Supporting Information

Heterometallic 3d-4d coordination polymers assembled from *trans*-[Ru^{III}(L)(CN)₂]⁻ tectons and 3d cations

Gabriela Marinescu,*^a Augustin M. Madalan,^b Catalin Maxim,^b Sergiu Shova,^c

Rodolphe Clérac*^d and Marius Andruh*,^b

 ^a"Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei no. 202, 060021-Bucharest, Romania. E-mail: gmarinescu@icf.ro
 ^bUniversity of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie nr. 23, 020464-Bucharest, Romania. E-mail: marius.andruh@dnt.ro
 ^c Laboratory of Inorganic Polymers"Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Iasi, Romania
 ^dUniv. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France. E-mail: clerac@crpp-bordeaux.cnrs.fr

Figure S1: (Left) Field dependence of magnetization for **3** at the temperatures indicated, scanning at 100 - 400 Oe.min⁻¹ for H < 1 T and 500 - 2500 Oe.min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S2: (Left) Field dependence of magnetization for **4** at the temperatures indicated, scanning at 100 - 400 Oe.min⁻¹ for H < 1 T and 500 - 2500 Oe.min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S3: (Left) Field dependence of magnetization for **5** at the temperatures indicated, scanning at 100 - 400 Oe.min⁻¹ for H < 1 T and 500 - 2500 Oe.min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S4: (Left) Field dependence of magnetization for **6** at the temperatures indicated, scanning at 100 - 400 Oe.min⁻¹ for H < 1 T and 500 - 2500 Oe.min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Figure S5: (Left) Field dependence of magnetization for **7** at the temperatures indicated, scanning at 100 - 400 Oe.min⁻¹ for H < 1 T and 500 - 2500 Oe.min⁻¹ for H > 1 T. (Right) Field dependence of reduced magnetization at the temperatures indicated. Solid lines are guides for the eye.

Compounds	2	3	4	5	6	7
Chemical formula	C44H55AsN4	$C_{87}H_{118}ClMn_2$	$C_{87}H_{118}ClCo_2$	$C_{122}H_{170}Cl_2Mn_3$	$C_{122}H_{170}Cl_2Co_3$	$C_{122}H_{170}Cl_2Ni_3$
	$O_{12.50}Ru$	$N_{22}O_{20}Ru_3$	$N_{22}O_{20}Ru_3$	$N_{30}O_{38}Ru_4$	$N_{30}O_{38}Ru_4$	$N_{30}O_{38}Ru_4$
$FW(g \text{ mol}^{-1})$	1015.91	2240.57	2248.55	3304.87	3316.84	3316.18
Temperature, (K)	173(2)	173(2)	173(2)	159.9(1)	160.0(1)	200(2)
Wavelength, (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/n$	P2/n	P2/n	$P2_1/c$	$P2_1/c$	$P2_1/a$
<i>a</i> (Å)	9.6118(6)	20.2861(3)	20.2057(3)	14.1723(4)	14.2633(6)	13.4193(6)
<i>b</i> (Å)	21.7897(12)	10.4360(4)	10.3240(4)	41.9114(12)	41.4370(27)	41.433(2)
<i>c</i> (Å)	22.9503(17)	25.5399(5)	25.4271(5)	13.5236(4)	13.5049(12)	14.2634(7)
$\beta(^{\circ})$	97.831(5)	109.437(6)	108.911(6)	111.873(3)	111.638(4)	111.803(3)
$V(Å^3)$	4761.8(5)	5098.8(3)	5017.9(3)	7454.5(4)	7419.3(5)	7363.2(6)
Ζ	4	2	2	2	2	2
$D_{\rm c}~({\rm g~cm^{-3}})$	1.417	1.459	1.488	1.472	1.485	1.496
μ (mm ⁻¹)	1.082	0.776	0.868	0.759	0.843	0.895
F(000)	2096	2306	2314	3402	3414	3420
Goodness-of-fit on F^2	0.739	0.918	0.913	1.114	1.094	0.884
Final R_1 , wR_2 [$I > 2\sigma(I)$]	0.0539, 0.1263	0.0617, 0.1279	0.0415, 0.0905	0.0668, 0.1159	0.0688, 0.1641	0.0648, 0.1065
R_1 , wR_2 (all data)	0.1235, 0.1616	0.1482, 0.1613	0.0809, 0.1027	0.0897, 0.1240	0.0869, 0.1784	0.1896, 0.1470
Largest diff. peak and hole $(e^{A^{-3}})$	0.456, -0.764	1.225, -0.975	0.987, -1.052	1.013, -1.327	1.241, -1.420	0.533, -0.937

Table S1. Crystallographic data, details of data collection and structure refinement parameters for compounds 2-7.