Electronic Supplementary Information for

From Deep Blue to Green Emitting and Ultralong Fluorescent

Copper(I) Halide Complexes Containing Dimethylthiophene

Diphosphine and PPh₃ Ligands

Qiong Wei, Rui Zhang, Li Liu*, Xin-Xin Zhong*, Lei Wang*, Guang Hua Li, Fa-Bao

Li, Khalid A. Alamry, Yi Zhao

Contents

Experimental Details

1. NMR Experiments

Fig. S1 ¹H NMR spectrum of **dpmt** in d_6 -DMSO.

Fig. S2 ¹³C NMR spectrum of dpmt in CDCl₃.

Fig. S3 ³¹P NMR spectrum of dpmt in CDCl₃.

Fig. S4 ¹H NMR spectrum of 1 in CDCl₃.

Fig. S5 ¹H NMR spectrum of 2 in CDCl₃.

Fig. S6 ¹H NMR spectrum of 3 in CDCl₃.

Fig. S7 ¹³C NMR spectrum of 1 in CDCl₃.

Fig. S8 ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S9 ¹³C NMR spectrum of 3 in CDCl₃.

Fig. S10 ³¹P NMR spectrum of 1 in CDCl₃.

Fig. S11 ³¹P NMR spectrum of 2 in CDCl₃.

Fig. S12 ³¹P NMR spectrum of 3 in CDCl₃.

2. Molecular structures

Fig. S13. 1-D molecular structure and C–H··· π interactions in 1.

Fig. S14. 1-D molecular structure and C–H··· π interactions in 2.

Fig. S15. 1-D molecular structure and C–H··· π interactions in **3**.

3. Photophysical properties

Fig. S16. PL spectra of 1-3 in pristine and in 10% PMMA films.

Fig. S17. Excitation spectra of 1-3 in crystal state.

Fig. S18. Time profiles of luminescence decay and exponential fit spectrum of 1 at r.t.
Fig. S19. Time profiles of luminescence decay and exponential fit spectrum of 2 at r.t.
Fig. S20. Time profiles of luminescence decay and exponential fit spectrum of 3 at r.t.
Fig. S21. Time profiles of luminescence decay and exponential fit spectrum of 1 at 77 K.

Fig. S22. Time profiles of luminescence decay and exponential fit spectrum of **2** at 77 K.

Fig. S23. Time profiles of luminescence decay and exponential fit spectrum of **3** at 77 K.

4. Computational details

Fig. S24. The absorption spectrum of complex 1 in CH_2Cl_2 .

Fig. S25. The absorption spectrum of complex 2 in CH_2Cl_2 .

Fig. S26. The absorption spectrum of complex **3** in CH_2Cl_2 .

Fig. S27. Contour plots of frontier molecular orbitals of complexes 1–3 in CH₂Cl₂.

Fig. S28. The core structures in the optimized S₀, S₁, and T₁ geometries for complexes **1-3**.

Fig. S29. The device performance of doped device when CBP served as host material.

Fig. S30. The device performance of doped device when mCP served as host material.

Fig. S31. AFM images of undoped film and doped film.

Table S1. Selected bond lengths (Å) and angles (°) in the optimized S_0 , S_1 , and T_1 geometries for complexes **1-3**.

Table S2. Energy and compositions of frontiers molecular orbitals of complex 1 in CH_2Cl_2 .

Table S3. Energy and compositions of frontiers molecular orbitals of complex 2 in CH_2Cl_2 .

Table S4. Energy and compositions of frontiers molecular orbitals of complex **3** in CH_2Cl_2 .

Table S5. Computed excitation states for complex 1 in CH_2Cl_2 .

Table S6. Computed excitation states for complex 2 in CH₂Cl₂.Table S7. Computed excitation states for complex 3 in CH₂Cl₂.

Experimental Details

1. NMR Experiments

Fig. S1 ¹H NMR spectrum of dpmt in CDCl₃.

Fig. S2 ¹³C NMR spectrum of dpmt in CDCl₃.

Fig. S3 ³¹P NMR spectrum of dpmt in CDCl₃.

Fig. S9. ¹³C NMR spectrum of **3** in CDCl₃.

2. Molecular structures

Fig. S13. 1-D molecular structure and C–H··· π interactions in 1.

Fig. S14. 1-D molecular structure and C–H··· π interactions in **2**.

