Electronic Supplementary Information (ESI)

4-Pyridylisocyanide Gold(I) and Gold(I)-plus-Silver(I) Luminescent and Mechanochromic Materials: The Silver Role

Verónica Conejo-Rodríguez, Marconi N. Peñas-Defrutos and Pablo Espinet*

IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071-Valladolid (Spain) Fax: (+)34 983 423013

*To whom correspondence should be addressed: espinet@qi.uva.es

Contents

Experimental general section	S2
Synthesis and characterization of the complexes	S3
Refinement data and extra details of the X-Ray structures	S12
Powder X-Ray Diffraction patterns	S16
Photophysical properties	S18
Computational section	S26
References	S34

EXPERIMENTAL GENERAL SECTION

All reactions were carried out under dry N₂. The solvents were purified according to standard procedures.¹ [Au(C₆F₃Cl₂-3,5)(tht)] (tht = tetrahydrothiophene) was prepared according to literature procedures.² 4-Pyridylisocyanide (CNPy-4) was prepared from 4-Pyridylamine, as described by Ugi *et al.* for other isocyanides,³ in 20% yield. The synthesis of [Au(C₆F₅)(CNPy-4)] was reported by our group.⁴ The rest of the reactants were purchased from commercial suppliers and used as received.

The technical measurements were carried out with equipment of the LTI services or the IU CINQUIMA (both of the University of Valladolid) unless otherwise stated.

Infrared spectra were recorded with Perkin–Elmer Frontier (4000–200 cm⁻¹) equipped with an ATR accessory (Attenuated total reflection) for the direct recording of solid samples. The NMR spectra were recorded with Varian 500/54 Premium Shielded instrument. The ¹H and ¹³C NMR spectra are referenced to tetramethylsilane (TMS), while ¹⁹F NMR spectra are referenced to CFCl₃. UV-Vis absorption spectra of solutions were recorded in a Shimadzu UV-2550 spectrophotometer.

Luminescence spectra were recorded with a Perkin-Elmer LS-55 spectrometer, a fluorescence spectrometer FS5-NIR equipped with an integrating sphere module (SC-30) and a single photon PMT detector (Hamamatsu, R2658P). The emission lifetime and quantum yield measurements of the solid samples were carried out on Hamamatsu-Quantaurus-Tau spectrometer with an integrating sphere. Absolute Quantum Photoluminescence Yields and Emission Lifetimes of luminescent compounds were carried out at the LTI services of the University of Burgos. The elemental analyses were performed with a Carlo Erba 1108 microanalyzer (Vigo University).

Experimental procedure for X-ray Crystallography

A crystal was attached to a glass fiber and transferred to an Agilent Supernova diffractometer with an Atlas CCD area detector. Data collection was performed with Mo-K α radiation ($\lambda = 0.71073$ Å) at room temperature. Data integration, scaling and empirical absorption correction was carried out using the CrysAlisPro program package.⁵ Using Olex2,⁶ the structure was solved with the olex2.solve⁷ and refined with Shelx program.⁸ The non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed at idealized positions and refined using the riding model. Refinement proceeded smoothly to give the residuals shown in Tables ESI1 and ESI2. CCDC 1908107, 1908108, 1916476 and 1934756 contain the supporting crystallographic data for this paper. These data can be obtained free of charge at <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

SYNTHESIS AND CHARACTERIZATION OF THE COMPOUNDS

$[Au(C_6F_5)(CNPy-4)](1)$

The synthesis and characterization of **1** in CDCl₃ was reported by our group.⁴ The following ¹H and ¹⁹F NMR data in acetone allow us to compare them with the corresponding Ag silver derivative $[Ag[Au(C_6F_5)(CNPy-4)]_2](BF_4)$ (**3**).

¹H NMR (499.72 MHz, acetone-*d*₆, 298 K, Figure ESI1): δ 8.92 (m, 2H, CH–N, Py), 7.92 (m, 2H, CH–C, Py).

¹⁹F NMR (470.15 MHz, acetone- d_6 , 298 K, Figure ESI2): δ –116.67 (m, 2F_o), –159.38 (t, ³*J*_{Fm-Fp} = 20.0 Hz, 1F_p), –164.08 (m, 2F_m).

IR (ATR, neat): 2220 cm⁻¹ (v_{C=N}). *Anal.* calcd for C₁₂H₄AuF₅N₂: C 30.79, H 0.86, N 5.98; found C 30.56, H 0.91, N 6.08.

Figure ESI1. ¹H NMR spectra of 1 at 298 K in acetone-*d*₆

Figure ESI2. ¹⁹F NMR spectra of **1** at 298 K in acetone- d_6

$[Au(C_6F_3Cl_2-3,5)(CNPy-4)]$ (2)

In a flask under nitrogen, $[Au(C_6F_3Cl_2-3,5)(tht)]$ (233 mg, 0.48 mmol), the ligand CNPy-4 (50 mg, 0.48 mmol) and 15 mL of dry CH₂Cl₂ were added. The mixture was stirred for 2 hours and the solvent was reduced in vacuum, then *n*-hexane was added (10 mL). The pale yellow solid obtained was washed with *n*-hexane (3 × 5 mL). Yield: 197 mg, 82 %.

¹H NMR (499.72 MHz, CDCl₃, 298 K, Figure ESI3): δ 8.88 (m, 2H, CH–N, Py), 7.47 (m, 2H, CH– C, Py).

¹⁹F NMR (470.15 MHz, CDCl₃; 298 K, Figure ESI4): δ –89.71 (s, 2F_o), –114.48 (s, 1F_p).

