Supporting Information

Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(II)/Cu(II) coordination frameworks

Chin-May Ngue,^{a,b} Yen-Hsiang Liu,^c Yuh-Sheng Wen,^a Man-Kit Leung,^{*b,d} Ching-Wen Chiu,^{*b} Kuang-Lieh Lu^{*a}

^aInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan

^bDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan

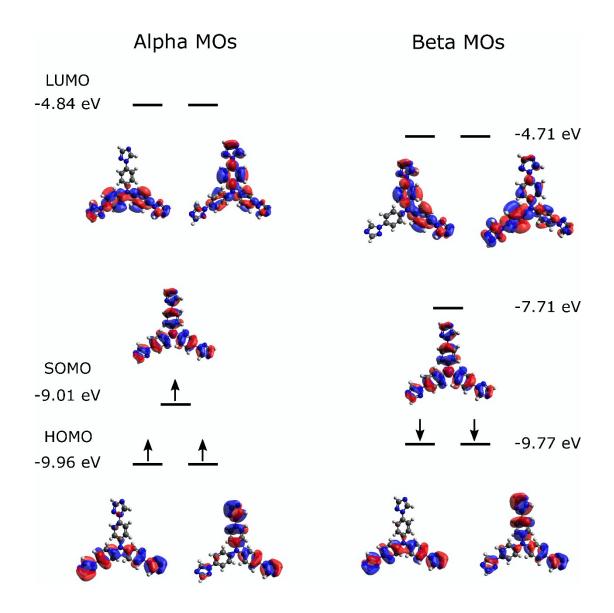
^cDepartment of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan

^dDepartment of Chemistry, Advanced Research Centre for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan

Solid state in situ spectroelectrochemical (UV/Vis/NIR) method

2 to 3 mg of 1 and 2 were lightly ground using a mortar and pestle, respectively. Indium tin oxide (ITO) glass (6 cm x 0.9 cm) was pretreated by washing with ethanol, acetone and purging with nitrogen. 1 and 2 were coated on the ITO glass, by spreading evenly with a spatula. Nafion in the propionitrile solution was carefully layered on top of the solid to serve as a binder. The electrochemical set up employed a three-electrode system with ITO as the working electrode, Pt mesh as the counter electrode and Ag/Ag⁺ as the reference electrode in a 0.1 M n-Bu₄NPF₆ propionitrile electrolyte. The three electrochemical cell was placed inside a 1 cm quartz cell, with the coated ITO sample and Pt mesh facing opposite in the cell. To minimize the risk of short-circuits, the compartment was separated by a tailor-made Teflon block. The electrolyte solution served as a baseline. A blank ITO glass was measured as the background value. Samples were scanned continuously with incremental potentials using a Hokuto Denko potentiostat until a change in the spectrum was observed. The spectral was measured by means of a JASCO V-570 UV-Vis-NIR spectrometer.

Ex situ chemical oxidation of 1


Oxidation by bromine. Solid crystals of **1** was placed inside a small vial. The vial was then placed in a beaker containing 3 to 5 drops of bromine with a watch glass on top. Bromine vapour was allowed to diffuse into framework for 30 minutes. Solid **1** changed to orange colour.

Oxidation by iodine. 10 mg of **1** was prepared inside a 2 mL glass vial. The 2 mL glass vial was then transferred to a 20 mL glass vial with iodine crystals inside. Iodine vapour were allowed to slowly diffuse into the framework. Solid **1** changed to dark brown colour.

Oxidation by Ce(IV). Ceric ammonium nitrate was dissolved in water. A few drops of Ce(IV) were transferred to a glass vial containing solid **1**, Ce(IV) was added until the crystals changed to blue colour.

Computation calculation

Geometry was optimized at B3LYP-D3/def2-TZVP. To speed up the calculation, the RICOSX approximation and def2/J auxilliary basis set were used. At the minimum geometry, a TD-DFT calculation at B3LYP-D3/def2-TZVP was performed to predict the electronic spectrum. All calculations were done using the ORCA 4.1.0 suite of programs.¹

Schematic diagram S1. Unrestricted molecular orbital diagram of TTPA ligand in radical cation state.