Fig. S15. 1-D molecular structure and C–H··· π interactions in **3**.

3. Photophysical properties

Fig. S16. PL spectra of 1-3 in pristine and in 10% PMMA films.

Fig. S17. Excitation spectra of 1-3 in crystal state.

(in powder state)

Fig. S18. Time profiles of luminescence decay and exponential fit spectrum of 1 at r.t.

(in crystal state)

	Value	Std. Dev.		Value	Std. Dev.	Rel. %
τ ₁ (s)	3.280E-5	3.303E-7	B1	1.846E+3	1.464E+1	30.66
T2 (s)	2.864E-4	1.252E-6	B2	4.781E+2	3.441E+0	69.34
T 3 (s)			B3			
τ ₄ (s)			B4			
$\chi^{\hat{A}^2}$	1.175E+0		Α	8.130E-1		

(in powder state)

Fig. S19. Time profiles of luminescence decay and exponential fit spectrum of 2 at r.t.

(in powder state)

Fig. S20. Time profiles of luminescence decay and exponential fit spectrum of 3 at r.t.

(in crystal state)

Fix Value / µs	Std. Dev / µs	Fix Value	Std. Dev	Rel %
τ ₁ 1134.7823	21.13242	B ₁ 237.795	4.0882	36.49
τ ₂ [] 17818.8948	341.40864	B ₂ 26.355	0.4888	63.51
τ ₃		B ₃		
τ4 🗌		B ₄		
		A 🔲 0.836		
		χ^2 : 1.157		

(in powder state)

Fig. S21. Time profiles of luminescence decay and exponential fit spectrum of **1** at 77 K.

(in crystal state)

Fix Value / µs	Std. Dev / µs	Fix Value	Std. Dev	Rel %
τ ₁ 🔲 1320.4668	24.72782	B ₁ 988.741	12.1391	8.55
τ ₂ 🔲 11194.9288	24.49107	B ₂ 1246.700	4.4162	91.45
τ ₃		B ₃		
τ4		B ₄		
		A 🔲 1.938]	
		χ ² : 1.416		

(in powder state)

Fig. S22. Time profiles of luminescence decay and exponential fit spectrum of **2** at 77 K.

(in crystal state)

Fix Value / µs	Std. Dev / µs	Fix Value	Std. Dev	Rel %
τ ₁ 7063.5519	247.90756	B ₁ 505.612	20.8216	26.95
τ ₂ 🔲 16396.4597	198.99222	B ₂ 590.452	22.6975	73.05
τ ₃		B ₃		
τ ₄		B4		
		A 🔲 0.626		
		χ^2 : 1.180		

(in powder state)

Fig. S23. Time profiles of luminescence decay and exponential fit spectrum of **3** at 77 K.

4. Computational details

Fig. S24. The absorption spectrum of complex 1 in CH_2Cl_2 .

Fig. S25. The absorption spectrum of complex 2 in CH_2Cl_2 .

Fig. S26. The absorption spectrum of complex 3 in CH_2Cl_2 .

HOMO

LUMO

HOMO-1

HOMO-2

HOMO-3

LUMO+1

LUMO+2

LUMO+3

1

НОМО

HOMO-1

HOMO-2

LUMO

LUMO+1

LUMO+2

HOMO-3

HOMO-4

LUMO+3

LUMO+4

НОМО

LUMO

HOMO-1

HOMO-2

HOMO-4

LUMO+1

LUMO+2

LUMO+3

LUMO+4

Fig. S27. Contour plots of frontier molecular orbitals of complexes 1-3 in CH_2Cl_2 .

Fig. S28. The core structures in the optimized S_0 , S_1 , and T_1 geometries for complexes 1-3.

Fig. S29. (a) EL spectra; (b) Current density–voltage–luminance (J–V–L) characteristics; (c) EQE–luminance characteristics; (d) Current efficiency- current density characteristics of the undoped device and doped device with dosage concentration of 20%, 30%, 40% when CBP (1,3-bis(9-carbazolyl)benzene) served as host material; (e) Energy-level diagram of the devices based on the complex **3**.

Fig. S30. (a) EL spectra (b) Current density–voltage–luminance (J-V-L) characteristics; (c) EQE–luminance characteristics; (d) Current efficiency- current density characteristics of the undoped device and doped device with dosage concentration of 10%, 30%, 40%, 50%, 70% when mCP (4,4'-Bis(9H-carbazol-9-yl)biphenyl) served as host material; (e) Energy-level diagram of the devices based on the complex **3**.