¹³C {¹H} NMR (125.67 MHz, CDCl₃ 298 K, Figure ESI5 and ESI6): δ 161.21 (ddd, ¹J_{C-Fo} = 234.5 Hz, ³J_{C-Fp} = 24.5 Hz, ³J_{C-Fo} = 5.2 Hz, 2C_{Fo}), 160.82 (br, 1C, Au–CN), 153.72 (dt, ¹J_{C-Fp} = 247.0 Hz, ³J_{C-Fo} = 5.2 Hz), 152.08 (2C, CH–N, Py), 131.78 (br, 1C, C_{Py}–NCAu), 128.05 (td, ²J_{C-Fo} = 57.6 Hz, ⁴J_{C-F} = 3.2 Hz, C_{Rf}–Au), 120.19 (2C, CH–C, Py), 105.74 (ddd, ²J_{C-F} = 26.2 Hz, ²J_{C-F} = 20.6 Hz, ⁴J_{C-Fo} = 5.9 Hz, 2C, C_{Rf}–Cl).

NMR data of **2** in acetone-*d*₆: ¹H NMR (499.72 MHz, acetone-*d*₆, 298 K, Figure ESI7): δ 8.91 (m, 2H, C*H*–N, Py), 7.91 (m, 2H, C*H*–N, Py). IR (ATR, neat): 2214 cm⁻¹ (v_{C=N}). *Anal.* calcd for C₁₂H₄AuCl₂F₃N₂: C 28.77, H 0.80, N 5.59; found C 29.03, H 0.96, N 5.42.

Figure ESI3. ¹H NMR spectrum of 2 at 298 K in CDCl₃

Figure ESI5. ¹³C{¹H} NMR spectrum of 2 at 298 K in CDCl₃. *Impurity observed in long standing solutions.

Figure ESI7. ¹H NMR spectrum of 2 at 298 K in acetone- d_6

[Ag[AuPf(CNPy-4)]₂](BF₄) (3)

To a solution of $[Au(C_6F_5)(CNPy-4)]$ (1) (50 mg, 0.106 mmol) in 15 mL of dry CH₂Cl₂, a solution of Ag(BF₄) in dry acetone (0.053 mmol: 950 µL, 5.6×10^{-2} M) was added. The mixture was stirred at room temperature during 1 hour in the darkness. Then, the suspension was concentrated under vacuum and *n*-hexane was added (5 mL). The yellow solid was filtered off and washed with *n*-hexane (3 × 5 mL). Yield: 48 mg, 80 %.

¹H NMR (499.72 MHz, acetone-*d*₆, 298 K, Figure ESI9): δ 9.05 (m, 4H, CH–N, Py), 8.10 (m, 4H, CH–N, Py).

¹⁹F NMR (470.15 MHz, acetone-*d*₆, 298 K, Figure ESI10): δ –116.68 (m, 4F_o), –151.87 (s, ¹⁰BF₄), – 151.92 (s, ¹¹BF₄), –159.30 (t, ³*J*_{*Fm*-*Fp*} = 20.0 Hz, 2F_p), –164.05 (m, 4F_m).

IR (ATR, neat): 2222 cm⁻¹ ($v_{C=N}$). *Anal.* calcd for C₂₄H₈AgAu₂BF₁₄N₄: C 25.49, H 0.71, N 4.95; found C 25.48, H 0.72, N 4.87.

Figure ESI9. ¹H NMR spectra of 3 at 298 K in acetone- d_6

Figure ESI10. ¹⁹F NMR spectra of 3 at 298 K in acetone- d_6

$[Ag[AuRf(CNPy-4)]_2](BF_4)$ (4)

To a stirred solution of [Au(C₆F₃Cl₂-3,5)(CNPy-4)] (2) (50 mg, 0.098 mmol) in 15 mL of dry CH₂Cl₂, a solution of Ag(BF₄) in dry acetone (0.049 mmol: 870 μ L, 5.6 × 10⁻² M) was added. The mixture was stirred at room temperature for 1 hour in the darkness. Then, the suspension formed was concentrated under vacuum, and *n*-hexane $(3 \times 5 \text{ mL})$ was added. The resulting dark yellow solid was filtered and recrystallized from acetone/n-hexane to obtain a yellow solid. Yield: 34 mg, 58 %.

¹H NMR (499.72 MHz, acetone-*d*₆, 298 K, Figure ESI11): δ 8.95 (m, 4H, CH–N, Py), 7.97 (m, 4H, CH–N, Py).

¹⁹F NMR (470.15 MHz, acetone-*d*₆, 298 K, Figure ESI12): δ –90.22 (s, 4F₀), –116.65 (s, 2F_p), – 151.82 (s, ¹⁰BF₄), -151.87 (s, ¹¹BF₄).

IR (ATR, neat): 2213 cm⁻¹ (v_{C=N}). Anal. calcd for C₂₄H₈AgAu₂BCl₄F₁₀N₄: C 24.09, H 0.67, N 4.68; found C 24.10, H 0.78, N 4.60.

Figure ESI11. ¹H NMR spectra of 4 at 298 K in acetone- d_6

REFINEMENT DATA AND EXTRA DETAILS OF THE X-RAY STRUCTURES

	[AuPf(CNPy-4] (1)	$[AuRf(CNPy-4] (2_{\alpha})$			
Empirical formula	$C_{12}H_4N_2F_5Au$	$C_{12}H_4N_2F_3Cl_2Au$			
Formula weight	468.14	501.04			
Temperature/K	298.15	294			
Crystal system	monoclinic	triclinic			
Space group	Рс	P-1			
a/Å	3.8166(6)	10.0232(5)			
b/Å	12.7293(14)	11.4385(6)			
c/Å	12.1037(8)	13.5702(7)			
α/°	90	71.133(5)			
β/°	94.088(10)	87.315(4)			
γ/°	90	66.146(5)			
Volume/Å ³	586.53(12)	1340.13(13)			
Z	2	4			
$\rho_{calc}g/cm^3$	2.651	2.483			
μ/mm^{-1}	12.595	11.399			
F(000)	428	920			
Crystal size/mm ³	$0.35 \times 0.121 \times 0.034$	$0.248 \times 0.141 \times 0.14$			
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)			
2θ range for data collection/°	6.75 to 59.484	7.102 to 59.088			
Index ranges	$\begin{array}{c} -4 \leq h \leq 5, \text{-}12 \leq k \leq 16, \text{-}11 \leq l \\ \leq 16 \end{array}$	$\begin{array}{c} -10 \leq h \leq 12, -15 \leq k \leq 14, -17 \leq \\ l \leq 13 \end{array}$			
Reflections collected	2349	10395			
Independent reflections	1729 [$R_{int} = 0.0318$, $R_{sigma} = 0.0667$]	$\begin{array}{l} 6239 \; [R_{int} = 0.0661, R_{sigma} = \\ 0.0759] \end{array}$			
Data/restraints/parameters	1729/59/181	6239/0/361			
Goodness-of-fit on F ²	1.045	1.029			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0697, wR_2 = 0.1693$	$R_1 = 0.0483, wR_2 = 0.0927$			
Final R indexes [all data]	$R_1 = 0.0894, wR_2 = 0.1843$	$R_1 = 0.0759, wR_2 = 0.1114$			
Largest diff. peak/hole / eÅ-3	3.65/-1.62	1.10/-1.79			

