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Table S1. Amounts of used reagents, iron(III) acetylacetonate (Fe(acac)3), manganese(II) acetylacetonate 
(Mn(acac)2), oleic acid, oleylamine and 1,2-hexadecanediol, benzyl solvent volume and Fe:Mn metal rate 
in each synthesis. 

n	
  (mmol)	
   V	
  (mL)	
   	
  

SAMPLE	
   Fe(acac)3	
   Mn(acac)2	
   Oleic	
  

acid	
  

Oleylamine	
   1,2-­

Hexadecanediol	
  

Benzyl	
  

ether	
  

Fe:Mn	
  

Mn0.13Fe2.87O4	
   1.97	
   0.22	
   4.37	
   4.37	
   8.75	
   25	
   0.90:0.10	
  

Mn0.18Fe2.82O4	
   1.88	
   0.31	
   4.37	
   4.37	
   8.75	
   25	
   0.86:0.14	
  

Mn0.27Fe2.73O4	
   1.79	
   0.39	
   4.37	
   4.37	
   8.75	
   25	
   0.82:0.18	
  

Mn0.36Fe2.64O4	
   1.53	
   0.66	
   4.37	
   4.37	
   8.75	
   25	
   0.70:0.30	
  

Mn0.13Fe2.87O4_G	
  

Seed	
  

1st	
  addition	
  

2nd	
  addition	
  

3th	
  addition	
  

11.51	
  

1.97	
  

2.34	
  

3.78	
  

3.42	
  

1.28	
  

0.22	
  

0.26	
  

0.42	
  

0.38	
  

14.16	
  

4.37	
  

3.02	
  

3.80	
  

2.97	
  

14.16	
  

4.37	
  

3.02	
  

3.80	
  

2.97	
  

18.00	
  

8.75	
  

2.25	
  

3.50	
  

3.50	
  

55	
  

25	
  

10	
  

10	
  

10	
  

0.90:0.10	
  

0.90:0.10	
  

0.90:0.10	
  

0.90:0.10	
  

0.90:0.10	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Fig. S1.  (A) X Ray diffraction patterns for ferrite nanoparticles. (B) (311) peak fitting for Mn0.13Fe2.87O4 
and Mn0.13Fe2.87O4_G samples.  

	
  

	
  



	
  

	
  

	
  

	
  

Fig. S2. Dynamic diameters of Mn0.13Fe2.87O4, Mn0.18Fe2.82O4, Mn0.27Fe2.73O4, Mn0.36Fe2.64O4 and 
Mn0.13Fe2.87O4_G nanoparticle samples measured by DLS in 0.05 mgFe/mL toluene dispersions and 
expressed in % of total.  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Fig. S3. Thermogravimetric curves for all prepared Mn ferrite nanoparticles measured in Ar atmosphere.  

	
  

	
  

	
  

	
  

Fig. S4. M (H) cycles for all prepared Mn ferrite nanoparticles measured at 300 K in the VSM 
magnetometer in powder. The matrix effect in the final magnetization value has been discarded by 
diminishing the mass corresponding to organic matter. 

	
  



Table S2. Nèel (τN), Brown (τB) and effective (τeff) relaxation times at room temperature calculated for all 

prepared samples. NP shape has been taken as spherical for all samples to perform this estimation. Keff 

values at RT obtained from fitting the SAR versus H curve by LRT model (equation 5).  

The Nèels relaxation time (τN), can be defined as an intrinsic material property and can be 

calculated by the following equation: 

	
  

Where K is the materials anisotropy constant (calculated from the ZFC/FC curves), V the particle 

volume, T the temperature, kB Boltzmann constant and τ0 the attempt time, which is related to the 

provability of magnetic moment's spontaneous inversion in the easy magnetization axis, and is 

taken as 10-10 s for this kind of materials, as an estimation.  

The Brown relaxation time (τB) is defined by Debye's equation, and depends on the 

hydrodynamic diameter of NP (rh), fluid viscosity (η) and temperature: 

	
  

To obtain the effective relaxation time (τeff). 

