Supporting Information

Formation of Nanocluster $\{Dy_{12}\}$ Containing Dy-Exclusive Vertex-Sharing $[Dy_4(\mu_3-OH)_4]$ Cubanes via Simultaneous Multitemplate Guided and Step-by-Step Assembly

Xiong-Feng Ma,^{a,†} Hai-Ling Wang,^{a,†} Zhong-Hong Zhu,^{*,a} Bo Li,^{*,b} Kai-Qiang Mo,^a Hua-Hong Zou,^{*,a} Fu-Pei Liang,^a

^aState Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.

^bCollege of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.

Table of Contents:

Supporting Tables				
Table S1a	27 examples of high-nuclear lanthanide clusters are known with nuclearity ≥ 10 was queried using CCDC2018 (2.00) until 15 Jan. 2019.			
Table S1b	The M_{12} structure containing vertex-sharing $\{M_4O_4\}$ cubanes was queried using CCDC2018 (2.00) until 1st Jan. 2019.			
Table S2a	Crystallographic data of the complex $\mathbf{D}\mathbf{y}_{12}$.			
Table S2b	Selected bond lengths (Å) and angles (°) of complex Dy_{12} .			
Table S3	Hydrogen-bonds for \mathbf{Dy}_{12} complex.			
Table S4~S9	SHAPE analysis of the Dy ions in Dy ₁₂ .			
Table S10	Major species assigned in the HRESI-MS of \mathbf{Dy}_{12} in positive mode.			
Table S11	Major species assigned in the time-dependent HRESI-MS of Dy_{12} in positive mode.			
Table S12	Major species assigned in the Time-dependent HRESI-MS of \mathbf{Dy}_{12} in negative mode.			
Table S13	Selected parameters from the fitting results of the Cole-Cole plots for \mathbf{Dy}_{12} under 2000 Oe dc-field.			
	Supporting Figures			
Figure S1	The weak interaction bonds for complex $\mathbf{D}\mathbf{y}_{12}$.			
Figure S2a	The TG curve of $\mathbf{Dy_{12}}$ under heating in flowing N ₂ at 5 °C·min ⁻¹ over the temperature range of 35-800 °C.			
Figure S2b	Powdered X-ray diffraction (PXRD) patterns for complex \mathbf{Dy}_{12} .			
Figure S3	Positive HRESI-MS spectra of \mathbf{Dy}_{12} in DMF (In-Source CID 0, 40 and 100 eV).			
Figure S4	The superposed simulated and observed spectra of several species for \mathbf{Dy}_{12} (In-Source CID 0 eV).			
Figure S5	The superposed simulated and observed spectra of several species in the Time-dependent HRESI-MS of Dy_{12} .			
Figure S6	Time-dependent HRESI-MS spectra for the stepwise assembly of \mathbf{Dy}_{12} in negative mode.			
Figure S7	The superposed simulated and observed spectra of several species in the Time-dependent HRESI-MS of Dy_{12} .			
Figure S8	Temperature dependence of $\chi_m T$ (a) and field dependence of the magnetization (b) for Dy ₁₂ .			
Figure S9	The temperature dependence of the in-phase (χ ') and out-of-phase (χ ") ac-susceptibilities for different frequencies in 0 (a) and 2000 Oe (b) dc-field for Dy ₁₂ .			
Figure S10	Variable-frequency dependent ac susceptibilities for $\mathbf{Dy_{12}}$ under 2000 Oe (a and b) dc-field; c) Cole–Cole plots from ac susceptibilities; d) Arrhenius plots generated from the temperature-dependent relaxation times extracted from the ac-susceptibilities Cole-Cole fits in $H_{dc} = 2000$ Oe, The symbols and lines represent the extracted times and least-square fits.			

