### **Supporting Information**

# Structural diversity, magnetic property, or luminescence sensing of

## Co(II) and Cd(II) coordination polymers derived from designed

#### 3,3'-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid

Dong-Dong Yang<sup>a</sup>, Li-Ping Lu<sup>\*a</sup>, Miao-Li Zhu<sup>\*a, b</sup>

<sup>a</sup> Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People' s Republic of China. <u>luliping@sxu.edu.cn</u>. <sup>b</sup> Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. miaoli@sxu.edu.cn

| Co1-04                               | 2.050 (3)   | Co2-01 <sup>i</sup>                  | 2.030 (2)   |
|--------------------------------------|-------------|--------------------------------------|-------------|
| Co1—O2                               | 2.054 (2)   | Co2-01                               | 2.030 (2)   |
| Co1—O5                               | 2.090 (2)   | Co2—O3 <sup>i</sup>                  | 2.067 (3)   |
| Co1—N1                               | 2.125 (3)   | Co2—O3                               | 2.067 (2)   |
| Co1—N2                               | 2.133 (3)   | Co2—O9 <sup>i</sup>                  | 2.199 (2)   |
| Co1—O9                               | 2.188 (2)   | Co2—O9                               | 2.199 (2)   |
| O4-Co1-O2                            | 94.67 (10)  | O5-Co1-N2                            | 91.06 (10)  |
| 04—Co1—O5                            | 86.31 (10)  | N1-Co1-N2                            | 76.16 (11)  |
| 02-Co1-05                            | 177.53 (10) | O4—Co1—O9                            | 89.54 (9)   |
| 04-Co1-N1                            | 91.46 (11)  | O2-Co1-O9                            | 88.78 (9)   |
| 02-Co1-N1                            | 88.05 (10)  | 05—Co1—O9                            | 88.96 (8)   |
| 05-Co1-N1                            | 94.20 (10)  | N1-Co1-O9                            | 176.74 (10) |
| O4-Co1-N2                            | 167.14 (10) | N2-Co1-O9                            | 103.01 (10) |
| 02-Co1-N2                            | 88.47 (10)  | 01 <sup>i</sup> —Co2—O1              | 180.0       |
| 01 <sup>i</sup> —Co2—O3 <sup>i</sup> | 89.47 (11)  | 03 <sup>i</sup> —Co2—O9 <sup>i</sup> | 95.83 (9)   |
| 01-Co2-O3 <sup>i</sup>               | 90.53 (11)  | 03—Co2—O9 <sup>i</sup>               | 84.17 (9)   |
| 01 <sup>i</sup> —Co2—O3              | 90.53 (11)  | 01 <sup>i</sup> —Co2—O9              | 87.97 (9)   |
| 01-Co2-O3                            | 89.47 (11)  | 01—Co2—O9                            | 92.03 (9)   |
| 03 <sup>i</sup> —Co2—O3              | 180.0       | 03 <sup>i</sup> —Co2—O9              | 84.17 (9)   |