Fig. S31. Atomic force microscopy (AFM) images of the undoped film of complex 2 and the doped film with dosage concentration of 30% when mCP served as host material based on the structure of ITO/PEDOT:PSS/EML.

The doped EML film was prepared by mixing the host material solution (dissolved in chlorobenzene, 15 mg/mL) and complex **3** (dissolved in chlorobenzene, 15 mg/mL) at different volume ratios. The mixture was spin coated onto the substrates at 3000 r.p.m for 50 s and baked at 70 °C for 10 min in the glove box. Except for the EML layer, the rest was the same as that for the undoped device.

		geomet		5	
Complex	Geometry	Cu-X	Cu-P	P-Cu-P	P-Cu-X
1	\mathbf{S}_{0}	2.6261	2.3754, 2.3280,	88.63, 112.31,	111.62, 112.90,
			2.3054	119.45	110.24
	\mathbf{S}_1	2.6246	2.3212, 2.3557,	86.12, 133.47,	99.99, 134.25,
			2.3464	108.92	99.31
	T_1	2.6234	2.3808, 2.3265,	87.28, 112.25,	110.94, 112.65,
			2.3034	120.40	111.05
2	\mathbf{S}_0	2.4429	2.3460, 2.3334,	90.22, 114.15,	113.20, 115.83,
			2.3169	112.47	109.90
	\mathbf{S}_1	2.4084	2.3184, 2.3326,	85.10, 126.96,	100.28, 138.66,

Table S1. Selected bond lengths (Å) and angles (°) in the optimized S_0 , S_1 , and T_1 geometries for complexes **1-3**

			2.3701	105.67	103.32
	T_1	2.4134	2.31319, 2.33258,	84.74, 128.37,	103.95, 132.48,
			2.36879	108.65	101.84
3	\mathbf{S}_0	2.3249	2.29623, 2.31557,	88.46, 122.19,	111.78, 110.25,
			2.38149	110.90	110.92
	\mathbf{S}_1	2.2783	2.37675, 2.32155,	84.92, 133.28,	101.88, 135.33,
			2.36089	107.30	99.62
	T_1	2.2798	2.38263, 2.31687,	84.42, 131.60,	103.32, 136.49,
			2.34531	106.28	99.97

Table S2. Energy and compositions of frontiers molecular orbitals of complex 1 in CH_2Cl_2 .

МО	Energy(ev)	Cu	Ι	Thienyl ring	P in dpmt	Phenyl rings in dpmt	P in PPh ₃	Phenyl rings in PPh ₃
H-4	-6.39	0.04	0.02	0.11	0.13	0.20	0.10	0.40
H-3	-6.20	0.02	0.01	0.07	0.11	0.61	0.01	0.17
H-2	-6.08	0.23	0.01	0.02	0.12	0.21	0.12	0.30
H-1	-5.69	0.13	0.02	0.06	0.08	0.09	0.30	0.32
Н	-5.54	0.02	0.01	0.09	0.26	0.45	0.01	0.16
L	-1.38	0.02	0.00	0.08	0.13	0.39	0.09	0.29
L+1	-1.21	0.02	0.00	0.04	0.13	0.32	0.08	0.40
L+2	-1.11	0.01	0.00	0.05	0.03	0.30	0.08	0.53
L+3	-1.08	0.01	0.00	0.15	0.16	0.25	0.08	0.34
L+4	-1.02	0.02	0.00	0.06	0.05	0.79	0.02	0.05

Table S3.	Energy	and	compositions	of	frontiers	molecular	orbitals	of	complex	2 in
$CH_2Cl_2.$										

МО	Energy(ev)	Cu	Br	Thienyl ring	P in dpmt	Phenyl rings in dpmt	P in PPh ₃	Phenyl rings in PPh ₃
H-4	-6.59	0.01	0.02	0.10	0.38	0.35	0.01	0.13
H-3	-6.44	0.02	0.01	0.27	0.05	0.33	0.08	0.24
H-2	-6.26	0.11	0.01	0.05	0.10	0.33	0.08	0.31
H-1	-5.77	0.06	0.01	0.06	0.10	0.16	0.18	0.43
Н	-5.53	0.02	0.00	0.07	0.26	0.34	0.03	0.27
L	-1.39	0.02	0.00	0.08	0.07	0.60	0.11	0.12
L+1	-1.19	0.02	0.00	0.07	0.12	0.33	0.09	0.37