No	Complex	Ref.		
1	$[Ln_{14}(CO_3)_{13}(ccnm)_9(OH)(H_2O)_6(phen)_{13}(NO_3)] \cdot (CO_3)_{2.5} \cdot (phen)_{0.5} (Ln_{14})$	1		
2	$[Ln_{24}(DMC)_{36}(\mu_4-CO_3)_{18}(\mu_3-H_2O)_2]$ (Ln ₂₄)	2, 3		
3	$[(CO_3)_2 @Ln_{37}(LH_3)_8(CH_3COO)_{21}(CO_3)_{12}(\mu_3-OH)_{41}(\mu_2-H_2O)_5(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O) (Ln_{37})_{12}(\mu_3-OH)_{41}(\mu_2-H_2O)_{50}(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O) (Ln_{37})_{12}(\mu_3-OH)_{41}(\mu_2-H_2O)_{50}(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O) (Ln_{37})_{12}(\mu_3-OH)_{41}(\mu_2-H_2O)_{50}(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O) (Ln_{37})_{12}(\mu_3-OH)_{41}(\mu_3-H_2O)_{50}(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O) (Ln_{37})_{12}(\mu_3-OH)_{41}(\mu_3-H_2O)_{50}(H_2O)_{40}$	4		
4	$[Er_{60}(L-thre)_{34}(\mu_{6}-CO_{3})_{8}(\mu_{3}-OH)_{96}(\mu_{2}-O)_{2}(H_{2}O)_{18}] \cdot Br_{12} \cdot (ClO_{4})_{18} \cdot 40(H_{2}O) (Ln_{60})$	5		
5	$[Dy_{72}(mda)_{24}(mdaH)_8(OH)_{120}(O)_8(NO_3)_{16}] \cdot (NO_3)_8 (Ln_{72})$	6		
6	$[Gd_{38}(\mu-O)(\mu_8-ClO_4)_6(\mu_3-OH)_{42}(CAA)_{37}(H_2O)_{36}(EtOH)_6] \cdot (ClO_4)_{10} \cdot (OH)_{17} \cdot 14DMSO \cdot 13H_2O (Ln_{38})_{10} \cdot (DH)_{17} \cdot ($	7		
7	$[Gd_{48}(\mu_4-O)_6(\mu_3-OH)_{84}(CAA)_{36}(NO_3)_6(H_2O)_{24}(EtOH)_{12}(NO_3)Cl_2] \cdot Cl_3 (Ln_{48})$	/		
8	$[Ln_{104}(ClO_4)_6(CH_3COO)_{56}(\mu_3-OH)_{168}(\mu_4-O)_{30}(H_2O)_{112}] \cdot (ClO_4)_{22} (Ln_{104})$	8		
9	$\{[Ln_{36}(NA)_{36}(OH)_{49}(O)_{6}(NO_{3})_{6}(N_{3})_{3}(H_{2}O)_{20}]Cl_{2} \cdot 28H_{2}O\}_{n} (Ln_{36})$	9		
10	${[Cl_2\&(NO_3)]@[Er_{48}(NA)_{44}(OH)_{90}(N_3)(H_2O)_{24}]}_n (Ln_{48})$	10		
11	$K_2[Ho_{48}(IN)_{46}(\mu_3-OH)_{84}(\mu_4-OH)_4(\mu_5-O)_2(OAc)_4(H_2O)_{14}(CO_3)Br_2]$ (Ln ₄₈)	11		
12	$[(ClO_4)@Ln_{27}(\mu_3-OH)_{32}(CO_3)_8(CH_3CH_2COO)_{20}(H_2O)_{40}] \cdot (ClO_4)_{12} \cdot (H_2O)_{50} (Ln_{27})_{12} \cdot (H_2O)_{50} (Ln_{27})_{12} \cdot (H_2O)_{12} \cdot (H_2O)_{12}$	12		
12	$[\mathbf{I}_{\mathbf{p}}, \mathbf{u}_{\mathbf{r}}, \mathbf{OH})_{\mathbf{r}}(\mathbf{u}_{\mathbf{r}}, \mathbf{V})]^{24+}(\mathbf{I}_{\mathbf{p}}, \mathbf{r})$	13,		
15	$[Li1_{5}(\mu_{3}-OII)_{20}(\mu_{5}-\Lambda_{3})] (Li1_{5})$			
14	$[Dy_{19}(1-3H)(1-2H)_{11}(CH_3CO_2)_6(OH)_{26}(H_2O)_{30}] (Ln_{19})$	15		
15	$Ln_{14}(\mu_4-OH)_2(\mu_3-OH)_{16}(\mu-\eta^2-acac)_8(\eta^2-acac)_{16}$ (Ln ₁₄)	16		
16	$H_{18}[Ln_{14}(\mu - \eta 2 - O_2N - C_6H_4 - O)_8(\eta 2 - O_2N - C_6H_4 - O)_{16}(\mu 4 - O)_2(\mu 3 - O)_{16}] (Ln_{14})$	17		
17	$Ln_{14}(\mu_4-OH)_2(\mu_3-OH)_{16}(\mu-\eta^2-acac)_8(\eta^2-acac)_{16}\cdot 6H_2O$ (Ln ₁₄)	18		
18	$[Ho_{26}(IN)_{28}(CH_{3}COO)_{4}(CO_{3})_{10}(OH)_{26}(H_{2}O)_{18}] \cdot 20H_{2}O (Ln_{26})$	19		
19	$[Dy_{26}(\mu_3-OH)_{20}(\mu_3-O)_6(NO_3)_9I]^{36+}$ (Ln ₂₆)	20		
20	$[\mathrm{Gd}_{10}(\mu_3\mathrm{-OH})_8]^{22+}$ (Ln ₁₀)	21		
21	$[Dy_{10}O_2(OH)_6(o-van)_6(ISO)_{13}(H_2O)_2](NO_3)$ (Ln ₁₀)	22		
22	$[Ln_{10}(TBC8A)_2(PhPO_3)_4(OH)_2(HCO_3)(HCOO)(DMF)_{14}] \cdot (H_6TBC8A) \cdot 8CH_3OH (Ln_{10}) + (Ln_{10$	23		
23	$[Ln_{16}As_{16}W_{164}O_{576}(OH)_8(H_2O)_{42}]^{80-} (Ln_{16})$	24		
24	$[Ln_{27}Ge_{10}W_{106}O_{406}(OH)_4(H_2O)_{24}]^{59-} (Ln_{26})$	25		
25	$[Ln_{12}(L)_6(OH)_4O_2(CO_3)_6][Ln_{12}(L)_6(OH)_4O_4(CO_3)_6] \cdot (ClO_4)_4 \cdot xH_2O \ (Ln_{12})_{12} \cdot (Ln_$	26		
26	$[Dy_{11}(OH)_{11}(phendox)_6(phenda)_3(OAc)_3] \cdot (OH) \cdot 40H_2O \cdot 7MeOH (Ln_{11})$	27		
27	$[Gd_{60}(CO_3)_8(CH_3COO)_{12}(\mu_2-OH)_{24}(\mu_3-OH)_{96}(H_2O)_{56}](NO_3)_{15} \cdot Br_{12} \cdot (dmp)_5 \cdot 30CH_3OH \cdot 20Hdmp$	28		
		1		

Table S1a. 27 examples of high-nuclear lanthanide clusters are known with nuclearity ≥ 10 was queried using CCDC2018 (2.00) until 15 Jan. 2019.

1. A.S. Chesman, D.R. Turner, B. Moubaraki, K.S. Murray, G.B. Deacon, S.R. Batten, *Dalton Trans.* 2012, 41, 10903–10909.

- 2. L.X. Chang, G. Xiong, L. Wang, P. Cheng, B. Zhao, Chem. Commun. 2013, 49, 1055–1057.
- 3. W. Li, G. Xiong, Inorg. Chem. Commun. 2015, 59, 1-4.
- Y. Zhou, X.Y. Zheng, J. Cai, Z.F. Hong, Z.H. Yan, X.J. Kong, Y.P. Ren, L.S. Long, L.S.Zheng, *Inorg. Chem.* 2017, 56, 2037–2041.
- 5. X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, Z. Zheng, J. Am. Chem. Soc. 2009, 131, 6918–6919.
- 6. L. Qin, Y.-Z. Yu, P.-Q. Liao, W. Xue, Z. Zheng, X.-M. Chen, Y.-Z. Zheng, Adv. Mater. 2016, 28, 10772–10779.
- 7. F.S. Guo, Y.C. Chen, L.L. Mao, W.Q. Lin, J.D. Leng, R. Tarasenko, M. Orendac, J.Prokleska, V. Sechovsky,

M.L. Tong, Chem.-Eur. J. 2013, 19, 14786–14885.