**Tables S1**. Selected bond lengths [Å] and angles [°] for complexes 1-5.

Complex 1

| 92.03 (9)   | O3—Co2—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95.83 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 87.97 (9)   | 09 <sup>i</sup> —Co2—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 138.3 (2)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Complex 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 2.009 (2)   | Co2—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.076 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.009 (2)   | Co2—N2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.100 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.134 (2)   | Co2—O2 <sup>III</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.128 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.134 (2)   | Co2−O1 <sup>™</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.165 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.189 (3)   | Co2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.332 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.189 (3)   | Co2—C7 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.479 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.036 (2)   | 09-Co1-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87.68 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 180.0       | O5 <sup>i</sup> -Co1-N1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.94 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 90.93 (10)  | O5-Co1-N1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.06 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 89.06 (10)  | 09 <sup>i</sup> —Co1—N1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.68 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 89.07 (10)  | 09-Co1-N1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.32 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 90.94 (10)  | N1-Co1-N1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180.00 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 180.0       | 07—Co2—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94.41 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 90.06 (10)  | 07—Co2—N2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.69 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 89.94 (10)  | N3-Co2-N2 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98.02 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 92.32 (9)   | 09-Co1-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87.68 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 156.54 (11) | 07—Co2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.47 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 94.96 (11)  | N3-Co2-O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151.37 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 98.23 (10)  | N2 <sup>ii</sup> —Co2—O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.69 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 97.93 (10)  | O2 <sup>™</sup> −Co2−O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.43 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 88.90 (12)  | 01 <sup>™</sup> −Co2−O8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.91 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 158.58 (10) | 07—Co2—C7 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 127.69 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 60.84 (9)   | N3—Co2—C7 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.26 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 129.16 (11) | 01 <sup>™</sup> −Co2−C7 <sup>™</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.01 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 30.93 (10)  | 08—Co2—C7 <sup>III</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.95 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Complex 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 2.049 (4)   | Co1-N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.145 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.084 (5)   | Co1-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.142 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2.122 (5)   | Co1—O9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.284 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|             | 92.03 (9)<br>87.97 (9)<br>138.3 (2)<br>Complex 2<br>2.009 (2)<br>2.009 (2)<br>2.134 (2)<br>2.134 (2)<br>2.134 (2)<br>2.139 (3)<br>2.189 (3)<br>2.189 (3)<br>2.036 (2)<br>180.0<br>90.93 (10)<br>89.06 (10)<br>89.07 (10)<br>89.07 (10)<br>89.07 (10)<br>89.07 (10)<br>89.04 (10)<br>90.94 ( | 92.03 (9)03–Co2–O987.97 (9)09 <sup>i</sup> –Co2–O9138.3 (2)I2.009 (2)Co2–N32.009 (2)Co2–O2 <sup>iii</sup> 2.134 (2)Co2–O1 <sup>iii</sup> 2.189 (3)Co2–C7 <sup>iii</sup> 2.189 (3)Co2–C7 <sup>iii</sup> 2.036 (2)O9–Co1–N1 <sup>i</sup> 180.0Co5 <sup>i</sup> –Co1–N1 <sup>i</sup> 90.93 (10)O5–Co1–N1 <sup>i</sup> 89.06 (10)O9 <sup>i</sup> –Co1–N1 <sup>i</sup> 89.07 (10)O9–Co1–N1 <sup>i</sup> 90.94 (10)N1–Co1–N1 <sup>i</sup> 180.0O7–Co2–N2 <sup>ii</sup> 90.94 (10)N3–Co2–N2 <sup>ii</sup> 99.94 (10)N3–Co2–Co399.94 (10)N3–Co2–O899.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.95 (10)N3–Co2–Co399.96 (11)N3–Co2–Co399.93 (10)N3–Co2–Co399.93 (10)N3–Co2–Co399.93 (10)N3–Co2–Co399.94 (10)N3–Co2–Co399.95 (10)N3–Co2–Co399.96 (11)N3–Co2–Co399.96 (12)N3–Co2–Co399.96 (13)N3–Co2–Co399.96 (14)N3–Co2–Co3 |  |  |  |