Table ESI1. Crystal data and structure refinements for complexes 1 and 2_{α} .

Suitable colorless single crystals of 1 and 2_{α} for X-ray Crystallography were obtained by slow diffusion of n-hexane in a CH₂Cl₂ solution of the corresponding compound. Figures ESI13 and ESI14 show a view of the extended packing of 1 and 2_{α} respectively. Figure ESI15 shows the asymmetric unit of 2_{α} .

	$[AuRf(CNPy-4] (2_{\beta})$	$[Ag[AuRf(CNPy-4)]_2](BF_4)$ $\cdot 0.5(Me_2CO)$ (4)			
Empirical formula	$C_{12}H_4N_2F_3Cl_2Au$	$C_{51}H_{22}Ag_2Au_4B_2Cl_8F_{20}N_8O$			
Formula weight	501.04	2451.59			
Temperature/K	294	294			
Crystal system	orthorhombic	orthorhombic			
Space group	P21212	Pbcn			
a/Å	35.8917(7)	26.9355(9)			
b/Å	38.9207(10)	13.2083(5)			
c/Å	13.6252(3)	18.8465(6)			
α/°	90	90			
β/°	90	90			
γ/°	90	90			
Volume/Å ³	19033.5(7)	6705.1(4)			
Z	48	4			
$\rho_{calc}g/cm^3$	2.098	2.429			
μ/mm ⁻¹	9.631	9.711			
F(000)	11040	4512			
Crystal size/mm ³	$? \times ? \times ?$	$0.248 \times 0.154 \times 0.093$			
Radiation	MoK α ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)			
2θ range for data collection/°	6.482 to 59.556	6.71 to 59.5			
Index ranges	$\begin{array}{c} -49 \leq h \leq 39, -38 \leq k \leq 49, -14 \\ \leq l \leq 18 \end{array}$	$\begin{array}{c} -20 \leq h \leq 37, -16 \leq k \leq 15, -24 \leq \\ l \leq 19 \end{array}$			
Reflections collected	88140	20339			
Independent reflections	$\begin{array}{c} 44775 \; [R_{int}=0.0642, R_{sigma}=\\ 0.1524] \end{array}$	7851 [$R_{int} = 0.0313$, $R_{sigma} = 0.0431$]			
Data/restraints/parameters	44775/0/1971	7851/0/435			
Goodness-of-fit on F ²	0.91	1.01			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0637, wR_2 = 0.1415$	$R_1 = 0.0520, wR_2 = 0.1011$			
Final R indexes [all data]	$R_1 = 0.1830, wR_2 = 0.1918$	$R_1 = 0.1129, wR_2 = 0.1289$			
Largest diff. peak/hole / eÅ ⁻³	1.29/-1.61	1.06/-1.02			

Colorless crystals of 2_{β} were obtained by slow evaporation of a solution of 2 in dichloromethane/nhexane. The structure has some disorder problems mostly affecting one molecule. However, the errors of the Au…Au distances are negligible. Figure ESI16 shows the asymmetric unit of 2_{β} , with twelve different molecules (Z'=12).

Suitable orange single crystals of **4** (Figure 4 and packing in ESI17) were obtained by diffusion, in the dark at room temperature, of a solution of AgBF₄ in acetone layered on top of a solution of complex **2** in dichloromethane. After 24 h, orange crystals had been formed at the interphase.

Figure ESI13. Packing of complex 1

Figure ESI14. Packing of complex 2_{α}

Figure ESI15. Asymmetric unit for the X-Ray structure of $[AuRf(CNPy-4](2_{\alpha})]$. Hydrogen atoms were omitted for clarity. The shortest F····Cl distance (2.998 Å) is highlighted.

Figure ESI16. Asymmetric unit (Z'=12) for the X-Ray structure of $[AuRf(CNPy-4](2_{\beta})]$. The shortest Au···Au distances are 3.2344(16) and 3.2768(16).

Figure ESI17. Packing of complex 4. Acetone molecules are omitted for clarity.

POWDER X-RAY DIFFRACTION PATTERNS

PXRD patterns before and after grinding for complexes **1** and **2**. Loss of crystallinity upon grinding can be observed in Figure ESI18.

Figure ESI18. PXRD patterns for 1 (left) and 2 (right). Above: unground material; Below: ground material.

Figures ESI19 and ESI20 show the comparison of the PXRD patterns obtained experimentally for the unground material and the simulated one with the single-crystal X-Ray structures for complexes **1** and **2** respectively.

Figure ESI19. Above: simulated PXDR pattern for 1. Bellow: PXDR for the unground product.

Figure ESI20. Above: simulated PXDR pattern for 2_{α} . Middle: PXDR for the unground bulk product obtained. Below: simulated PXDR pattern for 2_{β} .

PHOTOPHYSICAL PROPERTIES

UV-Vis data in solution

Table ESI3 and Figure ESI21 collect all the information of absorption spectra in different solvents.