- J.-B. Peng, X.-J. Kong, Q.-C. Zhang, M. Orendac, J. Prokleska, Y.-P. Ren, L.-S. Long, Z. Zheng, L. Zheng, J. Am. Chem. Soc. 2014, 136, 17938–17941.
- 9. M. Wu, F. Jiang, X. Kong, D. Yuan, L. Long, S.A. Al-Thabaiti, M. Hong, Chem. Sci. 2013, 4, 3104–3109.
- 10. M. Wu, F. Jiang, D. Yuan, J. Pang, J. Qian, S.A. Al-Thabaiti, M. Hong, Chem. Commun. 2014, 50, 1113–1115.
- 11. L. Chen, J.Y. Guo, X. Xu, W.W. Ju, D. Zhang, D.R. Zhu, Y. Xu, Chem. Commun. 2013, 49, 9728–9730.
- 12. X.-Y. Zheng, J.-B. Peng, X.-J. Kong, L.-S. Long, L.-S. Zheng, Inorg. Chem. Front. 2016, 3, 320–325.
- 13. R. Wang, Z. Zheng, T. Jin, R.J. Staples, Angew. Chem. Int. Ed. 1999, 38, 1813–1815.
- 14. R. Wang, H.D. Selby, H. Liu, M.D. Carducci, T. Jin, Z. Zheng, J.W. Anthis, R.J.Staples, *Inorg. Chem.* **2002**, *41*, 278–286.
- D. D'Alessio, A.N. Sobolev, B.W. Skelton, R.O. Fuller, R.C. Woodward, N.A.Lengkeek, B.H. Fraser, M. Massi, M.I. Ogden, J. Am. Chem. Soc. 2014, 136, 15122–15125.
- 16. R. Wang, D. Song, S. Wang, Chem. Commun. 2002, 368–369.
- 17. M.R. Bürgstein, M.T. Gamer, P.W. Roesky, J. Am. Chem. Soc. 2004, 126, 5213-5218.
- 18. X.-L. Li, L.-F. He, X.-L. Feng, Y. Song, M. Hu, L.-F. Han, X.-J. Zheng, Z.-H. Zhang, S.-M. Fang, *CrystEngComm*, **2011**, *13*, 3643–3645.
- 19. L. Chen, L. Huang, C. Wang, J. Fu, D. Zhang, D. Zhu, Y. Xu, J. Coord. Chem. 2012, 65, 958–968.
- 20. X. Gu, D. Xue, Inorg. Chem. 2007, 46, 3212–3216.
- 21. S.J. Liu, J.P. Zhao, J. Tao, J.M. Jia, S.D. Han, Y. Li, Y.C. Chen, X.H. Bu, Inorg. Chem. 2013, 52, 9163–9165.
- 22. S.K. Langley, B. Moubaraki, K.S. Murray, Polyhedron, 2013, 64, 255–261.
- 23. K. Su, F. Jiang, J. Qian, J. Pang, F. Hu, S.M. Bawaked, M. Mokhtar, S.A. Al-Thabaiti, M. Hong, *Inorg. Chem. Commun.* 2015,54, 34–37.
- 24. F. Hussain, G.R. Patzke, CrystEngComm, 2011, 13, 530-536.
- 25. Z. Li, X.X. Li, T. Yang, Z.W. Cai, S.T. Zheng, Angew. Chem. Int. Ed. 2017, 56, 2664–2669.
- 26. L. Zhao, S. Xue, J. Tang, Inorg. Chem. 2012, 51, 5994–5996.
- 27. Y.L. Miao, J.L. Liu, J.Y. Li, J.D. Leng, Y.C. Ou, M.L. Tong, Dalton Trans. 2011, 40, 10229–10236.
- X.-M. Luo, Z.-B. Hu, Q.-F. Lin, W. Cheng, J.-P. Cao, C.-H. Cui, H. Mei, Y. Song, Y. Xu, J. Am. Chem. Soc., 2018, 140, 11219–11222

Table S1b. The M_{12} structure containing Vertex-Sharing { M_4O_4 } Cubanes was queried using CCDC2018 (2.00) until 15 Jan. 2019.

No	Title	Structure	Ref.
1	Chloride templated formation $of {Dy_{12}(OH)_{16}}^{20+}$ cluster core incorporating 1, 10-phenanthroline -2,9-dicarboxylate	a) b) c) c) c) c) c) c) c) c) c) c) c) c) c)	<i>CrystEngComm</i> , 2011 , 13 , 3345–3348.

2	The Importance of Being Exchanged: [Gd ^{III} 4M ^{II} 8(OH)8(L)8(O ₂ CR)8] ⁴⁺ Cl usters for MagneticRefrigeration		Angew. Chem. Int. Ed. 2012 , 51, 4633 –4636.
3	Chiral biomolecule based dodecanucleardysprosium(III)–co pper(II)clusters: structuralanalyses and magnetic properties		Inorg. Chem. Front. 2015 , 2, 854–859.
4	Cu ^{II} Gd ^{III} CryogenicMagneticRefrigerantsandCu ₈ Dy9Single-MoleculeMagnetGenerated by In Situ Reactions ofPicolinaldehydeandAcetylpyridine: Experimental andTheoretical Study		Chem. Eur. J. 2013 , 19, 17567–17577.
5	Structurally Flexible and Solution Stable[Ln4TM8(OH)8(L)8(O2CR)8 (MeOH)y](ClO4)4: A Play ground for Magnetic Refrigeration	A) C) C) C) C) C) C) C) C) C) C) C) C) C)	Inorg. Chem. 2016 , 55, 10535–10546.
6	Filling the Missing Links of M_{3n} Prototype 3d-4f and 4f Cyclic Coordination Cages: Syntheses, Structures, and Magnetic Properties of the Ni ₁₀ Ln ₅ and the Er _{3n} Wheels		Inorg. Chem. 2017 , 56, 12821–12829.

7	Halide-Templated Assembly of Polynuclear Lanthanide-Hydroxo Complexes	Dy(3A) Dy(2A) Dy(1A) Dy	Inorg. Chem. 2002 , 41, 278-286.
8	Synthesis,Structure,andMagnetismofaFamilyofHeterometallic { Cu_2Ln_7 }and{ Cu_4Ln_{12} }(Ln = Gd, Tb, and Dy)Complexes:TheGdAnaloguesExhibitingaLargeMagnetocaloric Effect		Inorg. Chem. 2014 , 53,13154–13161.

Table S2a. Crystallographic data of the complex Dy_{12} .

Complex	Dy 12
Formula	$C_{92}H_{116}Dy_{12}N_8O_{52}$
Formula weight	4115.92
<i>T</i> (K)	153.15
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	23.2979(3)
<i>b</i> (Å)	20.7928(2)
<i>c</i> (Å)	27.2160(5)
α (°)	90
β (°)	97.7266(14)
γ (°)	90
$V(\text{\AA}^3)$	13064.5(3)
Ζ	4
$D_c(\mathrm{g~cm^{-3}})$	2.093
$\mu \ (\mathrm{mm}^{-1})$	36.678

Reflns coll.	47464
Unique reflns	13210
$R_{ m int}$	0.0617
${}^{a}R_{1}[I \ge 2\sigma(I)]$	0.0254
$^{b}wR_{2}(all data)$	0.0820
GOF	1.076

Table S2b. Selected bond lengths (Å) and angles (°) of complex Dy12.