| C33—N4—C32                               | 105.2 (6)   | N3—C33—H33                              | 123.7       |
|------------------------------------------|-------------|-----------------------------------------|-------------|
| C33—N4—Co1 <sup>i</sup>                  | 127.5 (5)   | C31-C32-N4                              | 110.0 (7)   |
| C32—N4—Co1 <sup>i</sup>                  | 127.4 (5)   | С31—С32—Н32                             | 125.0       |
| N4-C33-N3                                | 112.6 (6)   | N4—C32—H32                              | 125.0       |
| N4—C33—H33                               | 123.7       | 06 <sup>ii</sup> —Co1—O5                | 107.94 (18) |
| 06 <sup>iii</sup> —Co1—N4 <sup>iii</sup> | 89.6 (2)    | 05-Co1-N1                               | 87.53 (19)  |
| O5—Co1—N4 <sup>iii</sup>                 | 92.3 (2)    | N4 <sup>iii</sup> —Co1—N1               | 179.2 (2)   |
| O6 <sup>ii</sup> —Co1—N5                 | 165.18 (19) | N5-C01-N1                               | 87.7 (2)    |
| 05-Co1-N5                                | 86.5 (2)    | 06 <sup>ii</sup> —Co1—O9                | 83.77 (18)  |
| N4 <sup>iii</sup> —Co1—N5                | 93.1 (2)    | 05—Co1—O9                               | 168.20 (18) |
| O6 <sup>ii</sup> —Co1—N1                 | 89.66 (19)  | 05-Co1-N1                               | 87.53 (19)  |
| N4 <sup>iii</sup> —Co1—O9                | 89.1 (2)    | N1-Co1-O9                               | 91.2 (2)    |
| N5-Co1-O9                                | 81.7 (2)    |                                         |             |
|                                          | Complex 4   |                                         |             |
| Cd1—O2                                   | 2.2923 (11) | Cd1—N4 <sup>ii</sup>                    | 2.3548 (13) |
| Cd1—N1                                   | 2.3079 (12) | Cd1—O4 <sup>iii</sup>                   | 2.3947 (12) |
| Cd1—O4 <sup>i</sup>                      | 2.3195 (11) | Cd1-01                                  | 2.5770 (13) |
| O2-Cd1-N1                                | 95.32 (5)   | N4 <sup>ii</sup> —Cd1—O4 <sup>iii</sup> | 83.95 (5)   |
| 02-Cd1-04 <sup>i</sup>                   | 125.50 (4)  | 02-Cd1-01                               | 53.25 (4)   |
| N1-Cd1-O4 <sup>i</sup>                   | 106.50 (4)  | N1-Cd1-01                               | 80.44 (5)   |
| O2—Cd1—N4 <sup>ii</sup>                  | 82.43 (5)   | 04 <sup>i</sup> —Cd1—O1                 | 173.02 (4)  |
| N1—Cd1—N4 <sup>ii</sup>                  | 171.63 (4)  | N4 <sup>ii</sup> —Cd1—O1                | 91.83 (5)   |
| O4 <sup>i</sup> —Cd1—N4 <sup>ii</sup>    | 81.21 (5)   | 04 <sup>iii</sup> —Cd1—O1               | 103.40 (4)  |
| O2—Cd1—O4 <sup>iii</sup>                 | 152.31 (4)  | O4 <sup>i</sup> —Cd1—O4 <sup>iii</sup>  | 75.62 (4)   |
| N1—Cd1—O4 <sup>iii</sup>                 | 94.69 (4)   |                                         |             |
|                                          | Complex 5   |                                         |             |
| Cd1—O4                                   | 2.235 (2)   | Cd2-O1 <sup>i</sup>                     | 2.218 (2)   |
| Cd1—02                                   | 2.239 (2)   | Cd2—01                                  | 2.218 (2)   |
| Cd1—O5                                   | 2.284 (2)   | Cd2—O3                                  | 2.252 (3)   |
| Cd1—N1                                   | 2.328 (3)   | Cd2—O3 <sup>i</sup>                     | 2.252 (3)   |
| Cd1—09                                   | 2.343 (2)   | Cd2—O9                                  | 2.396 (2)   |
| Cd1—N2                                   | 2.345 (3)   | Cd2—O9 <sup>i</sup>                     | 2.396 (2)   |
| 04-Cd1-02                                | 91.48 (10)  | N1-Cd1-09                               | 169.19 (9)  |

| 04-Cd1-05                            | 82.98 (11) | O4-Cd1-N2                            | 162.59 (10) |
|--------------------------------------|------------|--------------------------------------|-------------|
| O2-Cd1-O5                            | 172.70 (9) | O2-Cd1-N2                            | 94.98 (9)   |
| O4-Cd1-N1                            | 92.07 (10) | O5-Cd1-N2                            | 91.68 (10)  |
| O2-Cd1-N1                            | 90.44 (10) | N1-Cd1-N2                            | 71.77 (10)  |
| O5-Cd1-N1                            | 94.50 (9)  | O9—Cd1—N2                            | 97.80 (9)   |
| 04-Cd1-09                            | 97.93 (9)  | 01 <sup>i</sup> —Cd2—O1              | 180.0       |
| O2-Cd1-O9                            | 93.39 (9)  | 01 <sup>i</sup> —Cd2—O3              | 89.05 (11)  |
| O5-Cd1-O9                            | 82.71 (8)  | O1-Cd2-O3                            | 90.95 (11)  |
| 01-Cd2-O3 <sup>i</sup>               | 89.05 (11) | O3—Cd2—O9                            | 100.03 (9)  |
| O3-Cd2-O3 <sup>i</sup>               | 180.0      | O3 <sup>i</sup> —Cd2—O9              | 79.97 (9)   |
| 01 <sup>i</sup> —Cd2—O9              | 85.56 (9)  | 01 <sup>i</sup> —Cd2—O9 <sup>i</sup> | 94.44 (9)   |
| 01-Cd2-09                            | 94.44 (9)  | 01—Cd2—O9 <sup>i</sup>               | 85.56 (9)   |
| 03 <sup>i</sup> —Cd2—O9 <sup>i</sup> | 100.03 (9) | 09—Cd2—O9 <sup>i</sup>               | 180.00 (4)  |

