), N1-Si2 166.9(2), N2-Si3 166.6(2), N2-Si4 166.5(2), Cs1…Cs2 430.58(2), Cs1…Si1 411.76(7), Cs1…Si2 382.11(7), Cs1…Si3 404.33(7), Cs1…Si4 392.34(7), Cs2…Si1 397.01(7), Cs2…Si2 407.28(7), Cs2…Si3 394.28(7), Cs2…Si4 396.99(7); angles (deg.): N1-Cs1-N2 93.36(5), N1-Cs2-N2 93.63(5), Cs1-N1-Cs2 85.45(4), Cs1-N2-Cs2 85.93(5), O1-Cs1-N3 53.72(6), O2-Cs2-N4 55.10(6), Si1-N1-Si2 129.97(12), Si3-N2-Si4 131.88(12).

Figure S11. Molecular structure and numbering scheme of $[(dme)CsN(SiMe_3)_2]_2$ (**5c**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. The asymmetric unit contains two half molecules A and B which are completed by inversion centers generating the second halves C and D. Selected bond lengths for A [B] (pm): Cs1-N1 306.3(7) [308.1(7)], Cs1-N1' 316.2(7) [317.1(7)], Cs1-O1 318.0(7) [321.0(6)], Cs1-O2 308.9(6) [305.7(6)], N1-Si1 166.0(7) [167.0(7)], N1-Si2 167.7(6) [166.1(6)], Cs1-··Cs1' 421.47(9) [434.43(8)], Cs1···Si1 390.7(2) [396.5(2)], Cs1···Si2 401.4(2) [401.8(2)]; angles (deg.): N1-Cs1-N1' 94.78(17) [91.97(18)], O1-Cs1-O2 53.73(19) [53.26(16)], Si1-N1-Si2 129.3(4) [129.7(4)].

Figure S12. Molecular structure and numbering scheme of [(tmeda)Mg{N(SiMe₃)₂}₂] (**6a**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Selected bond lengths (pm): Mg1-N1 204.47(12), Mg1-N2 205.48(12), Mg1-N3 236.85(13), Mg1-N4 229.66(13), N1-Si1 170.85(13), N1-Si2 171.08(13), N2-Si3 171.67(12), N2-Si4 170.85(12), Mg1-··Si2 315.37(6), Mg1-··Si3 320.06(6); angles (deg.): N1-Mg1-N2 117.07(5), N3-Mg1-N4 77.50(5), Mg1-N1-Si1 126.53(7), Mg1-N1-Si2 113.93(6), Si1-N1-Si2 119.18(7), Mg1-N2-Si3 115.83(6), Mg1-N2-Si4 125.08(6), Si3-N2-Si4 119.09(7).

Figure S13. Molecular structure and numbering scheme of $[(dmmea)Mg\{N(SiMe_3)_2\}_2]$ (**6b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+3/2) are marked with the letter "A". The disordering of the dmmea ligand is not shown. Selected bond lengths (pm): Mg1-N1 201.58(14), Mg1-O1 208(2), Mg1-N2 239.2(18), N1-Si1 171.36(16), N1-Si2 170.76(16); angles (deg.): N1-Mg1-N1A 123.67(9), O1-Mg1-N2 77.2(4), Mg1-N1-Si1 115.59(8), Mg1-N1-Si2 123.37(8), Si1-N1-Si2 121.01(9).

Figure S14. Molecular structure and numbering scheme of $[(dme)Mg\{N(SiMe_3)_2\}_2]$ (**6c**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. The asymmetric unit contains two molecules A and B. Selected bond lengths of A [B] (pm): Mg1-N1 200.53(17) [200.77(16)], Mg1-N2 200.40(16) [200.28(17)], Mg1-O1 216.52(15) [213.52(16)], Mg1-O2 209.27(15) [211.10(15)], N1-Si1 171.23(16) [171.24(17)], N1-Si2 171.52(17) [171.16(18)], N2-Si3 170.89(17) [170.97(17)], N2-Si4 171.18(16) [170.96(16)], Mg1...Si1 325.41(8) [324.05(8)], Mg1...Si2 316.04(8) [317.79(8)], Mg1...Si3 318.73(8) [316.47(8)], Mg1...Si4 320.09(8) [322.09(8)]; angles (deg.): N1-Mg1-N2 125.92(7) [124.59(7)], O1-Mg1-O2 75.15(6) [75.24(6)], Mg1-N1-Si1 121.97(9) [120.96(9)], Mg1-N1-Si2 116.08(8) [117.17(9)], Si1-N1-Si2 121.88(9) [121.77(9)], Mg1-N2-Si3 118.07(9) [116.73(8)], Mg1-N2-Si4 118.74(9) [120.15(9)], Si3-N2-Si4 123.02(9) [123.09(10)].

