Electronic Supplementary Material (ESI) for Dalton Transactions.

This journal is © The Royal Society of Chemistry 2019

SUPPLEMENTARY MATERIAL

Syntheses and magnetic properties of high dimensional

cucurbit[6]uril-based metal organic rotaxane frameworks

Xue-Song Wu,^a Hong-Fei Bao,^b Fu-Long Zhu,^b Jing Sun,^{*a} Xin-Long Wang^{a,b} and Zhong-Min Su^{*a,b}

^a Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, P. R. China.

^b National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, P.R. China.

*Corresponding Author E-mail: sj-cust@126.com (J. Sun); zmsu@nenu.edu.cn (Z.-M. Su).

Experimental Section

Materials and Physical Measurements.

[PR43]²⁺·2[NO₃]⁻ and CB[6] were synthesized according to the references.^{1,2} Other purchased chemicals reagents were used without any further purification. The IR spectra were recorded from KBr pellets in the range of 4000-400 cm⁻¹ on a Mattson Alpha-Centauri spectrometer. Elemental analyses (C, H, and N) were performed on a PerkinElmer 2400 elemental analyzer. Elemental Co contents of compounds 1-3 were determined using an ICP-9000 (N+M) (USA Thermo Jarrell-Ash Corp). Thermogravimetric analysis (TGA) was performed on a PerkinElmer TG-7 analyzer over the temperature 20-800 °C in a nitrogengas atmosphere with a heating rate of 10 °C min⁻¹. Variable temperature magnetic susceptibility data were obtained in the temperature range of 2-300 K using a SQUID magnetometer (Quantum Design, MPMS-5) with an applied field of 1000 Oe. X-ray photoelectron spectroscopy analyses were performed on a VG ESCALABMKII spectrometer with an Al-Ka (1486.6 eV) achromatic X-ray source. Powder X-ray diffraction (XRD) measurements were recorded on a Rigaku Smart Lab with Cu-K α ($\lambda = 1.5418$ Å) radiation in the range 5-50°. Xray diffraction data collection of the compounds was performed using a Bruker Smart Apex II CCD diffractometer with graphite monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å) at room temperature. All absorption corrections were performed by using the SADABS program. The formulas of compounds 1 and 2 were determined by the combination of elemental analysis, TGA data and the crystallographic data. The water is randomly disordered in compound 3 and the formula of compound 3 was determined by the combination of elemental analysis, TGA data and the SQUEEZE results. The crystallographic data of compound 1-3 have been deposited in the Cambridge Crystallographic Data Center as supplementary publication with CCDC: 1909151, 1909152, 1909153.

Preparation of [Co₂(PR43)(BDC)₂Cl₂]·4H₂O (1).

A mixture of CoCl₂·6H₂O (19.0 mg, 0.08 mmol), [PR43]²⁺·2[NO₃]⁻ (55.7 mg, 0.04 mmol), H₂BDC (9.97 mg, 0.06 mmol), 3 drops of triethylamine (where a 1 ml injection syringe is used) and 4 mL of H₂O was stirred for 30 min, and then transferred and sealed in a 18 mL Teflon-lined stainless steel container, which is heated at 140 °C for 72h. Block purple crystals of 1 suitable for X-ray crystallography were obtained, washed with distilled water, and dried in air. Yield: 40.6% based [PR43]. Elemental on analysis calc. for C₆₈H₇₆Co₂Cl₂N₂₈O₂₄. (%): C 43.94, Co 6.34, H 4.12, N 21.10; Found: C 44.76, Co 6.21, H 3.94, N 21.62.

Preparation of [Co₂(PR43)(BTC)₂]·6H₂O (2).

2 was synthesized by a procedure similar to that was used for **1** with H₃BTC (10.5 mg, 0.05 mmol) instead of H₂BDC. Yield: 36.4% based on [PR43]. Elemental analysis calc. for $C_{70}H_{80}Co_2N_{28}O_{31}$. (%): C 43.62, Co 6.12, H 4.18, N 20.35; Found: C 44.56, Co 5.98, H 4.06, N 20.54.

Preparation of [Co₂(PR43)(BPT)₂]·20H₂O (3).