Symmetry codes: for complex1: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y+1, z-1/2; (iii) x, -y+1, z+1/2. for complex 2: (i) -x+2, -y, -z; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, y-1/2, -z+3/2; (iv) -x+1, -y, -z+3. for complex 3: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y, -z. for complex 4: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) -x+1, -y, -z+2; (iv) x-1, y, z-1; (v) x-1, y-1, z-1. for complex 5: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y+1, z-1/2; (iii) x, -y+1, z+1/2.

**Tables S2.** Hydrogen bonds in crystal packing [Å, °] of complexes 1-3.

| Complex1 | D—H…A                  | D—H  | H…A  | D…A         | D—H···A |
|----------|------------------------|------|------|-------------|---------|
|          | C6—H6…O6 <sup>i</sup>  | 0.93 | 2.70 | 3.584 (4)   | 160     |
| Complex4 | 07—H7A…01 <sup>i</sup> | 0.82 | 1.80 | 2.6102 (17) | 171     |
| Complex5 | 09—H9A…O6              | 0.84 | 1.74 | 2.511 (3)   | 152     |

Symmetry codes: for complex1: (i) -x+1/2, -y+1/2, -z+1. for complex 4: (i) x+1, y, z.



Fig. S1 The IR spectra of H<sub>3</sub>cpboda ligand and complexes 1-5.





**Fig. S2** PXRD patterns of complexes **1–5** at room temperature. Blue patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Black patterns were simulated from the single crystal X-ray data.



Fig. S3 The thermal curves of complexes 1-5.



Fig. S4 The solid-state emission spectra of  ${\bf 4}$  and  ${\bf 5}$  as well as  ${\rm H}_3{\rm cpboda}$  at room temperature



**Fig S5** (a) Luminescence responses of **4** (2.00 mg dispersed in 2.00 mL of water) toward different concentrations of  $Cr_2O_7^{2-}$  in water, (b) Luminescence responses of **4** toward different concentrations of  $CrO_4^{2-}$  in water, (e) Luminescence responses of **5** (2.00 mg dispersed in 2.00 mL of water) toward different concentrations of  $Cr_2O_7^{2-}$  in water, Luminescence responses of **5** toward different concentrations of  $CrO_4^{2-}$  in water, (b) Stern–Volmer plot of  $I_0/I$  versus  $Cr_2O_7^{2-}$  concentration in an aqueous suspension of **4**. (d) Stern–Volmer plot of  $I_0/I$  versus  $CrO_4^{2-}$  concentration in an aqueous suspension of **4**. (f) Stern–Volmer plot of  $I_0/I$  versus  $Cr_2O_7^{2-}$  concentration in an aqueous suspension of **5**. (h) Stern–Volmer plot of  $I_0/I$  versus  $CrO_4^{2-}$  concentration of **5**.

#### Section S1: Calculation of Detection Limit for Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> and CrO<sub>4</sub><sup>2-</sup>

In a typical experiment to determine limit of detection, incremental amount of 0.001 M aqueous  $Cr_2O_7^{2-}/CrO_4^{2-}$  solution in the volume ranging 0.0 µL to 50 µL was added to the water suspension (2 mg complexes **4** and **5** dispersed in 2 ml water, respectively). Fluorescence intensity thus observed for each incremental addition of aqueous  $Cr_2O_7^{2-}/CrO_4^{2-}$  solution was plotted against the respective increasing concentration of  $Cr_2O_7^{2-}/CrO_4^{2-}$ . Slop of the curve thus drawn was found to be  $Cr_2O_7^{2-}$  =2.97 x 10<sup>4</sup> (R<sub>2</sub> = 0.980) and  $CrO_4^{2-}$  = 2.09 x 10<sup>4</sup> (R<sub>2</sub> = 0.991) for complex **4**,  $Cr_2O_7^{2-}$  =2.15 x 10<sup>4</sup> (R<sub>2</sub> = 0.979) and  $CrO_4^{2-}$  = 1.81 x 10<sup>4</sup> (R<sub>2</sub> = 0.993) for complex **5**. Standard deviation ( $\sigma$ ) in the LOD determination for complexes **4** and **5** were calculated from five blank measurements for each LCP. Detection limit (LOD =  $3\sigma/m$ ) was calculated as per an earlier report, <sup>S1,S2</sup> while the findings were tabulated ahead:



**Fig. S6** Linear region of fluorescence intensity suspensions in water upon incremental addition of  $Cr_2O_7^{2-}$  (a) and  $CrO_4^{2-}$  (b) in complex **4**,  $Cr_2O_7^{2-}$  (c) and  $CrO_4^{2-}$  (d) in complex **5**.

|                        |       | Complex <b>4</b> |                    | Complex 5      |                    |
|------------------------|-------|------------------|--------------------|----------------|--------------------|
|                        | Blank | $Cr_2O_7^{2-}$   | CrO4 <sup>2-</sup> | $Cr_2O_7^{2-}$ | CrO4 <sup>2-</sup> |
|                        | 1     | 4265900          | 4339520            | 2087310        | 2145350            |
| Fluorescence           | 2     | 4258610          | 4338770            | 2092910        | 2170480            |
| Intensity              | 3     | 4258440          | 4280000            | 2054720        | 2193360            |
|                        | 4     | 4308690          | 4311180            | 2126600        | 2128070            |
|                        | 5     | 4293060          | 4329560            | 2128070        | 2180680            |
| Standard               |       | 22737.83         | 27210.39           | 30559.27       | 26552.59           |
| deviation ( $\sigma$ ) |       |                  |                    |                |                    |
| Slope (m)              |       | 29708.49 μM      | 20877.54 μM        | 21470.21 μM    | 18104.04 μM        |
| Detection              |       | 2.29 Mm          | 3.91µM             | 4.27 μM        | 4.40μΜ             |
| limit (3σ/m)           |       |                  |                    |                |                    |