Comp.	Absorptions / nm (ϵ / M ⁻¹ cm ⁻¹)
CNPy-4	$266 (2.18 \times 10^3)^a$
1	227 $(2.36 \times 10^4)^a$; 258 $(1.52 \times 10^4)^a$; 273 $(1.20 \times 10^4)^a$
1	$209 \ (1.56 imes 10^4)^{b}$
2	$227 (2.54 \times 10^4)^{a}$; 260 $(1.52 \times 10^4)^{a}$
2	$210~(2.07 imes 10^4)^{ m b}$
3	210 (1.23 × 10 ⁴) ^b
4	211 (2.92 × 10 ⁴) ^b

Table ESI3. UV-Vis data: absorption bands and extinction coefficients (ϵ) in solution

^aMeasurements in dichloromethane. ^bMeasurements in acetone.

Figure ESI21. Left: UV-Vis absorption spectra in dichloromethane for CNPy-4 ligand and compounds 1 and 2. Right: UV-Vis absorption spectra in acetone for 1-4 complexes. *Note that the concentrations are different due to their different solubility.

Figure ESI22. Emission spectra of [AuAr(CNPy-4)] (1 and 2) in glassy state at 77 K

Emission spectrum of 2_{β}

Figure ESI23. Emission spectrum of [AuRf(CNPy-4)] unground enriched in polymorph 2_{β} (λ_{exc} = 387 nm)

Emission decay profiles

			Ф	τ_{av}^{c}	τ_n^d : An ^e
Comp ^a	λ_{exc}		• (%)	(ns)	
1 u	343	434	21.0	9.65	$ \begin{aligned} \tau_1 &= 1.76; A_1 = 0.41 \\ \tau_2 &= 10.56; A_2 = 0.59 \end{aligned} $
1 g	390	540	18.0	677	$ \begin{aligned} \tau_1 &= 161.59; A_1 = 0.29 \\ \tau_2 &= 724.23; A_2 = 0.71 \end{aligned} $
1*	401	401 575		712	$\tau_1=712$
2_{α} u	343 ^b , 387	497	9.9	267	$\begin{array}{l} \tau_1=22.25; \ A_1=0.03 \\ \tau_2=267.48; \ A_2=0.97 \end{array}$
2 g	397	557	15.9	488	$\begin{array}{l} \tau_1=57.78; A_1=0.03 \\ \tau_2=489.60; A_2=0.97 \end{array}$
2*	391	557	-	793	$\tau_1=793$
3 u	387	600	2.4	441	$ \begin{aligned} \tau_1 &= 71.02; \ A_1 &= 0.11 \\ \tau_2 &= 448.12; \ A_2 &= 0.89 \end{aligned} $
3 g	399	580	5.2	466	$\begin{array}{l} \tau_1 = 82.74; \ A_1 = 0.14 \\ \tau_2 = 476.58; \ A_2 = 0.86 \end{array}$
4 u	387	623	42.0	326	$\tau_1 = 326$
4 g	387	620	52.0	388	$\tau_1 = 388$

Table ESI4: Excitation and emission data (nm) before and after grinding (solid state, 298 K).

^a Unground (**u**) or ground (**g**). ^b Most intense peak. ^c Average lifetime: $\tau_{av} = (A_1\tau_1^2 + A_2\tau_2^2 + \cdots) / (A_1\tau_1 + A_2\tau_2 + \cdots)$. ^d $\tau_n =$ Natural lifetime. ^e $A_n =$ Intensity coefficients. ^{*}Glassy state at 77 K.

Figure ESI24. Emission Decay profiles of [AuPf(CNPy-4)] (1). Above: 1 unground. Below: 1 ground.

Figure ESI25. Emission Decay profiles of [AuRf(CNPy-4)] (2_a). Above: 2_a unground. Below: 2 ground.

Figure ESI26. Emission Decay profiles of [Ag[AuPf(CNPy-4)]₂](BF₄) (**3**). Above: **3 unground**. Below: **3 ground**.

Figure ESI27. Emission Decay profiles of [Ag[AuRf(CNPy-4)]₂](BF₄) (4). Above: 4 unground. Below: 4 ground.

Figure ESI28. Emission Decay profiles of [AuAr(CNPy-4)]. Above: 1 in glassy state (77 K). Below: 2 in glassy state (77 K).

•

COMPUTACIONAL SECTION

Density functional theory (DFT) calculations reported in this work were carried out using the dispersion corrected hybrid functional ω B97X-D developed by Head-Gordon and Chai,⁹ and the Gaussian09 software.¹⁰ The choice of this level of theory is based on the satisfactory results obtained in previous theoretical studies.¹¹ C, B and H atoms were described using the double- ζ basis set 6-31G(d,p), whereas the same basis set plus diffuse functions was employed to describe the more electronegative N, Cl and F atoms. Au and Ag metals were described using the effective core potential LANL2DZ¹² including f-polarization functions (exponents: 1.050 for Au, 1.611 for Ag).¹³ Time Dependent DFT (TD-DFT) calculations were performed to obtain singlet excitation energy levels for the hexagold structures (at ground state) of [AuRf(CNPy-4)]₆ collected in Figure 7. The geometries were taken from the X-Ray structures of complexes 2_a and 4 respectively. The TD-DFT calculations are qualitatively consistent with the experimental results. Note that the absence of full optimization of the crystalline structures limits the quantitative accuracy of these calculations.

Selected relevant Molecular Orbitals (MO)

part of the molecule in the corresponding MOs collected in Figure 7.

Figure ESI29. Frontier Orbitals (isovalue = 0.07) of $[Au(C_6F_3Cl_2-3,5)(CNPy-4)]$ (2). Left: LUMO; Right: HOMO.

Figure ESI30. Frontier Orbitals (isovalue = 0.07) of $[Ag[Au(C_6F_3Cl_2-3,5)(CNPy-4)]_2](BF_4)$ (4). Above: LUMO; Below: HOMO. No significant silver contribution can be observed in both cases.

Figure ESI31. Selected Occupied Molecular Orbitals (isovalue = 0.10) of complex **4**. Above: HOMO-6, is the highest orbital with significant silver contribution; Below: bonding orbital between Ag and the nitrogen atoms of the pyridine moieties.

