Supplementary

Growth and improved magnetoelectric response of strain modified Aurivillius SrBi_{4.25}La_{0.75}Ti₄FeO₁₈ thin films

E.Venkata Ramana^{1*}, N.V.Prasad^{2*}, F.Figueiras^{3,4} L. Lajaunie⁵, R. Arenal^{5,6}, G.Otero-Irurueta⁷ and M.A.Valente¹

¹I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro-3810 193, Portugal.

² Materials Research Laboratory, Osmania University, Hyderabad- 500 007, India.

³ CICECO, University of Aveiro, Aveiro-3810 193, Portugal.

⁴ IFIMUP and IN- Institute of Nanoscience and Nanotechnology, Departamento de Física da

Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687,4169-007, Porto,

Portugal

⁵Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon,

Universidad de Zaragoza, 50018, Zaragoza, Spain.

⁶Fundacion ARAID, 50018, Zaragoza, Spain.

⁷Center for Mechanical Technology & Automation-TEMA, University of Aveiro, 3810-193 Aveiro, Portugal.

* Author for correspondence: <u>venkataramanaesk@rediffmail.com</u>, <u>nvp1969@rediffmail.com</u>

Fig. S1 (a) GIXRD scans of SBLFT/Pt/TiO₂/SiO₂/Si thin films grown at optimized conditions of 560 $^{\circ}$ C at 100-mTorr oxygen partial pressure with different thicknesses. (b) Pole figure for SBLFT grown at 560 $^{\circ}$ C.

2Theta:			3	32.9100					
Intensities:									
	Psi		Phi	Phi Inte		ensity			
Min	81.0		130	30.5 1			.0	00	
Max	6.0		238	238.5 198			3.5	00	
Dime	nsi	on:	2	.5D)				
Scale	Li	Linear							
Color map:			S	Standard					
Conto	10	10							
				Intensity				Color	
	1			18.955					
	3			54.864					
	5			90.773					
7				126.682					
10				180.545					
Grid settings:									
						Ps	si	Phi	
				Fir	st		0	0	
				La	st	9	90	360	
				Ste	an	-	20	90	

Fig. S2 Grain morphology of SBLFT thin films, observed by FESEM, for samples with a thickness of (a) 80 nm, (b)120 nm and (c) 330 nm and (d) ceramic SBLFT target used for thin film deposition.

Fig. S3 Ferroelectric – paraelectric phase transition (T_c) is at 340 °C and high temperature maxima (T_m) is at 470 °C. This *Tm* can be related to the ferroelastic – paraelastic phase transition.

Fig. S4 EELS spectrum displaying the Bi-N_{4,5}, Ti-L_{2,3}, O-K; Fe-L_{2,3}, and La-M_{4,5} edges.

Fig. S5 (a) STEM ADF micrograph. The green square highlights the area used to perform the SR-EELS analysis. (b) DF micrograph acquired simultaneously as the SR-EELS spectra (c) Bi chemical map (d) EELS spectrum displaying the Bi-M_{4,5} edges.

Fig. S5 (e) O/Fe ratio variation close to a nanoregions

Fig. S6 (a) Polarization – electric field hysteresis loops of SBLFT thin films with different thickness and (b) P_r and E_c relation as a function of thickness.