Bond lengths (Å)						
Dy1—O10 ⁱ	2.310 (3)	Dy2—O15 ⁱ	2.305 (3)	Dy3—O18	2.219 (2)	
Dy1—O16 ⁱ	2.345 (3)	Dy2—O20	2.333 (2)	Dy3—O12 ⁱ	2.365 (3)	
Dy1—O15	2.349 (2)	Dy2—O15	2.362 (2)	Dy3—O19	2.368 (2)	
Dy1—O16	2.389 (2)	Dy2—O16	2.363 (2)	Dy3—O17	2.394 (2)	
Dy1—O7	2.472 (2)	Dy2—07	2.390 (2)	Dy3—O9	2.466 (3)	
Dy1—O1	2.482 (3)	Dy2—O19	2.401 (2)	Dy3—O2	2.482 (3)	
Dy1—O1W	2.575 (2)	Dy2—O17	2.401 (2)	Dy3—O2W	2.560 (3)	
Dy1—N1	2.655 (3)	Dy2—O9	2.449 (2)	Dy3—N2	2.613 (3)	
Dy4—O21	2.302 (2)	Dy5—O14	2.361 (2)	Dy6—O17	2.331 (2)	
Dy4—O19	2.330 (2)	Dy5—O21	2.371 (2)	Dy6—O8	2.348 (2)	
Dy4—O22	2.336 (2)	Dy5—O22	2.371 (2)	Dy6—O20	2.377 (2)	
Dy4—O11 ⁱ	2.337 (3)	Dy5—O22 ⁱ	2.376 (2)	Dy6—O13	2.488 (2)	
Dy4—O21 ⁱ	2.369 (2)	Dy5—O11	2.434 (3)	Dy6—O4	2.510 (3)	
Dy4—O13	2.393 (2)	Dy5—O3	2.449 (3)	Dy6—O4W	2.604 (2)	
Dy4—O20	2.412 (2)	Dy5—O3W	2.600 (2)	Dy6—O18	2.614 (2)	
Dy4—O18	2.553 (2)	Dy5—N3	2.618 (3)	Dy6—N4	2.627 (3)	
Bond angles (°)						
O10 ⁱ —Dy1—O16 ⁱ	85.87 (9)	O15 ⁱ —Dy2—O20	115.93 (8)	O18—Dy3—O12 ⁱ	82.59 (10)	
O10 ⁱ —Dy1—O15	75.27 (9)	O15 ⁱ —Dy2—O15	67.61 (11)	O18—Dy3—O19	76.70 (8)	
O16 ⁱ —Dy1—O15	70.46 (9)	O20—Dy2—O15	77.08 (9)	O12 ⁱ —Dy3—O19	76.07 (9)	
O10 ⁱ —Dy1—O16	146.06 (9)	015 ⁱ —Dy2—O16	70.90 (9)	018—Dy3—017	73.90 (9)	
016 ⁱ —Dy1—O16	68.68 (11)	O20—Dy2—O16	145.92 (8)	012 ⁱ —Dy3—017	148.69 (8)	

O15—Dy1—O16	75.23 (9)	O15—Dy2—O16	75.50 (8)	O19—Dy3—O17	78.57 (8)
O10 ⁱ —Dy1—O7	113.48 (8)	O15 ⁱ —Dy2—O7	125.13 (9)	O18—Dy3—O9	133.18 (8)
O16 ⁱ —Dy1—O7	123.93 (8)	O20—Dy2—O7	81.13 (9)	012 ⁱ —Dy3—O9	114.45 (9)
O15—Dy1—O7	65.55 (8)	O15—Dy2—O7	66.69 (9)	O19—Dy3—O9	66.98 (7)
O16—Dy1—O7	67.88 (8)	O16—Dy2—O7	69.67 (8)	O17—Dy3—O9	70.85 (8)
O10 ⁱ —Dy1—O1	151.64 (10)	O15 ⁱ —Dy2—O19	78.30 (8)	O18—Dy3—O2	109.78 (10)
O16 ⁱ —Dy1—O1	108.85 (11)	O20—Dy2—O19	70.67 (8)	O12 ⁱ —Dy3—O2	148.78 (10)
O15—Dy1—O1	132.02 (9)	O15—Dy2—O19	115.04 (8)	O19—Dy3—O2	133.87 (10)
O16—Dy1—O1	61.61 (10)	O16—Dy2—O19	140.39 (8)	O17—Dy3—O2	61.20 (10)
O7—Dy1—O1	78.95 (10)	O7—Dy2—O19	149.89 (8)	O9—Dy3—O2	78.59 (10)
O10 ⁱ —Dy1—O1W	86.81 (8)	O15 ⁱ —Dy2—O17	149.91 (8)	O18—Dy3—O2W	63.43 (9)
O16 ⁱ —Dy1—O1W	75.72 (8)	O20—Dy2—O17	72.33 (8)	O12 ⁱ —Dy3—O2W	88.35 (10)
O15—Dy1—O1W	142.52 (8)	O15—Dy2—O17	140.29 (9)	O19—Dy3—O2W	138.78 (8)
O16—Dy1—O1W	107.11 (8)	O16—Dy2—O17	119.73 (9)	O17—Dy3—O2W	98.98 (10)
O7—Dy1—O1W	151.12 (8)	O7—Dy2—O17	83.91 (8)	O9—Dy3—O2W	151.47 (9)
O1—Dy1—O1W	74.19 (10)	O19—Dy2—O17	77.80 (9)	O2—Dy3—O2W	73.28 (11)
O10 ⁱ —Dy1—N1	74.34 (9)	O15 ⁱ —Dy2—O9	82.88 (9)	O18—Dy3—N2	154.02 (10)
O16 ⁱ —Dy1—N1	159.30 (10)	O20—Dy2—O9	128.17 (9)	O12 ⁱ —Dy3—N2	71.50 (10)
O15—Dy1—N1	98.08 (10)	O15—Dy2—O9	148.52 (9)	O19—Dy3—N2	94.85 (9)
O16—Dy1—N1	126.35 (9)	O16—Dy2—O9	84.93 (9)	O17—Dy3—N2	129.12 (10)
O7—Dy1—N1	61.46 (8)	O7—Dy2—O9	128.82 (8)	09—Dy3—N2	60.54 (9)
O1—Dy1—N1	91.66 (12)	O19—Dy2—O9	66.75 (8)	O2—Dy3—N2	93.89 (11)
O1W—Dy1—N1	108.53 (9)	O17—Dy2—O9	71.02 (8)	O2W—Dy3—N2	116.26 (10)
O21—Dy4—O19	116.39 (8)	O14—Dy5—O21	73.90 (8)	O17—Dy6—O8	84.89 (8)
O21—Dy4—O22	71.60 (8)	O14—Dy5—O22	84.99 (8)	O17—Dy6—O20	72.81 (8)
O19—Dy4—O22	146.31 (9)	O21—Dy5—O22	69.80 (8)	O8—Dy6—O20	74.33 (8)
O21—Dy4—O11 ⁱ	126.10 (9)	O14—Dy5—O22 ⁱ	144.28 (8)	O17—Dy6—O13	125.44 (8)
O19—Dy4—O11 ⁱ	83.30 (8)	O21—Dy5—O22 ⁱ	75.23 (9)	O8—Dy6—O13	113.39 (8)
O22—Dy4—O11 ⁱ	67.94 (8)	O22—Dy5—O22 ⁱ	67.71 (10)	O20—Dy6—O13	64.88 (7)
O21—Dy4—O21 ⁱ	69.11 (10)	O14—Dy5—O11	115.82 (9)	O17—Dy6—O4	107.58 (10)
O19—Dy4—O21 ⁱ	77.10 (9)	O21—Dy5—O11	66.15 (8)	O8—Dy6—O4	144.66 (9)
O22—Dy4—O21 ⁱ	76.00 (9)	O22—Dy5—O11	121.78 (9)	O20—Dy6—O4	140.63 (9)
O11 ⁱ —Dy4—O21 ⁱ	67.73 (8)	O22 ⁱ —Dy5—O11	65.74 (8)	O13—Dy6—O4	86.64 (10)

