Electronic Supplementary Information (ESI):

Formation of a new Ag₃₄S₃SBB₂₀(CF₃COO)₆²⁺ cluster from a hydride protected

silver cluster

C. K. Manju, Debasmita Ghosh, Mohammad Bodiuzzaman, and Thalappil Pradeep*

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence,

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India Email:pradeep@iitm.ac.in

Table of contents

No	Description	Page No
S1	Characterization of Ag ₁₈	2
S2	ESI MS spectrum of 30 min reaction product	3
S3	Lower mass region of time-dependent cluster sunthesis	4
S4	ESI MS/MS spectra of the cluster at higher collition energy	5
S5	Comparative IR spectrum of cluster and CF ₃ COOAg	6
S6	XPS spectrum of the cluster	7
S7	SEM EDS spectrum and mapping of the cluster	8
S8	UV-vis spectrum of the control experiment without the	9
	addition of CF ₃ COOAg	
S9	UV-vis spectrum of the control experiment with Ag_{18}	10
	synthesized using CF ₃ COOAg as a precursor	
S10	UV-vis spectrum of the reaction between Ag-SBB and	11
	CF ₃ COOAg	
S11	ESI MS spectrum of the reaction between Ag-SBB with	12
	CF ₃ COOAg	

Fig. S1 UV-vis spectrum of Ag₁₈ showed two main peaks at 545 and 614 nm. ESI MS spectrum is given inset. The peak at m/z 2290 is expanded and compared with the theoretical spectrum of Ag₁₈(TPP)₁₀H₁₆²⁺.

Fig. S2 ESI MS spectrum of 30 min reaction product. Three major peaks are seen at m/z 5156, 5013, and 4869 and are assigned as $Ag_{47}S_7SBB_{28}^{2+}$, $Ag_{46}S_7SBB_{27}^{2+}$, and $Ag_{45}S_7SBB_{26}^{2+}$ respectively.

Fig. S3 Lower mass region of time-dependent cluster synthesis. Assignments for the species 1, 2, 3 and 4 are given in table S2.

No	Assignment	m/z
1	$Ag_6SSBB_7CF_3COO^+$	2045
2	$Ag_6S_2SBB_7CF_3COO^+$	2077
3	$Ag_6S_2SBB_7(CF_3COO)_2^+$	2189
4	Ag ₈ SBB ₇ (CF ₃ COO) ₅ ⁺	2677

Table. S1 Thiolates species present in the lower mass region of time-dependent ESI MS.

Fig. S4 ESI MS/MS spectrum of the cluster at higher collotion energy (CE, in instrumental unit). Intensity of $Ag_{27}S_3SBB_{13}^{2+}$ peak increased as the CE increased. At higher CE, $Ag_8SBB_7^+$, $Ag_7SBB_6^+$, $Ag_6SBB_5^+$ and $Ag_5SBB_4^+$ were also observed in the lower mass region.

S5 Comparison of the IR spectrum of cluster and CF_3COOAg (A and B). Cluster showed peaks corresponding to CF_3 and C=O groups.

Fi

Fig. S6 XPS spectrum of cluster showed the presence of Ag, S and F. Expanded region for (A) Ag 3d, (B) S 2p, and (C) F 1s.

Fig. S7 SEM EDS spectrum and elemental mapping of the cluster.

Fig. S8 UV-vis spectrum of the control experiment without the addition of CF_3COOAg . A hexane solution of this showed a peak at 440 nm.

Fig. S9 UV-vis spectrum of the control experiment with Ag_{18} synthesized using CF₃COOAg as a precursor. This sample in hexane showed a broad peak at 465 nm.

Fig. S10 UV-vis spectrum of the reaction between Ag-SBB and CF_3COOAg . The 200-500 nm region is expanded in the inset. Two humps were observed at 235 nm and 290 nm.

Fig. S11 ESI MS spectrum of the reaction between Ag-SBB and CF₃COOAg. Formation of smaller silver-chalcogenolate clusters were observed.