3 was synthesized by a procedure similar to that was used for **1** with H₃BPT (14.3 mg, 0.05 mmol) instead of H₂BDC. Yield: 43.6% based on [PR43]. Elemental analysis calc. for $C_{82}H_{114}Co_2N_{28}O_{44}$. (%): C 42.57, Co 5.09, H 4.97, N 16.95; Found: C 42.31, Co 5.21, H 5.08, N 16.73.

	1	2	3
Empirical formula	$[Co_2(PR43)(BDC)_2Cl_2] \cdot 4H_2O$	[Co ₂ (PR43)(BTC) ₂]·6H ₂ O	[Co ₂ (PR43)(BPT) ₂]·20H ₂ O
Mr	1858.32	1927.48	2313.86
T/K	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_{l}/c$	Pbca	$P2_{l}/n$
a/Å	14.256(5)	19.034(5)	13.868(5)
b/\AA	19.149(5)	14.409(5)	14.824(5)
c/\AA	14.830(5)	27.801(5)	25.364(5)
α (°)	90.000(5)	90	90.000(5)
β (°)	110.087(5)	90	92.949(5)
γ (°)	90.000(5)	90	90.000(5)
V/\AA^3	3802(2)	7625(4)	5207(3)
Ζ	2	4	2
<i>Dc</i> /mg m ⁻³	1.623	1.679	1.476
μ/mm^{-1}	0.607	0.547	0.423
measured reflections	38328	16951	41404
Independent reflections	9304	6476	9162
data/restraints/parameter s	9304/24/577	6476/21/595	9162/1/613
goodness-of-fit on F ²	1.043	1.138	1.086
$R_1^a \left[I > 2\sigma(I)\right]$	0.0406	0.1019	0.0521
$wR_{2^{b}}$ (all data)	0.1137	0.2386	0.1716
${}^{a}R_{1} = \sum (F_{o} - F_{c}) / \sum F_{o} . {}^{b}wR_{2} = [\sum w(F_{o} ^{2} - F_{c} ^{2})^{2} / \sum w(F_{o}^{2})]^{1/2}.$			

Fig. S1 The coordination environment of H₂BDC, H₃BTC and H₃BPT.

Fig. S2 The chemical views of the one dimensional chain in 1.

Fig. S3 The 3D supramolecular architectures as viewed along the *b* axis in 1.

Fig. S4 The 3D frameworks as viewed along the *a* axis in 2. Hydrogen atoms are omitted.

Fig. S5 The 3D frameworks as viewed along the c axis in 3. Hydrogen atoms are omitted.

Fig. S6 The IR spectrum of compound 1, H_2BDC and $[PR43]^{2+2}[NO_3]^{-1}$.

Fig. S7 The IR spectrum of compound 2, H₃BTC and [PR43]²⁺·2[NO₃]⁻.

Fig. S8 The IR spectrum of compound 3, H₃BPT and [PR43]^{2+.}2[NO₃]⁻.

Fig. S9 PXRD patterns for compound 1 and simulated spectra of compound 1 from single crystal data.

Fig. S10 PXRD patterns for compound 2 and simulated spectra of compound 2 from single crystal data.

Fig. S11 PXRD patterns for compound 3 and simulated spectra of compound 3 from single crystal data.

Fig. S12 Thermal gravimetric analysis (TGA) curves for as-synthesized compound 1.

Fig. S13 Thermal gravimetric analysis (TGA) curves for as-synthesized compound 2.

Fig. S14 Thermal gravimetric analysis (TGA) curves for as-synthesized compound 3.

Fig. S15 XPS spectra of compound 1 give one peak at 780.3 eV, which can be ascribed to $Co^{II}\,2p_{3/2}.^3$

Fig. S16 XPS spectra of compound 2 give one peak at 780.7 eV, which can be ascribed to $\mathrm{Co^{II}}\,2p_{3/2}.^3$

Fig. S17 XPS spectra of compound 3 give one peak at 780.6 eV, which can be ascribed to $Co^{II} 2p_{3/2}$.³

1 Z.-B. Wang, H.-F. Zhu, M. Zhao, Y.-Z. Li, T.-a. Okamura, W.-Y. Sun, H.-L. Chen and N. Ueyama, *Cryst. Growth Des.*, 2006, **6**,1420-1427.

2 D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe and J. A. Ripmeester, *Cryst. Growth Des.*, 2011, **11**, 5598-5614.

3 K Yu, B.-B. Zhou, Y. Yu, Z.-H. Su and G.-Y. Yang, Inorg. Chem., 2011, 50, 1862-1867.