O21—Dy4—O13	80.39 (8)	O14—Dy5—O3	89.57 (10)	O17—Dy6—O4W	70.46 (8)
O19—Dy4—O13	127.74 (9)	O21—Dy5—O3	137.11 (9)	O8—Dy6—O4W	85.97 (8)
O22—Dy4—O13	85.11 (8)	O22—Dy5—O3	69.53 (9)	O20—Dy6—O4W	139.52 (7)
O11 ⁱ —Dy4—O13	128.31 (8)	O22 ⁱ —Dy5—O3	101.17 (9)	O13—Dy6—O4W	154.45 (7)
O21 ⁱ —Dy4—O13	147.85 (8)	O11—Dy5—O3	151.89 (9)	O4—Dy6—O4W	68.52 (9)
O21—Dy4—O20	77.10 (8)	O14—Dy5—O3W	139.36 (8)	O17—Dy6—O18	68.04 (8)
O19—Dy4—O20	70.53 (9)	O21—Dy5—O3W	144.94 (8)	O8—Dy6—O18	147.99 (8)
O22—Dy4—O20	140.29 (8)	O22—Dy5—O3W	114.96 (8)	O20—Dy6—O18	81.33 (8)
O11 ⁱ —Dy4—O20	151.65 (8)	O22 ⁱ —Dy5—O3W	75.32 (8)	O13—Dy6—O18	72.85 (7)
O21 ⁱ —Dy4—O20	114.74 (8)	O11—Dy5—O3W	84.58 (8)	O4—Dy6—O18	63.88 (9)
O13—Dy4—O20	65.83 (8)	O3—Dy5—O3W	67.71 (10)	O4W—Dy6—O18	99.94 (7)
O21—Dy4—O18	152.95 (8)	O14—Dy5—N3	74.74 (9)	O17—Dy6—N4	159.20 (9)
O19—Dy4—O18	71.19 (8)	O21—Dy5—N3	99.51 (9)	08—Dy6—N4	74.53 (9)
O22—Dy4—O18	117.68 (8)	O22—Dy5—N3	159.20 (9)	O20—Dy6—N4	98.18 (8)
O11 ⁱ —Dy4—O18	79.40 (8)	O22 ⁱ —Dy5—N3	128.25 (9)	O13—Dy6—N4	62.72 (8)
O21 ⁱ —Dy4—O18	136.42 (8)	O11—Dy5—N3	65.38 (9)	O4—Dy6—N4	91.34 (11)
O13—Dy4—O18	75.50 (8)	O3—Dy5—N3	114.15(10)	O4W—Dy6—N4	110.31 (9)
O20—Dy4—O18	81.93 (8)	O3W—Dy5—N3	84.23 (9)	018—Dy6—N4	130.25 (8)
Symmetry code: (i) - <i>x</i> , <i>y</i> , - <i>z</i> + $1/2$.					

Figure S1. The weak interaction bonds for complex Dy_{12} .

Table S3. Hydrogen-bonds for **Dy**₁₂ complex.

	Dy ₁₂	
Hydrogen bond	Distance ^a , Å	Angle ^b , °

C_2 – H_2 ··· π	2.84	161		
C_7 – H_7 ··· π	2.52	172		
C_{11} - H_{11} ··· π	2.94	163		
C_{20} - H_{20} ··· π	2.95	152		
C_{44} – H_{44A} ··· π	2.96	154		
^a Distance between acceptor and donor; ^b Angle of acceptor-hydrogen-donor.				

Table S4. SHAPE analysis of the Dy1 ion in **Dy12**.

Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{8\mathrm{h}}$	Octagon	35.358
HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	22.662
HBPY-8	D_{6h}	Hexagonal bipyramid	14.952
CU-8	$O_{ m h}$	Cube	8.177
SAPR-8	$D_{ m 4d}$	Square antiprism	3.085
TDD-8	$D_{ m 2d}$	Triangular dodecahedron	2.859
JGBF-8	$D_{ m 2d}$	Johnson gyrobifastigium J26	16.164
JETBPY-8	$D_{ m 3h}$	Johnsonelongatedtriangular bipyramid J14	26.369
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	4.820
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	3.989
JSD-8	D_{2d}	Snub diphenoid J84	6.861
TT-8	$T_{\rm d}$	Triakis tetrahedron	8.663
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	22.258

Table S5. SHAPE analysis of the Dy2 ion in **Dy**12.