Figure S15. Molecular structure and numbering scheme of $[(dmmea)Ca\{N(SiMe_3)_2\}_2]$ (**7b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+1/2) are marked with the letter "A". The dmmea ligand shows a two-site disordering. Selected bond lengths (pm): Ca-N1 229.13(15), Ca1-O1 228.2(7), Ca1-N2A 263.4(8), N1-Si1 169.11(15), N1-Si2 169.40(16), Ca1...Si1 349.82(5), Ca1...Si2 330.66(6); angles (deg.): N1-Ca1-N1A 126.51(8), O1-Ca1-N2A 68.60(9), Ca1-N1-Si1 122.18(8), Ca1-N1-Si2 111.25(7), Si1-N1-Si2 126.56(9).

Figure S16. Molecular structure and numbering scheme of $[(\text{tmeda})\text{Sr}\{N(\text{SiMe}_3)_2\}_2]$ (**8a**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+0.5) are marked with the letter "A". Selected bond lengths (pm): Sr1-N1 245.61(12), Sr1-N2 272.64(13), N1-Si1 168.65(13), N1-Si2 168.35(13)Sr1...Si1 359.11(4), Sr1...Si2 345.54(4); angles (deg.): N1-Sr1-N1A 122.47(6), N2-Sr1-N2A 67.54(6), Sr1-N1-Si1 119.02(6), Sr1-N1-Si2 111.82(6), Si1-N1-Si2 129.14(8).

Figure S17. Molecular structure and numbering scheme of $[(dmmea)Sr{N(SiMe_3)_2}_2]$ (**8b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+0.5) are marked with the letter "A". The disordering of the dmmea ligand is omitted. Selected bond lengths (pm): Sr1-N1 244.44(19), Sr1-O1 253.1(11), Sr1-N2 263.7(13), N1-Si1 168.6(2), N1-Si2 168.4(2); angles (deg.): N1-Sr1-N1A 125.72(9), O1-Sr1-N2 64.3(4), Sr1-N1-Si1 111.43(9), Sr1-N1-Si2 119.39(10), Si1-N1-Si2 129.18(12).

Figure S18. Molecular structure and numbering scheme of $[(dmmea)Ba\{N(SiMe_3)_2\}_2]$ (**9b**). The ellipsoids represent a probability of 30 %, H atoms are omitted for clarity reasons. Symmetry-related atoms (-x+1, y, -z+0.5) are marked with the letter "A". Selected bond lengths (pm): Ba1-N1 271.12(11), Ba1-O1 278.44(9), Ba1-N2 306.04(11), N1-Si1 169.16(11), N1-Si2 169.34(11), Ba1-...Si2 381.70(4); angles (deg.): N1-Ba1-N1A 128.97(5), O1-Ba1-N2 58.07(3), Ba1-N1-Si1 119.76(5), Ba1-N1-Si2 118.28(5), Si1-N1-Si2 121.91(7).

Figure S19: ¹H NMR spectrum (400 MHz, C_6D_6 , 296 K) of [(dmmea)Li(hmds)] **1b** (* - n-pentane, n-hexane).

Figure S20: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dmmea)Li(hmds)] 1b (* - n-pentane, n-hexane).

Figure S21: ⁷Li NMR spectrum (155.5 MHz, C₆D₆, 296 K) of [(dmmea)Li(hmds)] 1b.

Figure S22: 29 Si- 1 H-HMBC NMR spectrum (79.5 MHz, C₆D₆, 296 K) of [(dmmea)Li(hmds)] 1b.

[(tmeda)Na(hmds)] 2a

Figure S23: ¹H NMR spectrom (400 MHz, Tol- d_8 , 296 K) of [(tmeda)Na(hmds)]₂ 2a₂.

Figure S24: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, Tol-d₈, 296 K) of [(tmeda)Na(hmds)]₂ 2a₂.

