Supporting Information

Reaction Duration Dependent Formation of Two Cu(II)-MOFs with Selective Adsorption Property of C₃H₄ over C₃H₆

Ming-Ming Xu, Xiang-Jing Kong, Tao He, Xue-Qian Wu, Lin-Hua Xie,* and Jian-Rong Li*

Section 1. Synthesis of H₄DDPN

H4DDPN was synthesized by following procedures.

Scheme S1 Synthetic procedure of H4DDPN.

(a) Tetramethyl 3,5-di(3,5-dicarboxylphenyl)nitrobenzene

A mixture of 1,3-dibromo-5-nitrobenzene (5.0 g, 17.8 mmol) and dimethyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isophthalate (17.1 g, 20.0 mmol) in dioxane (300 mL) and water (100 mL) was added K₂CO₃ (9.8 g, 71.2 mmol) and Pd(PPh₃)₄ (1.84 g, 1.8 mmol) under nitrogen atmosphere. The reaction mixture was stirred at 110 °C for 48 h. After the starting materials were consumed, the organic solvent was removed and the residue was dissolved in CHCl₃ (400 mL), washed with water (400 mL \times 2) and brine (300 mL), dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography (SiO₂, CHCl₃) to give tetramethyl 3,5-di(3,5-dicarboxylphenyl)nitrobenzene (4.6 g, 59%) as a light yellow solid.

(b) 3,5-di(3,5-dicarboxylphenyl)nitrobenzene (H4DDPN)

The solution of tetramethyl 3,5-di(3,5-dicarboxylphenyl)nitrobenzene (4.6 g, 9.1 mmol) in THF (100 mL), MeOH (100 mL) and 2 M NaOH aqueous solution (100 mL) was stirred at 70 °C for 24 h. The organic solvent was removed by rotary evaporation. The pH was adjusted to around 3 by progressively adding concentrated HCl. The suspension was filtered and washed with water (100 mL \times 3). The solid was dried under vacuum at 60 °C to give 3,5-di(3,5-dicarboxylphenyl)nitrobenzene (3.2 g, 78%) as a light yellow solid.

Fig. S1 ¹H NMR spectrum of H4DDPN.

Section 2. Synthesis and General Characterizations of BUT-301 and BUT-302.

Fig. S2 SEM image of BUT-301.

Fig. S3 SEM image of BUT-302.

Fig. S4 PXRD patterns of as-synthesized sample of BUT-301 and the samples of BUT-301 after being treated with MeOH.

Fig. S5 PXRD patterns of as-synthesized sample of BUT-302 and the samples of BUT-302 after being treated with MeOH.

Fig. S6 FT-IR spectra of H₄DDPN, BUT-301 and BUT-302.

Fig. S7 TGA curves of BUT-301 and BUT-302

Section 3. Structure of BUT-28 and Zr-abtc

Compound	BUT-301	BUT-302
Formula	C132H54N6O70ClCu12	C ₂₂ H ₉ NO ₁₀ Cu
Crystal system	orthorhombic	trigonal
Space group	Pnnm	P3 ₂ 21
<i>a</i> (Å)	18.4362(7)	22.4612(9)
<i>b</i> (Å)	33.5056(10)	22.4612(9)
<i>c</i> (Å)	25.5225(9)	11.1324(6)
α (°)	90	90
β (°)	90	90
γ (°)	90	120
$V(Å^3)$	15765.7(9)	4863.9(5)
Ζ	4	3
$D_c (\mathrm{g \ cm^{-3}})$	0.767	1.048
F (000)	3626.0	1548.0
Reflections collected	46526	12033
Unique reflections	13719	5501
Goof	0.918	1.012
$R_1^{a} \left[I > 2\sigma(I) \right]$	0.0567	0.0680
$wR_2^b [I > 2\sigma(I)]$	0.1324	0.1622

 Table S1 Crystal data and structure refinement parameters for BUT-301 and BUT-302.

 ${}^{a}R_{1} = \Sigma ||Fo| - |Fc|| \Sigma ||Fo|. {}^{b}wR_{2} = |\Sigma w(|Fo|^{2} - |Fc|^{2})| \Sigma ||w(Fo)^{2}|^{1/2}, \text{ where } w = 1/[\sigma^{2}(Fo^{2}) + (aP)^{2} + bP].$

 $P = (Fo^2 + 2Fc^2)/3$

Fig. S8 Asymmetric unit of the compound BUT-301 in ORTEP view (50% thermal ellipsoids).

Fig. S9 Asymmetric unit of the compound BUT-302 in ORTEP view (50% thermal ellipsoids).

Fig. S10 ¹H NMR spectrum of digested **BUT-302** in deuterated DMSO (peaks for H₂O: 5.165 ppm, and DMSO: 2.506 ppm). Note that the triplet centered at 2.478 ppm corresponding to the methyl H atoms of dimethylammonium cations is partially overlapped with the peak centered at 2.506 ppm corresponding to methyl H atoms of DMSO, and one peak of the triplet could not be labelled (inset).

Fig. S11 ¹H NMR spectrum of digested BUT-302 in deuterated DMSO (peaks for H₂O: 5.472 ppm,

and DMSO: 2.507 ppm).

Section 4. Gas adsorption

Fig. S12 C₃H₆ and C₃H₄ adsorption isotherms of BUT-301 at 273 K

Fig. S13 C_3H_6 and C_3H_4 adsorption isotherms BUT-302 at 273 K

Fig. S14 The C₃H₄ adsorption isotherm of BUT-301 measured at 298 K and its Toth fit.

Fig. S15 The C₃H₄ adsorption isotherm of BUT-301 measured at 273 K and its Toth fit.

Fig. S16 The calculated isosteric heats (*Qst*) of C₃H₄ for BUT-301.

Fig. S17 The C₃H₆ adsorption isotherm of BUT-301 measured at 298 K and its Toth fit.

Fig. S18. The C₃H₆ adsorption isotherm of BUT-301 measured at 273 K and its Toth fit.

Fig. S19 The calculated isosteric heats (Qst) of C₃H₆ for BUT-301.

Fig. S20 The C₃H₄ adsorption isotherm of BUT-302 measured at 298K and its Toth fit.

Fig. S21 The C₃H₄ adsorption isotherm of BUT-302 measured at 273K and its Toth fit.

Fig. S22 The calculated isosteric heats (Qst) of C₃H₄ for BUT-302.

Fig. S23 The C₃H₆ adsorption isotherm of BUT-302 measured at 298K and its Toth fit.

Fig. S24 The C₃H₆ adsorption isotherm of BUT-302 measured at 273K and its Toth fit.

Fig. S25 The calculated isosteric heats (Qst) of C₃H₆ for BUT-302.

Fig. S26 The C₃H₆ adsorption isotherm of BUT-301 measured at 298K and its single-site. Langmuir-

Freundlich fit.

Fig. S27 The C₃H₄ adsorption isotherm of **BUT-301** measured at 298K and its single-site Langmuir-Freundlich fit.

Fig. S28 The C₃H₆ adsorption isotherm of BUT-302 measured at 298K and its double-site

Langmuir-Freundlich fit.

Fig. S29 The C₃H₄ adsorption isotherm of BUT-302 measured at 298K and its double-site

Langmuir-Freundlich fit.