	-	• •	
Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{ m 8h}$	Octagon	25.970
HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	23.138
HBPY-8	D_{6h}	Hexagonal bipyramid	15.134
CU-8	$O_{ m h}$	Cube	8.041
SAPR-8	$D_{ m 4d}$	Square antiprism	0.998

TDD-8	D_{2d}	Triangular dodecahedron	2.223
JGBF-8	$D_{ m 2d}$	Johnson gyrobifastigium J26	15.377
JETBPY-8	$D_{3\mathrm{h}}$	Johnsonelongatedtriangular bipyramid J14	26.661
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	3.389
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	2.712
JSD-8	$D_{ m 2d}$	Snub diphenoid J84	5.458
TT-8	$T_{\rm d}$	Triakis tetrahedron	8.763
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	21.197

Table S6. SHAPE analysis of the Dy3 ion in Dy_{12} .

Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{8\mathrm{h}}$	Octagon	31.564
HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	21.989
HBPY-8	D_{6h}	Hexagonal bipyramid	14.927
CU-8	$O_{ m h}$	Cube	8.917
SAPR-8	$D_{ m 4d}$	Square antiprism	3.867
TDD-8	D_{2d}	Triangular dodecahedron	2.854
JGBF-8	D_{2d}	Johnson gyrobifastigium J26	15.684
JETBPY-8	$D_{3\mathrm{h}}$	Johnsonelongatedtriangular bipyramid J14	25.674
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	5.224
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	4.275
JSD-8	D_{2d}	Snub diphenoid J84	6.657
TT-8	T _d	Triakis tetrahedron	9.336
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	20.904

Table S7. SHAPE analysis of the Dy4 ion in **Dy12**.

Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{8\mathrm{h}}$	Octagon	26.542

HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	22.705
HBPY-8	D_{6h}	Hexagonal bipyramid	14.395
CU-8	$O_{ m h}$	Cube	7.530
SAPR-8	$D_{ m 4d}$	Square antiprism	1.132
TDD-8	D_{2d}	Triangular dodecahedron	2.079
JGBF-8	$D_{ m 2d}$	Johnson gyrobifastigium J26	15.272
JETBPY-8	$D_{3\mathrm{h}}$	Johnsonelongatedtriangular bipyramid J14	26.269
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	3.580
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	2.853
JSD-8	$D_{ m 2d}$	Snub diphenoid J84	5.807
TT-8	T _d	Triakis tetrahedron	8.254
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	20.479

Table S8. SHAPE analysis of the Dy5 ion in **Dy12**.

Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{8\mathrm{h}}$	Octagon	35.428
HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	22.343
HBPY-8	D_{6h}	Hexagonal bipyramid	13.038
CU-8	$O_{ m h}$	Cube	6.630
SAPR-8	$D_{ m 4d}$	Square antiprism	3.577
TDD-8	D_{2d}	Triangular dodecahedron	2.213
JGBF-8	D_{2d}	Johnson gyrobifastigium J26	14.798
JETBPY-8	$D_{3\mathrm{h}}$	Johnsonelongatedtriangular bipyramid J14	26.532
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	5.044
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	3.697
JSD-8	D_{2d}	Snub diphenoid J84	5.851
TT-8	$T_{\rm d}$	Triakis tetrahedron	7.452
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	21.271

Label	Shape	Symmetry	Distortion (°)
OP-8	$D_{ m 8h}$	Octagon	34.393
HPY-8	$C_{7\mathrm{v}}$	Heptagonalpyramid	22.959
HBPY-8	D_{6h}	Hexagonal bipyramid	13.977
CU-8	$O_{ m h}$	Cube	6.797
SAPR-8	$D_{ m 4d}$	Square antiprism	3.291
TDD-8	D_{2d}	Triangular dodecahedron	2.324
JGBF-8	$D_{ m 2d}$	Johnson gyrobifastigium J26	16.377
JETBPY-8	$D_{3\mathrm{h}}$	Johnsonelongatedtriangular bipyramid J14	26.054
JBTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism J50	5.096
BTPR-8	$C_{2\mathrm{v}}$	Biaugmented trigonal prism	4.328
JSD-8	D_{2d}	Snub diphenoid J84	6.897
TT-8	T _d	Triakis tetrahedron	7.195
ETBPY-8	$D_{3\mathrm{h}}$	Elongated trigonal bipyramid	23.568

Table S9. SHAPE analysis of the Dy6 ion in **Dy**12.

Thermal analysis

Figure S2a. The TG curve of **Dy**₁₂ under heating in flowing N₂ at 5 °C·min⁻¹ over the temperature range of 35-1000 °C.

Figure S2b. Powdered X-ray diffraction (XRD) patterns for complex Dy12.

Figure S3. Positive ESI-MS spectra of Dy12 in DMF (In-Source CID 0, 40 and 100 eV).

Table S10. Major species assigned in the ESI-MS of Dy_{12} in positive mode (Since the Dy_{12} crystal is easily weathered, a small amount of the reaction solution is retained during sampling to cause introduction of Dy^{3+} ions).