Figure ESI32. Lowest Unoccupied Molecular Orbitals, LUMOs, (isovalue = 0.07) of six ArRf(CNPy-4) fragments taken from X-Ray structures of compounds 2_{α} (left) and 4 (right).

Figure ESI33. Occupied Molecular Orbitals (isovalue = 0.07) of the selected fragment of the structure of 2_{α} . HOMO (left) and HOMO-1 (right). Both orbitals are almost identical.

Figure ESI34. Occupied Molecular Orbitals (isovalue = 0.07) of the selected fragment of the structure of **4**. HOMO (left) and HOMO-1 (right). Both orbitals are completely different.

Rest of relevant data

	Com	plex 2	Complex 4				
Excited State	E (eV)	f*	E (eV)	f			
1	4.6006	0.5568	3.5608	0.7942			
2	4.6117	0.0000	3.8817	0.0002			
3	4.7875	0.0000	4.1620	0.0716 0.0023			
4	4.7876	0.0099	4.3121				
5	4.8111	0.0178	4.3613	0.0278			
6	4.8113	0.0000	4.3924	0.0215			
7	4.9484 0.0000		4.4189	0.0120			
8	4.9485	0.0048	4.4316	0.0015			
9	4.9562	0.0000	4.4691	0.0023			
10	4.9602	0.0133	4.5038	0.0259			

Table ESI5. Energies and oscillator strengths (f) for ten Singlet Excited States calculated by TD-DFT on the selected fragments of the structures of 2_{α} and 4.

Table ESI6. Composition of the first Excited State calculated for structures 2_{α} and 4. Orbital transitions and their corresponding coefficients. Note that the HOMO and LUMO are orbitals number 510 and 511 respectively.

	Transitions	Coefficients
	$497 \rightarrow 514$	0.14721
	$498 \rightarrow 513$	-0.15891
	$501 \rightarrow 513$	-0.11243
	$502 \rightarrow 514$	-0.12318
Engited State 1 of complex 2	$505 \rightarrow 513$	-0.21549
Exclued State 1 of complex 2	$506 \rightarrow 514$	0.19701
	$507 \rightarrow 514$	0.26948
	$508 \rightarrow 513$	0.15517
	$509 \rightarrow 513$	0.23009
	$510 \rightarrow 514$	-0.13202
	$497 \rightarrow 512$	-0.10886
Excited State 1 of complex 4	$501 \rightarrow 512$	0.12238
	$510 \rightarrow 511$	0.59311

Strong participation of the HOMO \rightarrow LUMO transition in complex 4, in bold.

	Rf	CNPy	Au
HOMO (2)	91	1	8
LUMO (2)	8	83	9
σ*-HOMO (4)	19	2	79
LUMO (4)	6	76	18

Table ESI7. Contribution (%) of the haloaryl (Rf) groups, isocyanide ligands and gold centres in the Molecular Orbitals collected in Figure 7.

Cartesian coordinates of all the calculated species (opt. = optimized geometry)