Figure S25: IR spectrum (neat, ATR) of crystalline $[(tmeda)Na(hmds)]_2 2a_2$.

[(dmmea)₂Na(hmds)] 2b

Figure S26: ¹H NMR spectrum (400 MHz, Tol-d₈, 296 K) of [(dmmea)₂Na(hmds)] **2b**.

Figure S27: ¹³C{¹H} NMR spectrum (100 MHz, Tol-d₈, 296 K) of [(dmmea)₂Na(hmds)] **2b**.

Figure S28: IR spectrum (neat, ATR) of isolated crystals of [(dmmea)₂Na(hmds)] 2b.

Figure S29: ¹H NMR spectrum (400 MHz, C₆D₆, 296 K) of [(dme)₂Na(hmds)] **2c**.

Figure S30: ¹³C{¹H} NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dme)₂Na(hmds)] **2c**.

Figure S31: IR spectrum (ATR) of crystalline [(dme)₂Na(hmds)] 2c.

Figure S32: ¹H NMR spectrum (400 MHz, Tol- d_8 , 296 K) of [(dme)K(hmds)]₂ 3c.

Figure S33: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, Tol-d₈, 296 K) of [(dme)K(hmds)]₂ 3c.

Figure S34: ²⁹Si{¹H} NMR spectrum (79 MHz, Tol-d₈, 296 K) of $[(dme)K(hmds)]_2$ 3c.

Figure S35: IR spectrum (ATR) of isolated crystals of [(dme)K(hmds)]₂ 3c.

Figure S36: ¹H NMR spectrum (400 MHz, Tol- d_8 , 296 K) of [(dmmea)K(hmds)]₂ 3b.

Figure S37: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, Tol-d₈, 296 K) of [(dmmea)K(hmds)]₂ 3b.

Figure S38: ${}^{29}Si{}^{1}H$ NMR spectrum (79 MHz, Tol-d₈, 296 K) of [(dmmea)K(hmds)]₂ 3b.

Figure S39: IR spectrum (ATR) of isolated crystals of [(dmmea)K(hmds)]₂ 3b.

 $[(dme)Rb(hmds)]_2$ 4c

Figure S40: ¹H NMR spectrum (400 MHz, C_6D_6 , 296 K) of [(dme)Rb(hmds)]₂ 4c.

Figure S41: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dme)Rb(hmds)]₂ 4c.

Figure S42: ²⁹Si-¹H-DEPT-NMR (79.49 MHz, C₆D₆, 296 K) of [(dme)Rb(hmds)]₂ 4c.

Figure S43: IR spectrum (ATR) of isolated crystals of [(dme)Rb(hmds)]₂ 4c.

[(dmmea)Rb(hmds)]₂ 4b

Figure S44: ¹H-NMR (400 MHz, C_6D_6 , 296 K) of [(dmmea)Rb(hmds)]₂ 4b.

Figure S45: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dmmea)Rb(hmds)]₂ 4b.

Figure S46: ²⁹Si-¹H-DEPT NMR spectrum (79.49 MHz, C₆D₆, 296 K) of [(dmmea)Rb(hmds)]₂ 4b.

Figure S47: IR spectrum (ATR) of isolated crystals of [(dmmea)Rb(hmds)]₂ 4b.

 $[(tmeda)Rb(hmds)]_2$ 4a

Figure S48: ¹H NMR spectrum (400 MHz, C_6D_6 , 296 K) of [(tmeda)Rb(hmds)]₂ 4a.

Figure S49: ¹³C{¹H}-NMR (101 MHz, C₆D₆, 296 K) of [(tmeda)Rb(hmds)]₂ 4a.

Figure S50: ²⁹Si-¹H-HMBC NMR spectrum (79.49 MHz, C₆D₆, 296 K) of [(tmeda)Rb(hmds)]₂ **4a**.

Figure S51: IR spectrum (ATR) of isolated crystals of [(tmeda)Rb(hmds)]₂ 4a.

Figure S52: ¹H NMR spectrum (400 MHz, C_6D_6 , 296 K) of [(dmmea)Cs(hmds)]₂ 5b.

Figure S53: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C_6D_6 , 296 K) of [(dmmea)Cs(hmds)]₂ 5b.

Figure S54: ¹³³Cs NMR spectrum (52.5 MHz, C₆D₆, 296 K) of [(dmmea)Cs(hmds)]₂ **5b**.