$\mathbf{D}\mathbf{y}_{12}$ (In-Source CID 0 eV)					
Peaks	Relative Intensity	Obs.m/z	Calc.m/z		
$[\mathrm{Dy}(L)(\mathrm{DMF})_4]^{2+}$	0.311	314.09	314.09		
$[Dy(L)(HL)(DMF)(CH_3OH)(H_2O)]^{2+}$	0.157	316.57	316.56		
$[Dy(L)(HL)(DMF)(CH_3OH)_2(H_2O)]^{2+}$	0.720	331.56	331.56		
$[Dy(L)_2(DMF)(CH_3OH)_2Na]^{2+}$	0.231	334.04	334.05		
$[Dy(L)(OH)(DMF)_4(H_2O)K]^{2+}$	0.751	351.09	351.08		
$[Dy(L)(HL)(DMF)_2(H_2O)_3]^{2+}$	0.288	353.58	353.57		
$[Dy(L)(HL)(DMF)_2(CH_3OH)_2(H_2O)]^{2+}$	0.354	368.09	368.09		
$[Dy(L)(OH)(DMF)_5(H2O)_2Na]^{2+}$	0.326	387.62	387.62		
$[Dy(L)(CH_3O)_2(CH_3OH)Na]^+$	1	453.02	453.02		
$[Dy(L)(CH_{3}O)(OH)(H_{2}O)_{2}K]^{+}$	0.735	457.98	457.97		
$[Dy(L)(CH_3O)_2(DMF)(CH_3OH)Na]^+$	0.690	526.07	526.07		
$[Dy(L)(CH_3O)(OH)_2(DMF)(H_2O)K]^+$	0.650	531.03	531.02		
$[Dy_{12}(L)_8(CH_3O)_{12}(OH)_{16}(DMF)_5(CH_3OH)+2Dy^{3+}]^{6+}$	0.032	782.48	782.48		
$[Dy_{12}(L)_{10}(CH_3O)_{10}(OH)_{16}(DMF)_4 + 2Dy^{3+}]^{6+}$	0.020	811.64	811.63		
$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{19}(DMF)_3+2Dy^{3+}]^{5+}$	0.082	901.74	901.74		
$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{19}(DMF)_2(H_2O)_5(CH_3OH)_2+2Dy^{3+}]^{5+}$	0.142	916.75	916.75		
$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{20}(DMF)_2(H_2O)+2Dy^{3+}]^{4+}$	0.311	1117.16	1117.17		
$[Dy_{12}(L)_8(CH_3O)_9(OH)_{21}(DMF)_3(H_2O)_2+2Dy^{3+}]^{4+}$	0.170	1136.16	1136.17		
$[Dy_{12}(L)_9(CH_3O)_{10}(OH)_{19}(CH_3OH)_3(H_2O)_3+2Dy^{3+}]^{4+}$	0.159	1151.92	1151.93		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(H_2O)_3+3Dy^{3+}]^{3+}$	0.306	1477.84	1477.83		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(CH_3OH)_4 + 3Dy^{3+}]^{3+}$	0.235	1501.87	1501.87		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(CH3OH)_6+3Dy^{3+}]^{3+}$	0.157	1522.86	1522.87		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{26}+3Dy^{3+}]^{2+}$	0.131	2198.22	2198.23		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{26}(DMF)+3Dy^{3+}]^{2+}$	0.129	2235.26	2235.26		
$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{26}(DMF)(CH_3OH)_2+3Dy^{3+}]^{2+}$	0.063	2266.28	2266.28		

Figure S4. The superposed simulated and observed spectra of several species for Dy_{12} (In-Source CID 0 eV).

	F actorial	Relative Intensity							
m/z,	Fragment	1min	15min	40min	60min	2.5h	8 h	12h	
210.05	$[(L+H)(H_2O)_2]^+$ (cal.210.07)	1	1	0.569	0.437	0.249	0	0	
287.04	[KDy(L)(OH)(DMF) ₂ (H ₂ O) ₂] ²⁺ (cal.287.03)	0.087	0.021	0	0	0	0	0	
314.09	[Dy(L)(DMF) ₄] ²⁺ (cal.314.09)	0.107	0	0	0	0	0	0	
316.57	[KDy(L)(OH)(DMF) ₂ (CH ₃ CN)(H ₂ O) ₃] ²⁺ (cal.316.55)	0.156	0.029	0	0	0	0	0	
453.02	[Dy(L)(CH ₃ O) ₂ (CH ₃ OH)Na] ⁺ (cal.453.02)	0.032	0.349	1	1	1	1	1	
457.98	[Dy(L)(CH ₃ O)(OH)(H ₂ O) ₂ K] ⁺ (cal.457.97)	0.090	0.256	0.735	0.752	0.587	0.271	0.116	
462.94	$[Dy(L)(OH)_2(H_2O)_3K]^+$ (cal.462.97)	0.092	0.073	0.209	0.320	0.167	0.077	0.033	
590.09	[Dy(L)Cl(DMF) ₃] ⁺ (cal.590.10)	0.083	0	0	0	0	0	0	
595.05	[Dy(L) ₂ (CH ₃ OH)(H ₂ O) ₃ +H] ⁺ (cal.595.07)	0.148	0.052	0	0	0	0	0	
600.01	[KDy(L) ₂ (OH)(H ₂ O) ₂] ⁺ (cal.600.00)	0.109	0.228	0.091	0.107	0.036	0.004		
654.11	[Dy(L) ₂ (DMF) ₂] ⁺ (cal.654.11)	0.033	0	0	0	0	0	0	
659.07	[Dy(L) ₂ K(H ₂ O)(CH ₃ O)(CH ₃ OH) ₂] ⁺ (cal.659.06)	0.040	0.078	0.021	0.026	0.008	0	0	
664.03	[Dy(L) ₂ K(H ₂ O) ₃ (CH ₃ O)(CH ₃ OH)] ⁺ (cal.664.05)	0.019	0.252	0.172	0.245	0.106	0.010	0	
998.95	[KDy ₂ (L) ₃ (OH) ₂ Cl(CH ₃ OH)(H ₂ O)] ⁺ (cal.998.94)	0.011	0.002	0	0	0	0	0	
1062.97	$[NaDy_{2}(L)_{3}(OH)Cl_{2}(H_{2}O)_{4}(CH_{3}CN)$ $]^{+} (cal.1062.98)$	0.007	0.006	0	0	0	0	0	
901.74	$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{19}(DMF)_3+2$ $Dy^{3+}]^{5+}$ (cal.901.74)	0	0	0	0.019	0.046	0.088	0.066	
916.75	$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{19}(DMF)_2(H_2O)_5(CH_3OH)_2+2Dy^{3+}]^{5+}$	0	0	0	0.013	0.046	0.107	0.066	

Table S11. Major species assigned in the Time-dependent ESI-MS of Dy12 in positivemode.

	(cal.916.75)							
1117.16	$[Dy_{12}(L)_8(CH_3O)_{10}(OH)_{20}(DMF)_2(H_2O)+2Dy^{3+}]^{4+} (cal.1117.17)$	0	0	0	0.031	0.115	0.352	0.167
1136.16	$[Dy_{12}(L)_8(CH_3O)_9(OH)_{21}(DMF)_3(H_2O)_2+2Dy^{3+}]^{4+}$ (cal.1136.17)	0	0	0	0.013	0.079	0.201	0.116
1151.92	$[Dy_{12}(L)_9(CH_3O)_{10}(OH)_{19}(CH_3OH)_3$ $(H_2O)_3+2Dy^{3+}]^{4+}$ (cal.1151.93)	0	0	0	0	0.064	0.195	0.094
1477.84	$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(H_2O)_3+3$ $Dy^{3+}]^{3+}$ (cal.1477.83)	0	0	0	0.035	0.118	0.527	0.173
1501.87	$\begin{split} & [Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(CH_3OH)_4 \\ & +3Dy^{3+}]^{3+} \ (cal.1501.87) \end{split}$	0	0	0	0.020	0.127	0.388	0.185
1522.86	$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{25}(CH3OH)_{6}+3Dy^{3+}]^{3+}$ (cal.1522.87)	0	0	0	0	0.075	0.272	0.109
2198.22	$[Dy_{12}(L)_{7}(CH_{3}O)_{10}(OH)_{26}+3Dy^{3+}]^{2+}$ (cal.2198.23)	0	0	0	0.014	0.027	0.276	0.505
2235.26	$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{26}(DMF)+3$ $Dy^{3+}]^{2+}$ (cal.2235.26)	0	0	0	0	0.038	0.276	0.511
2266.28	$[Dy_{12}(L)_7(CH_3O)_{10}(OH)_{26}(DMF)(C H_3OH)_2+3Dy^{3+}]^{2+} (cal.2266.28)$	0	0	0	0	0.016	0.141	0.262

Figure S5. The superposed simulated and observed spectra of several species in the Time-dependent ESI-MS of **Dy**₁₂.