	CNI	Py-4 (opt.)		9	6.065312	0.000034	0.000141	1	4.894323	-2.359068	0.001061
6	1 466932	-1 140716	0.000119	6	2.644746	1.174317	0.000260	7	-2.229218	-0.292143	0.001719
1	2 050901	-2 056762	0.000510	6	2.644749	-1.174244	-0.000042	6	-4.255609	0.983829	0.001667
6	-0.621788	-0.000074	-0.000164	6	1.903223	0.000036	0.000071	1	-4.740109	1.952114	0.001721
7	2.161346	-0.000010	-0.000020	6	4.731371	0.000032	0.000142	6	12.243804	-1.428977	0.000039
, 6	0.077905	1.203864	-0.000117	6	4.033042	-1.199655	-0.000033	6	13.633468	-1.516957	0.000223
1	-0 447048	2 151420	0.000284	6	4.033032	1.199712	0.000273	6	-11.540365	-0.232110	-0.000222
7	-2.006737	-0.000026	0.000029	6	-6.740303	-1.142535	0.000801	6	2.870204	0.888581	-0.000748
, 6	0.077866	-1 203868	-0.000136	1	-7.325509	-2.057364	0.001315	1	2.263904	1.788183	-0.001181
1	-0 446869	-2 151518	-0.000100	6	-4.659719	0.000006	0.000149	6	-2.870166	0.888529	0.001824
6	-3 182747	0.000028	0.000133	7	-7.430630	0.000084	0.000133	1	-2.263827	1.788107	0.002010
6	1 466813	1 140816	-0.0000133	6	-5.350700	1.207647	-0.000528	6	12.324229	0.913995	-0.000654
1	2 050866	2 056808	0.000707	1	-4.825381	2.154965	-0.001078	6	-12.243792	-1.428983	-0.000833
1	2.030000	2.050000	0.000707	7	-3.273665	-0.000041	0.000092	6	-14.357868	-0.329413	-0.001281
		ND _w 4)1 (o	nt)	6	-5.350774	-1.207600	0.000862	6	4.255650	0.983830	-0.001037
		/NPy-4)] (0	pr.)	1	-4.825512	-2.154949	0.001432	1	4.740185	1.952098	-0.001754
79	-0.490160	0.000205	0.000036	6	-2.109208	-0.000070	-0.000315	6	2.953720	-1.421588	0.000729
17	4.550609	-2.706284	-0.000216	6	-6.740240	1.142663	-0.000499	1	2.401870	-2.354709	0.001419
17	4.551516	2.705664	0.000096	1	-7.325394	2.057531	-0.001038	6	-12.324239	0.913988	-0.000163
9	1.646316	-2.352158	0.000040					6	-13.633455	-1.516976	-0.001369
9	1.647121	2.352529	0.000250	٢A	g[AuRf(CN	JPv-4)] ₂](B	F ₄) (opt.)	6	14.357867	-0.329388	-0.000060
9	5.700607	-0.000502	-0.000152	70	0 505542	0 170802	0.000575	6	-13.717030	0.905231	-0.000678
6	2.292511	1.171585	0.000109	79	9.505520	-0.170802	-0.000373	6	13.717020	0.905254	-0.000503
6	2.292115	-1.171432	0.000006	19	-9.505559	-0.170778	0.000441	9	-0.000943	2.085040	-1.143716
6	1.547428	0.000216	0.000080	47	14 447522	-0.203973	0.000903	9	0.000847	2.085550	1.144447
6	4.368118	-0.000277	-0.000081	17	14.447552	-3.040209	0.000795	9	1.165119	3.709826	-0.000918
6	3.684427	-1.211480	-0.000099	17	-14.44/509	-3.040233	-0.002132	9	-1.165068	3.709909	0.000911
6	3.684848	1.211153	0.000033	17	-14.054254	2.306477	-0.000397	5	-0.000014	2.957137	0.000165
6	-7.096532	-1.142693	0.000393	17	14.034230	2.506500	-0.000855				
1	-7.681698	-2.057548	0.000749	9	11.330007	-2.380430	0.000317	٢A	uRf(CNPv-	-4)] ₆ (4 from	n X-Rav)
6	-5.015987	-0.000063	-0.000011	9	-11./1825/	2.114025	0.000411	70	0 052514	0.017420	0.251422
7	-7.786928	-0.000116	-0.000097	/	0.309020	-0.130499	-0.000550	19	8.233314 7.007600	-0.017420	5 192505
6	-5.707042	1.207536	-0.000515	9	-13.000040	-0.575815	-0.001785	17	7.907090 9.010010	-1.23/4/1	-3.185505
1	-5.181780	2.154887	-0.000869	9	-11.550582	-2.380430	-0.000927	1/	0.215515	-3.322383	-1.703843
7	-3.629935	-0.000005	-0.000002	1	-0.309023	-0.130432	0.001208	9	0.270401 0.17241	-5.160555	0.208252
6	-5.706991	-1.207688	0.000458	0	-4.98/908	-0.190935	0.001417	9	8.00205	-4.052798	-4.514104
1	-5.181682	-2.155013	0.000852	0	11 719214	-0.144004	-0.000011	9	8.090203 8.115215	0.572425	-2.703743
6	-2.465459	0.000098	-0.000041	9	11./10214	2.114023	-0.001070	1	8.009102	2.070028	2.014944
6	-7.096580	1.142492	-0.000531	0	4.98/90/	-0.1909//	-0.000508	0	0.000192 7.040707	5.154640	2.022493
1	-7.681780	2.057325	-0.000914	0	-4.3384/1	-1.429803	0.001359	0	7.940707	4.402501	3.082012
				I	-4.894390	-2.559049	0.001181	I	7.945965	4.5/0280	2.10/220
	[AuPf(C	CNPy-4)] (o	pt.)	0	2 220216	-0.232109	-0.000395	0	8.225510	1.282078	1.811003
79	-0.133981	-0.000047	-0.000171	I C	2.229210	-0.292069	0.000121	1	7.800001	J.43838/	5.98/928
9	4.703549	-2.356413	-0.000166	0	-1.555650	-0.144832	0.000975	1	1.802495	0.314191	5.0000
9	4.703545	2.356465	0.000404	9	15.688841	-0.3/5//4	0.000103	1	/.863//5	5.214572	5.302964
9	2.018305	-2.368162	-0.000241	0	-2.953/61	-1.421635	0.001420	6	8.0117/03	2.8/8638	4.8/3/13
9	2.018298	2.368227	0.000361	I	-2.401942	-2.354//4	0.001439	1	8.065/68	2.005742	5.192452
				0	4.338429	-1.429866	0.000530				S31

