Synthesis, characterisation and water-gas shift activity of nano-particulate mixed-metal (Al, Ti) cobalt oxides

Moritz Wolf,^{*a,b,1*} Stephen J. Roberts,^{*a*} Wijnand Marquart,^{*a,b*} Ezra J. Olivier,^{*c*} Niels T. J. Luchters,^{*a*} Emma K. Gibson,^{*d,e*} C. Richard A. Catlow,^{*d,f*} Jan. H. Neethling,^{*c*} Nico Fischer,^{*a,b*} and Michael Claeys^{*a,b,**}

^aCatalysis Institute, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.

^bDST-NRF Centre of Excellence in Catalysis c*change, Private Bag X3, Rondebosch 7701, South Africa.

^cCentre for High Resolution Transmission Electron Microscopy, Physics Department, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa.

^dUK Catalysis Hub, Research Complex at Harwell, RAL, Oxford, OX11 0FA, United Kingdom.

^eSchool of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.

^fDepartment of Chemistry, University College London, London, WC1H 0AJ, United Kingdom.

¹ Present address: Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany

Supporting figures

Figure S2 Transmission electron micrographs and volume-based size distributions of the (a) Co₃O₄ and (b) CoO nanoparticles synthesised *via* the benzyl alcohol route according to Wolf *et al.*¹

Figure S3 X-ray diffraction pattern of the CoO nanoparticles synthesised *via* the benzyl alcohol route according to Wolf *et al.*¹ with a reference pattern.

Figure S4 Raman spectra of the nanoparticles synthesised *via* the benzyl alcohol route targeting CoAl₂O₄ before and after calcination at 600 °C for 12 h, as well as of a bulk-sized CoAl₂O₄ sample with an ideal Co:Al composition of 1:2 synthesised *via* chemical precipitation.

Figure S5 Temperature programmed reduction profiles with deconvoluted peaks of Co_{1+x}Al_{2-x}O₄ nanoparticles synthesised *via* the benzyl alcohol route after calcination at 600 °C for 12 h, as well as of a bulk-sized CoAl₂O₄ sample and nano-sized Co₃O₄ synthesised *via* chemical precipitation and the benzyl alcohol route, respectively.

Figure S6 Normalised X-ray absorption near-edge structure spectra of Co_{1+x}Al_{2-x}O₄ nanoparticles synthesised *via* the benzyl alcohol route after calcination at 600 °C for 12 h, as well as of a bulk-sized CoAl₂O₄ sample synthesised *via* chemical precipitation.

Figure S7 Radial distances as obtained after Fourier transform of extended X-ray absorption fine structure spectra of a bulk-sized CoAl₂O₄ sample synthesised *via* chemical precipitation, CoO nanoparticles, and cobalt foil.

Figure S8 (a) High-resolution high angular annual dark-field scanning transmission electron micrograph of Co_{1+x}Al_{2-x}O₄ nanoparticles synthesised *via* the benzyl alcohol route after calcination at 600 °C for 12 h with (b) an elemental mapping as obtained *via* electron energy loss spectroscopy and the particular contributions of (c) aluminium, (d) cobalt, and (e) oxygen.

Figure S9 (a) High-resolution high angular annual dark-field scanning transmission electron micrograph of CoTiO₃ nanoparticles synthesised *via* the benzyl alcohol route after calcination at 600 °C for 12 h with (b) an elemental mapping as obtained *via* electron energy loss spectroscopy and the particular contributions of (c) titanium, (d) cobalt, and (e) oxygen.

Figure S10 Post-run Raman spectra of the Co_{1+x}Al_{2-x}O₄ nanoparticles synthesised *via* the benzyl alcohol route after calcination at 600 °C for 12 h after water-gas shift activity measurements with spectra of the calcined sample and nano-sized Co₃O₄ for comparison.

Figure S11 Transmission electron micrograph of commercial anatase-TiO₂.

Supporting tables

Table S1Analysis of overall consumption of H_2 during TPR of $Co_{1+x}Al_{2-x}O_4$ and $CoTiO_3$ nanoparticles synthesised via the benzyl alcohol route after calcination at600 °C for 12 h.

Sample	Expected / mol _{H2} g ⁻¹	Measured / mol _{H2} g ⁻¹
$Co_{1+x}AI_{2-x}O_4$	0.113	0.145
CoAl ₂ O ₃	0.113	0.107
CoTiO ₃	0.129	0.124

Table S2Results of peak deconvolution of the H_2 consumption profiles during TPR of
CoTiO3 nanoparticles synthesised via the benzyl alcohol route after
calcination at 600 °C for 12 h.

Peak	Temperature / °C	Peak area / %
1	587.1	31.3
2	679.7	68.7

Table S3Results of peak deconvolution of the H_2 consumption profiles during TPR of
Co1+xAl2-xO4 nanoparticles synthesised via the benzyl alcohol route after
calcination at 600 °C for 12 h.

Peak	Temperature / °C	Peak area / %
1	552.3	8.9
2	642.3	23.0
3	755.6	51.3
4	866.1	16.9

Table S4Results of peak deconvolution of the H_2 consumption profiles during TPR of
 $Co_{1+x}Al_{2-x}O_4$ nanoparticles synthesised via the benzyl alcohol route after
calcination at 600 °C for 12 h.

Peak	Temperature / °C	Peak area / %	
1	780.4	9.6	
2	858.6	30.5	
3	897.2	59.9	

Table S5Characteristics of the X-ray absorption near edge structure spectra of
 $Co_{1+x}Al_{2-x}O_4$ and $CoTiO_3$ nanoparticles synthesised via the benzyl alcohol
route after calcination at 600 °C for 12 h and a bulk-sized CoAl₂O₄ sample.

Sample	Normalised pre-	Edge shift / o/	Normalised white
	edge intensity	Luge shirt / ev	line intensity
Co _{1+x} Al _{2-x} O ₄	0.09	1.0	1.43
CoAl ₂ O ₄	0.12	1.1	1.40
CoTiO ₃	0.06	3.2	1.47

Table S6Radial distances of metal-metal and metal-oxygen bonds as obtained after
phase corrected Fourier transform of extended X-ray absorption fine
structure spectra of Co1+xAl2-xO4 and CoTiO3 synthesised via the benzyl
alcohol route after calcination at 600 °C for 12 h, as well as Co3O4 and CoO
nanoparticles, Co foil and a bulk-sized CoAl2O4 sample.

Sample	Co-O	Co-Co	Co-Al/Co	Co-Co/Ti
$Co_{1+x}AI_{2-x}O_4$	1.79	-	3.18	-
CoAl ₂ O ₄	1.81	-	3.27	-
CoTiO ₃	1.91	-	-	2.86
Co ₃ O ₄	1.78	2.77	-	-
CoO	1.84	2.89	-	-
Co foil	-	2.14	-	-

References

1 M. Wolf, N. Fischer and M. Claeys, *Mater. Chem. Phys.*, 2018, 213, 305–312.