Figure S6. Time-dependent HRESI-MS spectra for the stepwise assembly of Dy12 in negative mode.

m/7	agmont	Relative Intensity						
m/L	r i agment	1min	15min	40min	60min	2.5h	8 h	12h
305.80	[DyCl ₄] ⁻ (cal.305.80)	0.442	0.703	1	1	1	1	1
440.87	[DyCl ₄ (DMF)(CH ₃ O) ₂] ⁻ (cal.440.89)	0.103	0.344	0.342	0.279	0.354	0.068	0.080
577.95	$[Dy(L)_2Cl_2]^-$ (cal.577.95)	0.087	0.209	0.165	0.134	0.166	0.015	0.009
767.66	[Dy ₂ Cl ₇ (L)Na] ⁻ (cal.767.66)	0.010	0.026	0.038	0.040	0.044	0.012	0.022
826.66	[Dy ₂ Cl ₇ (L)K(CH ₃ CN)] ⁻ (cal.826.66)	0.006	0.013	0.022	0.019	0.024	0.009	0.018
845.75	[Dy ₂ Cl ₇ (HL)(CH ₃ OH) ₂ (H ₂ O) ₂] ⁻ (cal.845.75)	0.025	0.085	0.093	0.102	0.114	0.011	0.007
962.69	$[Dy_2Cl_8(HL)(H_2O)_8K]^-$ (cal.962.69)	0.012	0.026	0.033	0.025	0.033	0.005	0.006
983.83	[Dy ₂ Cl ₆ (L)(HL)(CH ₃ OH) ₂ (H ₂ O) ₂] ⁻ (cal.983.83)	0.020	0.067	0.062	0.058	0.068	0.003	0
1041.81	[Dy ₂ Cl ₅ (L) ₃ Na] ⁻ (cal.1041.81)	0.016	0.046	0.042	0.035	0.043	0.002	0.005
1173.57	[Dy ₃ Cl ₉ (L) ₂ Na] ⁻ (cal.1173.57)	0.004	0.013	0.018	0.020	0.021	0.004	0.005
1251.68	$[Dy_3Cl_7(L)_3]^-$ (cal.1251.68)	0.006	0.018	0.020	0.023	0.026	0.002	0
1309.64	[Dy ₃ Cl ₈ (L) ₃ Na] ⁻ (cal.1309.64)	0.008	0.024	0.022	0.024	0.028	0.002	0
1369.63	$[Dy_3Cl_8(L)_3K(N_3)H]^-$ (cal.1369.63)	0.007	0.019	0.024	0.021	0.026	0.003	0.002
1446.71	[Dy ₃ Cl ₇ (L) ₄ Na] ⁻ (cal.1446.71)	0.009	0.030	0.030	0.028	0.035	0.001	0
1715.54	$[Dy_4Cl_{10}(L)_4Na]^-$ (cal.1715.54)	0.001	0.007	0.008	0.008	0.010	0	0
1775.50	$[Dy_5Cl_{10}(L)_3(CH_3O)_3]^-$ (cal.1775.50)	0.002	0.007	0.009	0.009	0.010	0.001	0
1852.58	[Dy ₅ Cl ₉ (L) ₃ (CH ₃ O) ₂ (OH) ₂ (H ₂ O) ₆] ⁻ (cal.1852.58)	0.003	0.013	0.011	0.013	0.015	0	0
1980.41	[Dy ₆ Cl ₁₀ (L) ₃ (OH) ₅ (CH ₃ O)(H ₂ O)] ⁻ (cal.1980.41)	0	0.005	0.006	0.006	0.010	0.005	0
2025.45	[Dy ₆ Cl ₁₀ (L) ₃ (OH) ₅ (CH ₃ O)(CH ₃ OH) ₂] ⁻ (cal.12025.45)	0	0.003	0.004	0.005	0.003	0.001	0
2058.48	[Dy ₆ Cl ₁₀ (L) ₃ (OH) ₅ (CH ₃ O)(CH ₃ OH) ₃] ⁻ (cal.2058.48)	0	0.002	0.003	0.002	0.002	0	0

Table S12. Major species assigned in the Time-dependent ESI-MS of Dy12 in negative mode.

Figure S7. The superposed simulated and observed spectra of several species in the Time-dependent ESI-MS of Dy_{12} .

Figure S8. Temperature dependence of $\chi_m T$ (a) and field dependence of the magnetization (b) for **Dy**₁₂.

Figure S9. The temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac-susceptibilities for different frequencies in 0 (a) and 2000 Oe (b) dc-field for **Dy**₁₂.

Figure S10. Variable-frequency dependent ac susceptibilities for **Dy**₁₂ under 2000 Oe (a and b) dc-field; c) Cole–Cole plots from ac susceptibilities; d) Arrhenius plots generated from the temperature-dependent relaxation times extracted from the ac-susceptibilities Cole-Cole fits in H_{dc} = 2000 Oe, The symbols and lines represent the extracted times and least-square fits.

Table S13. Selected parameters from the fitting results of the Cole-Cole plots for **Dy**₁₂ under 2000 Oe dc-field.

	1	1	1
<i>T</i> (K)	τ	α	residual
2.00	1.47E-04	3.60E-01	2.43E-01
2.14	1.48E-04	4.23E-01	3.02E-01
2.30	1.46E-04	5.49E-01	3.08E-01
2.46	1.33E-04	5.60E-01	4.15E-01
2.64	1.18E-04	4.82E-01	5.02E-02
2.83	1.03E-04	5.82E-01	5.81E-02
3.03	8.62E-05	2.69E-01	5.41E-02