6	8.189820	-1.340638	-1.178921	6	-5.279080	3.845832	5.687462	6	-1.249205	4.716867	2.837729
6	7.928685	3.958017	5.726902	1	-5.288355	3.685642	6.603555	1	-1.010343	4.891253	1.955727
1	7.919409	3.797827	6.642995	6	-5.114967	-1.063520	-2.554032	6	-1.869128	4.322928	5.397333
6	8.092798	-0.951336	-2.514592	6	-5.129719	-3.256626	-3.331380	1	-2.080464	4.165447	6.290012
6	8.078046	-3.144441	-3.291939	6	-4.996341	-2.816596	-1.023879	6	-1.576759	-3.825702	-2.521611
6	8.211424	-2.704412	-0.984439	6	-5.149481	-1.915262	-3.609772	6	-1.679550	-2.579640	-3.056528
6	8.058283	-1.803077	-3.570331	6	-5.046235	-3.740075	-2.050264	79	1.648205	0.103019	0.324114
6	8.161530	-3.627890	-2.010824	79	-8.089477	-0.065829	0.398528	17	1.285929	0.837694	-5.294838
79	5.118287	0.046355	0.437969	17	-7.902382	5.447248	-1.079322	17	1.520900	5.210477	-2.180733
17	5.305382	5.559433	-1.039882	17	-8.541093	1.760647	-4.931612	9	1.618206	3.253347	-0.030720
17	4.666672	1.872832	-4.892172	9	-7.818774	3.084987	0.648542	9	1.348261	3.698746	-4.668638
9	5.388990	3.197171	0.687982	7	-8.021684	-2.302924	2.545055	9	1.493566	-0.555532	-2.747988
7	5.186081	-2.190739	2.584496	6	-8.044604	-1.489711	1.712005	7	1.543069	-1.785123	2.758553
6	5.163161	-1.377527	1.751446	9	-8.347195	-0.080583	-2.705178	6	1.453514	-2.789104	3.755865
9	4.860570	0.031601	-2.665738	6	-8.062200	-3.313099	3.514472	6	1.407290	-4.070864	3.424113
6	5.145565	-3.200915	3.553913	6	-8.111687	1.443425	-0.977795	1	1.416103	-4.322331	2.527604
6	5.096077	1.555610	-0.938355	7	-8.153683	-5.203455	5.468607	6	1.638663	-1.066716	1.890436
7	5.054082	-5.091271	5.508047	9	-8.352127	4.454225	-3.771506	6	1.343742	-5.026430	4.415630
9	4.855637	4.566410	-3.732065	6	-8.366193	-2.959391	4.779147	1	1.300594	-5.926623	4.178800
6	4.841572	-2.847206	4.818587	1	-8.544774	-2.075013	5.000899	7	1.342334	-4.690481	5.706604
1	4.662991	-1.962829	5.040340	6	-8.002428	2.761683	-0.626580	6	1.451543	-2.397951	5.078398
6	5.205336	2.873868	-0.587140	6	-8.038661	3.791301	-1.568863	1	1.490694	-1.500145	5.321022
6	5.169104	3.903485	-1.529423	6	-7.846454	-5.483870	4.217811	6	1.563521	1.288896	-1.314083
6	5.361311	-5.371686	4.257251	1	-7.663883	-6.370408	4.005573	6	1.385948	-3.401375	6.021116
1	5.543882	-6.258223	4.045013	6	-8.274778	1.194514	-2.284370	1	1.373241	-3.163348	6.920091
6	4.932986	1.306699	-2.244929	6	-7.776014	-4.558490	3.214301	6	1.473873	0.784754	-2.611349
6	5.431750	-4.446306	3.253742	1	-7.533540	-4.803901	2.350345	6	1.423058	2.902617	-3.574005
1	5.674224	-4.691716	2.389785	6	-8.404166	-3.956782	5.731108	6	1.562109	2.664496	-1.237354
6	4.803599	-3.844597	5.770548	1	-8.618744	-3.726735	6.607128	6	1.425897	1.542170	-3.736259
1	4.589021	-3.614551	6.646569	6	-8.242327	3.486044	-2.858039	6	1.497638	3.495537	-2.339157
6	4.965437	3.598228	-2.818599	6	-8.323812	2.197237	-3.283995	U	111770000	01190007	2.009107
6	4 883953	2 309421	-3 244554	79	-1 485681	-0.005441	0.418064	ГА	Df(CND-	1)] (2 free	m V Dovi)
79	-4 954250	-0 129604	0 311982	17	-1 205389	-5 621098	-0 581415	ĮΑ	uki(CNPy-	(2_{α} , 110) [6 (2_{α} , 110)	т л-кау)
17	-5 300074	-1 349655	-5 222946	17	-1 902808	-2 289724	-4 735375	79	-1.923591	1.174662	5.015863
17	-4 994451	-5.434567	-1.745285	9	-1.162481	-2.207724	0.937315	17	-1.082239	-1.374345	0.051122
9	-4 931284	-3.798719	0 228792	7	-1.456795	2 408506	2 364664	17	-5.145679	-3.168461	3.076283
0	-5.100/2/	-1.144982	-4 353604	6	-1.450795	1 526444	1 604487	9	-0.758727	0.531675	2.196980
9	-5.17560	0 260240	-7.805186	9	-1.741282	-0.261263	-2 675280	9	-3.363144	-3.081553	0.770668
7	5.002550	1.058444	2 575503	6	1 51/971	-0.201203 3 407310	3 243856	9	-4.188082	-1.153323	4.944803
6	5 100573	3.042662	2.575505	6	1 481507	1 627385	0.823664	6	-1.771455	-0.352965	2.461538
6	5 267058	1 200376	3.042572	7	1 630311	5 546588	5.028645	6	-2.026779	-1.277031	1.483824
1	-5.207058	4.290370	3.042372 2.127785	/ 0	-1.039311	1 870202	2 248552	6	-3.073966	-2.160125	1.711318
1	-3.201801	4.404102	2.127703	9	-1.009821	-4.870392	-5.546555	6	-2.419143	-0.263608	3.652687
0	-4.984449	5.226202	2.049499	0	-1.013022	5.246505 2.282450	4.334439	6	-3.824078	-2.108665	2.869238
0	-5.54/104	5.526202	3.948488	I C	-1.9///09	2.383439	4.851582	6	-3.441244	-1.180675	3.804776
1	-3.403170	5.100297	5.055510	0	-1.550592	-2.908030	-0.500/08	7	-1.279166	3.600420	6.854220
	-5.343989	5.102387	5.263523	0	-1.309051	-4.0156/1	-1.21114/	6	-1.460571	2.669375	6.235640
1	-3.190061	2./00453	4.8342/3	0	-1.555808	5.725035	5./58185 2.470520	6	-1.046931	4.785057	7.521365
1	-5.14199/	1.89355/	5.155012	I	-1.108015	0.391013	5.470528 2.146665	7	-0.571522	7.177253	8.819871
0	-3.01/944	-1.432823	-1.218301	0	-1.04/883	-1.494162	-2.140000				S 32