Figure S55: IR spectrum (ATR) of isolated crystals of [(dmmea)Cs(hmds)]₂ 5b.

Figure S56: ¹H NMR spectrum(400 MHz, Tol- d_8 , 296 K) of [(dme)Cs(hmds)]₂ 5c.

Figure S57: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, Tol-d₈, 296 K) of [(dme)Cs(hmds)]₂ 5c.

Figure S58: ¹³³Cs NMR spectrum (52.5 MHz, Tol-d₈, 296 K) of [(dme)Cs(hmds)]₂ **5c**.

Figure S59: IR spectrum (ATR) of isolated crystals of [(dme)Cs(hmds)]₂ 5c.

Figure S60: ¹H NMR spectrum (400 MHz, C₆D₆, 296 K) of [(dme)Mg(hmds)₂] **6c**.

Figure S61: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dme)Mg(hmds)₂] 6c.

Figure S62: ${}^{29}Si{}^{1}H$ NMR spectrum (79.5 MHz, C₆D₆, 296 K) of [(dme)Mg(hmds)₂] 6c.

Figure S63: IR spectrum (ATR) of isolated crystals of [(dme)Mg(hmds)₂] 6c.

Figure S64: ¹H NMR spectrum (400 MHz, C₆D₆, 296 K) of [(dmmea)Mg(hmds)₂] **6b**.

Figure S65: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dmmea)Mg(hmds)₂] 6b.

Figure S66: 29 Si- 1 H-DEPT NMR spectrum (79 MHz, C₆D₆, 296 K) of [(dmmea)Mg(hmds)₂] 6b.

Figure S67: IR spectrum (ATR) of isolated crystals of [(dmmea)Mg(hmds)₂] 6b.

 $[(tmeda)Mg(hmds)_2]$ 6a

Figure S68: ¹H NMR spectrum (400 MHz, C_6D_6 , 296 K) of [(tmeda)Mg(hmds)₂] 6a.

Figure S69: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(tmeda)Mg(hmds)₂] 6a.

Figure S70: ${}^{29}Si{}^{1}H$ NMR spectrum (79.5 MHz, C₆D₆, 296 K) of [(tmeda)Mg(hmds)₂] 6a.

Figure S71: IR spectrum (ATR) of isolated crystals of [(tmeda)Mg(hmds)₂] 6a.

[(dmmea)Ca(hmds)₂] 6b

Figure S72: ¹H NMR spectrum (400 MHz, C₆D₆, 296 K) of [(dmmea)Ca(hmds)₂] **7b**.

Figure S73: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, C₆D₆, 296 K) of [(dmmea)Ca(hmds)₂] 7b.

Figure S74: ²⁹Si-¹H-DEPT NMR spectrum (79 MHz, C₆D₆, 296 K) of [(dmmea)Ca(hmds)₂] 7b.

Figure S75: IR spectrum (ATR) of isolated crystals of [(dmmea)Ca(hmds)₂] 7b.

Figure S76: ¹H NMR spectrum (400 MHz, Tol-d₈, 296 K) of [(tmeda)Sr(hmds)₂] **8a**.

Figure S77: ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, Tol-d₈, 296 K) of [(tmeda)Sr(hmds)₂] 8a.

Figure S78: ${}^{29}Si{}^{1}H$ NMR spectrum (79.5 MHz, C₆D₆, 296 K) of [(tmeda)Sr(hmds)₂] 8a.

Figure S79: IR spectrum (ATR) of isolated crystals of [(tmeda)Sr(hmds)₂] 8a.

Figure S80: ¹H NMR spectrum (300 MHz, C₆D₆, 298 K) of [(dmmea)Sr(hmds)₂] 8b.

Figure S81: ${}^{13}C{}^{1}H$ NMR spectrum (75 MHz, C₆D₆, 298 K) of [(dmmea)Sr(hmds)₂] 8b.

[(dmmea)Ba(hmds)₂] 9b

Figure S82: ¹H NMR spectrum (300 MHz, C_6D_6 , 298 K) of [(dmmea)₂Ba(hmds)₂] 9b.

Figure S83: ${}^{13}C{}^{1}H$ NMR spectrum (75 MHz, C_6D_6 , 298 K) of [(dmmea)₂Ba(hmds)₂] **9b**.