L+2	-1.15	0.01	0.00	0.10	0.09	0.31	0.07	0.43
L+3	-1.09	0.02	0.00	0.19	0.10	0.46	0.09	0.14
L+4	-1.03	0.01	0.00	0.18	0.03	0.59	0.05	0.15

Table S4. Energy and compositions of frontiers molecular orbitals of complex 3 in CH_2Cl_2 .

МО	Energy(ev)	Cu	Cl	Thienyl ring	P in dpmt	Phenyl rings in	P in PPh ₃	Phenyl rings in
						apmt		PPh ₃
H-4	-6.84	0.02	0.02	0.08	0.14	0.54	0.01	0.20
H-3	-6.48	0.01	0.00	0.16	0.21	0.43	0.03	0.18
H-2	-6.31	0.07	0.01	0.04	0.16	0.49	0.03	0.19
H-1	-5.81	0.04	0.01	0.16	0.12	0.19	0.17	0.31
Н	-5.53	0.02	0.00	0.08	0.23	0.52	0.01	0.14
L	-1.35	0.01	0.00	0.11	0.07	0.61	0.03	0.17
L+1	-1.22	0.01	0.00	0.05	0.13	0.26	0.09	0.46
L+2	-1.14	0.01	0.00	0.11	0.09	0.31	0.07	0.41
L+3	-1.07	0.01	0.00	0.13	0.08	0.22	0.08	0.49
L+4	-1.03	0.05	0.00	0.12	0.04	0.69	0.01	0.09

Table S5. Computed excitation states for complex 1 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	357.4 (3.47)	$H \rightarrow L(98)$	0.0002
3	331.9 (3.74)	$H \rightarrow L+1 (91); H \rightarrow L+2 (4); H \rightarrow L+3 (2)$	0.0579
4	323.7 (3.83)	$H-1 \rightarrow L+1$ (2); $H \rightarrow L+1$ (6); $H \rightarrow L+2$ (63) ; $H \rightarrow L+3$ (25)	0.1089
7	316.2 (3.92)	H-1→L+3 (2); H→L+4 (89)	0.1071
12	302.4 (4.10)	H-2→L (73); H-1→L+3 (2); H-1→L+4 (18)	0.0689
27	280.1 (4.43)	H-4→L (82); H-1→L+9 (3); H→L+11 (4)	0.0604

Table S6. Computed excitation states for complex 2 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	361.8 (3.43)	$H \rightarrow L (97)$	0.0064
5	324.5 (3.82)	$H \rightarrow L+1$ (4); $H \rightarrow L+2$ (11); $H \rightarrow L+3$ (82)	0.0647
6	319.5 (3.88)	H-1→L+1 (3); H→L+4 (69); H→L+5 (23)	0.0637
7	318.7 (3.89)	H-1→L+1 (2); H→L+4 (19); H→L+5 (74)	0.0933
34	265.6 (4.67)	H-5 \rightarrow L (12); H-2 \rightarrow L+3 (5); H-2 \rightarrow L+5 (52); H-1 \rightarrow L+11 (19)	0.0768

State	$\lambda(nm)/E(eV)$	Configurations	f
1	358.4 (3.46)	$H \rightarrow L(98)$	0.0007
2	335.1 (3.70)	$H \rightarrow L+1$ (84); $H \rightarrow L+2$ (14)	0.0698
3	328.0 (3.78)	$H \rightarrow L+1 (14); H \rightarrow L+2 (76); H \rightarrow L+3 (5)$	0.0858
6	319.4 (3.88)	$H-1 \rightarrow L+1$ (4); $H \rightarrow L+2$ (3); $H \rightarrow L+3$ (11) ; $H \rightarrow L+4$ (78)	0.0972
7	316.0 (3.92)	$\text{H-1}\rightarrow\text{L} (2); \text{H-1}\rightarrow\text{L+1} (83); \text{H-1}\rightarrow\text{L+2} (9); \text{H}\rightarrow\text{L+4} (3)$	0.0601

Table S7. Computed excitation states for complex 3 in CH_2Cl_2 .