Empirical formula	$C_{27}H_{25}Cl_2MnN_{11}O$
Formula weight	645.42
Temperature, K	100.0(2)
Wavelength, Å	0.71073
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> , Å	18.2168(4)
<i>b,</i> Å	15.5104(3)
с, Å	21.1221(5)
β,°	98.252(2)
V, Å ³	5906.3(2)
Ζ	8
Density (calculated), Mg/m ³	1.452
Absorption coefficient, mm ⁻¹	0.671
F(000)	2648
Crystal size, mm ³	0.260 x 0.220 x 0.160
Theta range for data collection, $^\circ$	1.732 to 27.103
Index ranges	-23<=h<=23, -19<=k<=19, -27<=l<=27
Reflections collected	76708
Independent reflections	6527 [R(int) = 0.0559]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data/restraints/parameters	6527/0/381
Goodness-of-fit on <i>F</i> ²	1.038
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0359, wR2 = 0.0852
R indices (all data)	R1 = 0.0498, wR2 = 0.0946

Table S1. Crystal data and structure refinement for $[MnCl_2(TTPA)(DMF)]_n$ (1).

 $R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; wR_{2} = [\Sigma w (F_{0}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{0}^{2})^{2}]^{1/2}$

Empirical formula	$C_{28.5}H_{28.5}Cl_2CuN_{11.5}O_{1.5}$
F _w	690.64
Temperature, K	100.0(2)
Crystal system	Monoclinic
Space group	C2/c
<i>a,</i> Å	17.7001(7)
<i>b,</i> Å	14.9411(7)
<i>c,</i> Å	22.5015(10)
β, °	96.5309(16)
<i>V</i> , Å ³	5930.1(4)
Ζ	8
<i>λ,</i> Å	0.71073
D _{calc} , Mg/m ³	1.301
μ , mm ⁻¹	0.947
F(000)	2360
Crystal size, mm ³	0.360 × 0.220 × 0.140
Reflections collected	125143
Independent reflections	6562 [R(int) = 0.0802]
Completeness to theta = 25.000°	100.0 %
Absorption correction Refinement method Data/restrains/parameters Goodness of fit Final R indices [I > 2σ(I)] R indices (all data)	Semi-empirical from equivalents Full-matrix least-squares on F^2 6562/0/334 1.207 $R_1 = 0.0654$, $wR_2 = 0.1414$ $R_1 = 0.0786$, $wR_2 = 0.1477$

Table S2. Crystal data and structure refinement details for $[CuCl_2(TTPA)\cdot 1.5DMF]_n$ (2).

 $\frac{1}{R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}}$

1			
Cu(1)–N(4)	1.998(4)	N(4)–Cu(1)–N(7)	175.06(15)
Cu(1)–N(7)	2.003(4)	N(7)–Cu(1)–N(10)	94.03(14)
Cu(1)–N(10)	2.174(4)	N(4)-Cu(1)-Cl(1)	89.31(11)
Cu(1)Cl(1)	2.3131(13)	N(10)-Cu(1)-Cl(1)	101.59(11)
Cu(1)–Cl(2)	2.3291(12)	Cl(1)–Cu(1)–Cl(2)	156.84(5)
2			
Mn(1)–O(1)	2.2229(15)	O(1)–Mn(1)–N(4)	92.52(6)
Mn(1)–N(9)	2.2659(17)	N(4)–Mn(1)–N(7)	88.57(6)
Mn(1)–Cl(2)	2.4846(6)	N(4)-Mn(1)-N(9)	173.37(6)
$N_{10}(1) N(4)$	2,2254/17	N(7) = N(1) = C(2)	
Mn(1)–N(4)	2.2254(17)	N(7)–Mn(1)–Cl(2)	95.60(5)
Mn(1)–N(7)	2.2676(17)	O(1)–Mn(1)–N(7)	174.90(6)

 Table S3.
 Selected bond lengths [Å] and angles [°] for 1 and 2.

Symmetry transformations used to generate equivalent atoms: for **1**: #1 - x + 1, y - 1, -z + 1/2, #2 - x + 1, -y, -z + 1 #3 - x + 1, y + 1, -z + 1/2; for **2**: #1 - x + 1, y - 1, -z + 1/2, #2 x, -y + 1, z + 1/2. #3 - x + 1, y + 1, -z + 1/2, #4 x, -y + 1, z - 1/2