6	-0.793002	6.063637	9.475515	1	0.949967	4.165247	-3.887849	7	-6.137404	5.329110	1.506829
1	-0.787502	6.098509	10.405940	7	0.740018	5.132301	-1.506829	6	-8.040623	4.068484	2.294112
6	-1.033317	4.853034	8.879940	6	2.643238	6.392927	-2.294112	1	-8.092011	3.618457	1.482546
1	-1.183529	4.093090	9.393719	1	2.694626	6.842955	-1.482546	6	-5.341453	5.619583	0.745107
6	-0.846731	5.926635	6.814600	6	-0.055932	4.841828	-0.745107	6	-7.935738	5.324581	4.678967
1	-0.866958	5.924194	5.884174	6	2.538352	5.136830	-4.678967	1	-7.912609	5.772825	5.494367
6	-0.614285	7.089254	7.520087	1	2.515224	4.688586	-5.494367	79	1.450239	-4.265883	-0.508028
1	-0.477284	7.868242	7.030592	79	3.947146	-6.195528	0.508028	17	4.416299	-4.110162	-5.431231
79	1.923591	-1.174662	-5.015863	17	0.981086	-6.351249	5.431231	17	5.690155	-0.661172	-1.530345
17	1.082239	1.374345	-0.051122	17	-0.292770	-9.800239	1.530345	9	2.340147	-4.958304	-3.547886
17	5.145679	3.168461	-3.076283	9	3.057239	-5.503107	3.547886	9	3.505285	-1.965529	-0.106079
9	0.758727	-0.531675	-2.196980	9	1.892100	-8.495882	0.106079	9	5.896722	-1.970719	-4.134514
9	3.363144	3.081553	-0.770668	9	-0.499336	-8.490692	4.134514	6	3.686327	-2.486918	-1.344516
9	4.188082	1.153323	-4.944803	6	1.711058	-7.974493	1.344516	6	3.131430	-3.982414	-3.039220
6	1.771455	0.352965	-2.461538	6	2.265956	-6.478997	3.039220	6	2.861639	-3.519064	-1.763719
6	2.026779	1.277031	-1.483824	6	2.535746	-6.942347	1.763719	6	4.910509	-2.488918	-3.360012
6	3.073966	2.160125	-1.711318	6	0.486876	-7.972493	3.360012	6	4.099952	-3.475960	-3.846952
6	2.419143	0.263608	-3.652687	6	1.297433	-6.985452	3.846952	6	4.700364	-1.936099	-2.103682
6	3.824078	2.108665	-2.869238	6	0.697021	-8.525312	2.103682	6	-3.508532	-6.659728	3.306333
6	3.441244	1.180675	-3.804776	6	8.905918	-3.801684	-3.306333	1	-4.170274	-7.295586	3.152967
7	1.279166	-3.600420	-6.854220	1	9.567660	-3.165825	-3.152967	6	-1.694260	-5.437665	2.516494
6	1.460571	-2.669375	-6.235640	6	7.091645	-5.023746	-2.516494	7	-3.474987	-6.080491	4.492370
6	1.046931	-4.785057	-7.521365	7	8.872373	-4.380920	-4.492370	6	-1.609030	-4.800392	3.721702
7	0.571522	-7.177253	-8.819871	6	7.006416	-5.661019	-3.721702	1	-0.949967	-4.165247	3.887849
6	0.793002	-6.063637	-9.475515	1	6.347353	-6.296164	-3.887849	7	-0.740018	-5.132301	1.506829
1	0.787502	-6.098509	-10.405940	7	6.137404	-5.329110	-1.506829	6	-2.643238	-6.392927	2.294112
6	1.033317	-4.853034	-8.879940	6	8.040623	-4.068484	-2.294112	1	-2.694626	-6.842955	1.482546
1	1.183529	-4.093090	-9.393719	1	8.092011	-3.618457	-1.482546	6	0.055932	-4.841828	0.745107
6	0.846731	-5.926635	-6.814600	6	5.341453	-5.619583	-0.745107	6	-2.538352	-5.136830	4.678967
1	0.866958	-5.924194	-5.884174	6	7.935738	-5.324581	-4.678967	1	-2.515224	-4.688586	5.494367
6	0.614285	-7.089254	-7.520087	1	7.912609	-5.772825	-5.494367				
1	0.477284	-7.868242	-7.030592	79	-3.947146	6.195528	-0.508028				
79	-1.450239	4.265883	0.508028	17	-0.981086	6.351249	-5.431231				
17	-4.416299	4.110162	5.431231	17	0.292770	9.800239	-1.530345				
17	-5.690155	0.661172	1.530345	9	-3.057239	5.503107	-3.547886				
9	-2.340147	4.958304	3.547886	9	-1.892100	8.495882	-0.106079				
9	-3.505285	1.965529	0.106079	9	0.499336	8.490692	-4.134514				
9	-5.896722	1.970719	4.134514	6	-1.711058	7.974493	-1.344516				
6	-3.686327	2.486918	1.344516	6	-2.265956	6.478997	-3.039220				
6	-3.131430	3.982414	3.039220	6	-2.535746	6.942347	-1.763719				
6	-2.861639	3.519064	1.763719	6	-0.486876	7.972493	-3.360012				
6	-4.910509	2.488918	3.360012	6	-1.297433	6.985452	-3.846952				
6	-4.099952	3.475960	3.846952	6	-0.697021	8.525312	-2.103682				
6	-4.700364	1.936099	2.103682	6	-8.905918	3.801684	3.306333				
6	3.508532	6.659728	-3.306333	1	-9.567660	3.165825	3.152967				
1	4.170274	7.295586	-3.152967	6	-7.091645	5.023746	2.516494				
6	1.694260	5.437665	-2.516494	7	-8.872373	4.380920	4.492370				
7	3.474987	6.080491	-4.492370	6	-7.006416	5.661019	3.721702				
6	1.609030	4.800392	-3.721702	1	-6.347353	6.296164	3.887849				
											S33

REFERENCES

(1) D. Perrin and W. L. F. Armarego, *Purification of Laboratory Chemicals*, 3rd ed., Pergamon Press, Oxford, 1988.

(2) A. L. Casado and P. Espinet., Organometallics., 1998, 17, 3677–3683.

(3) W. P. Weber, G. W. Gokel and I. K. Ugi, Angew. Chem., Int. Ed., 1972, 11, 530-531

(4) C. Bartolomé, M. Carrasco-Rando, S. Coco, C. Cordovilla, P. Espinet and J. M. Martín-Alvarez, *Dalton Trans.*, 2007, 5339–5345.

(5) CrysAlisPro Software system, version 1.171.33.51, 2009, Oxford Diffraction Ltd, Oxford, UK.

(6) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.

(7) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Cryst., 2015, A71, 59–75.

(8) G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

(9) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.

(10) Gaussian 09, Revision E.01, Frisch, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(11) M. N. Peñas-Defrutos, C. Bartolomé, M. García-Melchor and P. Espinet, Angew. Chem. Int. Ed., 2019, 58, 3501–3505.

(12) a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270–283. b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.

(13) A. W. Ehlers, M. Biihme, S. Dapprich, A. Gobbi, A. Hijllwarth, V. Jonas, K. F. Kiihler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, 208, 111–114.