	
  

	
  

SAMPLE	
   ΤN	
  (s)	
   τB	
  (s)	
   τeff	
  (s)	
   Keff(kJ/m
3)	
  

Mn0,13Fe2,87O4	
   5.24·∙10-­‐10	
   2.26·∙10-­‐7	
   5.23·∙10-­‐10	
   10.4	
  

Mn0,13Fe2,87O4_G	
   3.58·∙10-­‐8	
   9.44·∙10-­‐7	
   3.45·∙10-­‐8	
   (FP	
  fit)	
  	
  

Mn0,18Fe2,82O4	
   2.17·∙10-­‐10	
   1.48·∙10-­‐7	
   2.17·∙10-­‐10	
   12.1	
  

Mn0,27Fe2,73O4	
   2.92·∙10-­‐10	
   1.38·∙10-­‐7	
   2.91·∙10-­‐10	
   12.4	
  

Mn0,36Fe2,64O4	
   2.20·∙10-­‐10	
   1.82·∙10-­‐7	
   2.20·∙10-­‐10	
   13.8	
  

	
  

	
  

	
  



	
  

Model S1. Modelling single magnetic domain with thermal fluctuations. Fokker-

Planck equation. 

Magnetization of the single domain is represented by a vector of constant modulus (M) 

. The evolution of unit vector  with time is given by the dimensionless implicit 

Gilbert equation: 

 

In this equation  is the so-called Gilbert damping constant (dimensionless constant),  

is the gyromagnetic ratio (taken as a positive number) and  (

) is the effective magnetic field, which includes the any external applied 

field as well as any anisotropy field of magnetocrystalline, shape or dipolar origin,  

being the total energy density of the single domain. The dependence of  with time can 

be obtained explicitly after multiplying both sides of equation (S1) by ( ) operator and 

performing simple algebraic manipulations as: 

	
  

This is the explicit version of the dynamical equation that in the limit , becomes 

the earlier Laudau-Lifschizt equation. In (S2) the first term is responsible of the 

gyroscopic movement (rotation around ) and the second one accounts for the 

gradual reorientation of  along . Given that , equation (S2) 

can be expressed as a function of energy density gradient as: 

 

This is so by considering that . Here  and  are constants of movement 

defined as:  and . Considering the gyromagnetic ratio of free 

electron, magnetization M of magnetite and a Gilbert damping constant of 0.05, 



) and . In spherical coordinates, 

equation (S3) takes the following form: 

 

This is a first order partial differential equation that can be solved by Runge-Kutta type 

algorithms.  is the energy landscape of the problem. If thermal energy is taken 

into account, equation (S4) must be modified to include fluctuations of the 

magnetization. 

Thermal fluctuations . In Stoner-Wohlfart Based Models, magnetization of the single 

domain is well determined by a single vector that is firmly anchored to the instantaneous 

energy minima. However, thermal effects should bring about certain “disorder” or 

“fluctuation” of the single domain magnetic dipole around equilibrium orientation. In 

such case, magnetization should be determined not with a single vector but with a 

probability distribution of orientations (or representative state points over the unit 

sphere) that will be referred as . According to F.W. Brown’s approach, 

magnetization dynamics can be understood as a current of representative points moving 

around the surface of the unit sphere with number density  and current density 

. These representative points cannot be created nor destroyed so  and  verify 

the continuity equation: 

 

Brown postulates a diffusion contribution to the current density of the form  

in such a way that current  is given by: 

 

Note that  in case of negligible thermal fluctuation and in this case  represents 

the probabilistic orientation of a large number of particles or equals the delta function 

for a single particle. Simply by substituting  from equation (S4) in equation (S6) 

the current density in spherical coordinates results in: 



 

Now it is enough to calculate the divergence of this current to obtain the evolution with 

time of the probability density  in equation (S1): 

 

Using very basic vector calculus rules involving grad, div and curl, and realizing that 

, equation (S8) is easily transformed in : 

 

This is the Fokker-Planck equation ( ) of the problem. In spherical 

coordinates equation (9) takes the following form: 

 

Last term contains the Laplacian operator acting over W and V. From the point of view 

of numerical calculations, it is more convenient to work out directly with equations (S5) 

and (S6), in spherical coordinates: 

 

By	
  realizing	
  that	
   	
  is	
  given	
  in	
  equation	
  (S7).	
  If	
  one	
  can	
  assume	
  that	
  gradient	
  of	
  

distribution	
  W	
  is	
  parallel	
  to	
  gradient	
  of	
  energy	
  ( )	
  gyroscopic	
  contribution	
  can	
  be	
  

dropped	
  out	
  from	
  calculation.	
  

	
  


