Electronic Supplementary Information

Synthesis and molecular structure of enantiomerically pure pentadienyl complexes of the rare-earth metals

Ann Christin Fecker,^a Matthias Freytag,^a Peter G. Jones^a and Marc D. Walter^{a*}

^a Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

Table of content

1.	Crystallographic Details
----	--------------------------

2. ¹H NMR Studies

S2 S4

1. Crystallographic details

Table S1. Crystallographic data.

Compound reference	1-La	1-Ce	1-Pr	1-Nd
Chemical formula	C ₃₉ H ₅₇ La	C ₃₉ H ₅₇ Ce	C ₃₉ H ₅₇ Pr	C ₃₉ H ₅₇ Nd
Formula Mass	664.75	665.96	666.75	670.08
Crystal system	monoclinic	orthorhombic	monoclinic	orthorhombic
a/Å	9.5001(6)	9.9249(3)	9.4762(3)	9.9037(4)
b/Å	18.0623(18)	12.3230(4)	18.0442(7)	12.3136(7)
c/Å	19.7718(15)	27.7491(10)	19.7324(7)	27.6207(12)
a/°	90	90	90	90
β/°	97.105(6)	90	97.142(3)°	90
γ/°	90	90	90	90
Unit cell volume/Å ³	3366.7(5)	3393.84(19)	3347.9(2)	3368.4(3)
Temperature/K	100(2)	100(2)	100(2)	100(2)
Space group	P 2 ₁	$P2_{1}2_{1}2_{1}$	<i>P</i> 2 ₁	P212121
No. of formula units per unit cell, Z	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
Absorption coefficient, μ /mm ⁻¹	1.293	1.365	1.480	1.566
No. of reflections measured	144004	89141	154014	65007
No. of independent reflections	13782	9808	19885	9665
R _{int}	0.1899	0.0678	0.0997	0.1079
Final R_1 values $(I > 2\sigma(I))$	0.0519	0.0344	0.0392	0.0418
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0698	0.0742	0.0629	0.0625
Final <i>R</i> ₁ values (all data)	0.0789	0.0397	0.0578	0.0588
Final wR(F ²) values (all data)	0.0845	0.0764	0.0689	0.0689
Goodness of fit on F ²	1.020	1.183	1.031	1.052
Flack parameter	-0.014(11)	-0.031(6)	-0.035(5)	-0.027(10)
Δρ / e Å -3	1.115/-0.649	2.087/-0.912	0.999/-0.767	1.314/-1.016

Figure S1. Molecular structure of **1-La** with two independent molecules in the asymmetric unit. Thermal ellipsoids are drawn at the 50% probability level.

Figure S2. Least-squares fit of the two independent molecules of **1-La**. Molecule 1 is drawn in violet and molecule 2 in green.

Figure S3. Packing diagram of **1-La** showing the formation of a hexagonal layer of molecules parallel to the *ac* plane at $y \approx \frac{1}{4}$. From left to right, the vertical rows are alternately composed of molecules 2 and 1 in that order. The orthorhombic derivatives display no simple packing patterns.

2. ¹H NMR Studies

Figure S4. Variable temperature (VT) 1H NMR spectra for **1-Nd** recorded in C_6D_6 between T = 298 K and 338 K.

Figure S5. δ vs. T⁻¹ plot for selected ¹H NMR resonances of **1-Nd** recorded in C₆D₆ between *T* = 298 K and 338 K (assignents according to Table S2).

	1-Ce				1-Pr			1-Nd				
	δ	δ ^{dia}	δpara [a]	G(r, θ) 10 ⁸	δ	δ ^{dia}	δpara [a]	G(r, θ) · 10 ⁸	δ	δ ^{dia}	δpara [a]	G(r, θ) · 10 ^ε
H8a	-25,4	1,08	-26,48	-25,4	-64,9	1,08	-65,98	-35,3	-44,6	1,08	H5	-29,8
H1-exo	-20,2	4,04	-24,24	-20,2	-57,5	4,04	-61,14	-25,5	-37,6	4,04	-41,64	-22,9
H8b	-6,1	2,33	-8,43	-6,1	-18,5	2,33	-20,83	-12,4	-10,4	2,33	-12,73	-9,3
H6a	-0,6	2,4	-3	-0,6	-4,9	2,4	-7,3	-3,1	-2,5	2,4	-4,9	-7,3
H7	1,3	2,04	-0,74	-0,3	0,7	2,04	-2,84	-1,4	-2,5	2,04	-4,54	-4,1
H13 ^[b]	0,3	1,89	-1,59	-1,3	-0,8	1,89	-1,19	-0,3	0,1	1,89	-1,79	-0,9
H12 [b]	2,1	1,25	0,85	-2,1	2,5	1,25	1,25	2,7	2,7	1,25	1,45	-0,6
H9	3,5	2,25	1,25	3,5	8	2,25	5,75	2,9	2,7	2,25	0,45	1,2
H6b	4,2	2,67	1,53	3,7	6,1	2,67	3,43	3,8	3,6	2,67	0,93	1,5
H11 ^[b]	3,7	1,05	2,65	4,2	9,8	1,05	8,75	3,9	5,5	1,05	4,45	1,5
H1-endo	6,6	2,65	3,95	6,6	16,1	2,65	13,45	8,1	12,9	2,65	10,25	20,0
H3	16,4	4,35	12,05	16,4	32,5	4,35	28,15	27,7	18,3	4,35	13,95	27,0
H5	24,9	4,16	20,74	24,9	55,1	4,16	50,94	34,8	25,5	4,16	21,34	32,6

Table S2. Correlation between $G(r,\theta)$ and δ^{para} .

^[a] $\delta^{\text{para}} = \delta - \delta^{\text{dia}}$. The values for δ^{dia} was taken from the diamagnetic representative within this series, i.e. **1-La**. ^[b] Averaged value for the H atoms of the Me-group.

Figure S6. Correlation between δ^{para} and $G(r,\theta) = (3 \cos^2\theta - 1)/r^3$ for compound **1-Pr**.

Figure S7. Correlation between δ^{para} and $G(r,\theta) = (3 \cos^2 \theta - 1)/r^3$ for compound **1-Nd**.