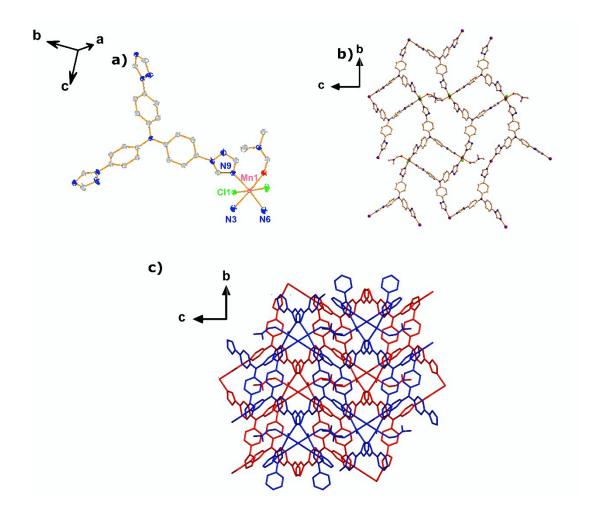


Figure S1. a) Coordination environments of $\mathbf{1}$, 50% probability ellipsoids, b) two-dimension view along the *b* axis, c) 2-fold interpenetration of $\mathbf{1}$ view along the *b* axis.

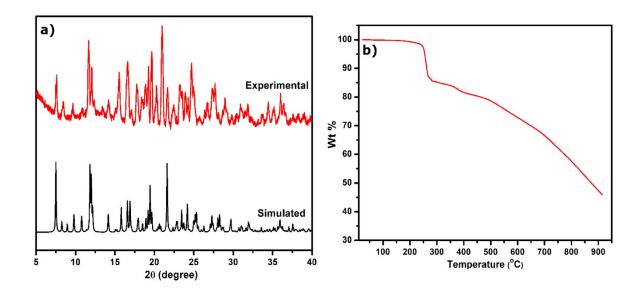


Figure S2. (a) Simulated and experimental PXRD patterns of $\mathbf{1}$, (b) thermal gravimetric analysis (TGA) of $\mathbf{1}$ over the temperature range 30–900 °C.

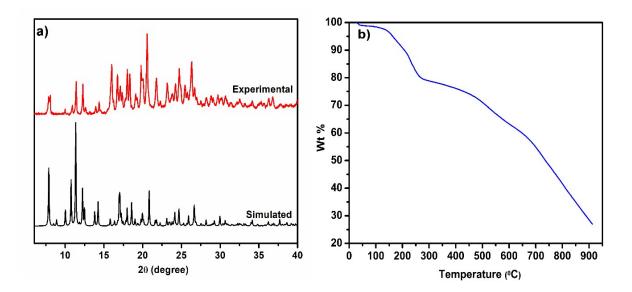


Figure S3. a) Simulated and experimental PXRD patterns of **2**, b) thermal gravimetric analysis (TGA) of **2** over the range 30–900 °C.

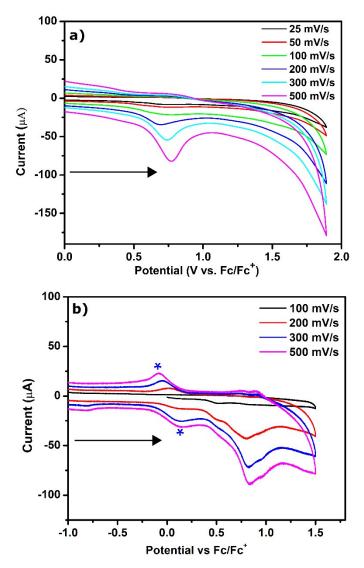


Figure S4. Solid state electrochemistry of **1** (a) and **2** (b) frameworks in 0.1 M [($n-C_4H_9$)_4N]PF_6/propionitrile as the electrolyte over the scan ranges of 25 to 1000 mV/s. The asterisks in Figure 4b represent the added Fc/Fc⁺.

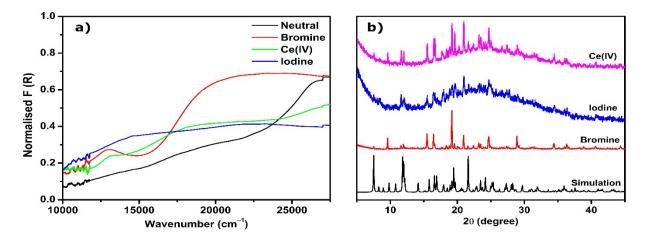


Figure S5. (a) Superimposed UV/Vis/NIR spectra for $\mathbf{1}$ (neutral) and its oxidised analogues over the range of 10000–45000 cm⁻¹, (b) PXRD patterns of the oxidised analogues.

Reference

1. F. Neese, WIREs Comput. Mol. Sci. 2018, 8:e1327. doi: 10.1002/wcms.1327