Table S3 LOD calculations for  $Cr_2O_7^{2-}$  and  $CrO_4^{2-}$ 

|    |                                                                             |                                              | Quenching                            | Detection |       |      |
|----|-----------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|-----------|-------|------|
|    | CPs-based fluorescent                                                       | Analyte                                      | constant                             | Limits    | Media | Ref. |
|    | Materials                                                                   |                                              | (K <sub>SV</sub> , M <sup>-1</sup> ) | (LOD, μM) |       |      |
| 1  | [Zn(btz)] <sub>n</sub>                                                      | $(Cr_2O_7^{2-}/CrO_4^{2-})$                  | 4.23×10 <sup>3</sup> ,               | 2/10      | water |      |
|    |                                                                             |                                              | 3.19×10 <sup>3</sup>                 |           |       | S3   |
| 2  | [Zn(ttz)H <sub>2</sub> O] <sub>n</sub>                                      | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 2.19×10 <sup>3</sup> ,               | 2/20      | water |      |
|    |                                                                             |                                              | 2.35×10 <sup>3</sup>                 |           |       |      |
| 3  | [Zn(IPA)(L)] <sub>n</sub>                                                   | $(Cr_2O_7^{2-}/CrO_4^{2-})$                  | 1.37×10 <sup>3</sup> ,               | 12.0/18.3 | water |      |
|    |                                                                             |                                              | 1.0×10 <sup>3</sup>                  |           |       | S4   |
| 4  | [Cd(IPA)(L)] <sub>n</sub>                                                   | $(Cr_2O_7^{2-}/CrO_4^{2-})$                  | 2.91×10 <sup>3</sup> ,               | 2.26/2.52 | water |      |
|    |                                                                             |                                              | 1.20×10 <sup>3</sup>                 |           |       |      |
| 5  | {[Eu <sub>2</sub> L <sub>1.5</sub> (H <sub>2</sub> O) <sub>2</sub> EtOH]·D  | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | 1.53×10 <sup>3</sup>                 | 10        | DMF   | S5   |
|    | MF}                                                                         |                                              |                                      |           |       |      |
| 6  | [Zn <sub>2</sub> (TPOM)(NH <sub>2</sub> -BDC) <sub>2</sub>                  | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 7.59×10 <sup>3</sup> ,               | 3.9/4.8   | DMF   | S6   |
|    | ]·4H <sub>2</sub> O                                                         |                                              | 4.45×10 <sup>3</sup>                 |           |       |      |
| 7  | Eu(CBIP)(HCOO)(H <sub>2</sub> O)] <sub>n</sub>                              | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 2.76×10 <sup>3</sup> ,               | 1.0/1.2   | water | S7   |
|    |                                                                             |                                              | 1.54×10 <sup>3</sup>                 |           |       |      |
| 8  | [Cd(4-tkpvb)(5-tert-BIP                                                     | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 2.5×10 <sup>4</sup> ,                | 0.12/0.08 | water | S8   |
|    | A)] <sub>n</sub>                                                            |                                              | 4.78×10 <sup>4</sup>                 |           |       |      |
| 9  | {[Tb(TATAB)(H <sub>2</sub> O) <sub>2</sub> ]·NM                             | $Cr_2O_7^{2-}$                               | 11 106                               | 5         | water | S9   |
|    | P·H₂O} n                                                                    |                                              |                                      |           |       |      |
| 10 | [Eu <sub>2</sub> (tpbpc) <sub>4</sub> ·CO <sub>3</sub> ·H <sub>2</sub> O]·D | CrO4 <sup>2-</sup>                           | 4.85×10 <sup>3</sup>                 | 0.33      | water | S10  |
|    | MF·solvent                                                                  |                                              |                                      |           |       |      |
| 11 | [Cd(µ <sub>3</sub> -Hcpboda)(1,4-bi                                         | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 1.62×10 <sup>4</sup> ,               | 2.29/3.91 | water |      |
|    | b)] <sub>n</sub>                                                            |                                              | 7.61×10 <sup>3</sup>                 |           |       | This |
| 12 | ${[Cd_3(\mu_4-cpboda)_2(\mu_{1,1}-$                                         | $(Cr_2O_7^{2^-}/CrO_4^{2^-})$                | 1.38×10 <sup>4</sup> ,               | 4.27/4.4  |       | work |
|    | OH <sub>2</sub> ) <sub>2</sub> (phen) <sub>2</sub> ]·2DMF·1.                |                                              | 1.43×10 <sup>4</sup>                 |           | water |      |
|    | 5H <sub>2</sub> O} <sub>n</sub>                                             |                                              |                                      |           |       |      |

**Table S4** Comparison of various CPs sensors for the detection of  $Cr_2O_7^{2-}/CrO_4^{2-}$ .

 $\begin{array}{ll} H_2 btz = 1,5 \mbox{-bis}(5\mbox{-tetrazolo})\mbox{-3-oxapentane}; \ H_3 ttz = 1,2,3\mbox{-tris}\mbox{-1}(2\mbox{-tetrazolo})\mbox{-ethoxy}\mbox{-ethoxy}\mbox{-propane}; \ L = 3\mbox{-pyridylcarbox-aldehyde} \ nicotinoylhydrazone; \ ^3 \ H_2 IPA = isophthalic acid; \ TPOM = tetrakis(4\mbox{-pyridyloxymethylene})\mbox{-methane}, \ NH_2\mbox{-BDC} = 2\mbox{-aminoterephthalic acid}; \ H_2 CBIP = 5\mbox{-}((2\mbox{-}cyano\mbox{-}[1,1'\mbox{-bipheny}]\mbox{-4}\mbox{-y})\mbox{isophthalicacid}; \ 4\mbox{-tkpvb} = 1,2,4,5\mbox{-tetrakis}(4\mbox{-pyridylviny}\mbox{)}\mbox{benzene}; \ 5\mbox{-tetr}\mbox{-H2}BIPA = 5\mbox{-tetr}\mbox{-butyl-isophthalicacid}. \ H_3\mbox{TATAB} = 4,4',4''\mbox{-s-triazine}\mbox{-}1,3,5\mbox{-triyltri-m-aminobenzoic acid}, \ NMP = N\mbox{-methyl-2-pyrrolidone}; \ Htpbpc = 3\mbox{-}1,2\mbox{-}1,3\mbox{-}1,3,5\mbox{-triyltri-m-aminobenzoic acid}, \ NMP = N\mbox{-methyl-2-pyrrolidone}; \ Htpbpc = 3\mbox{-}1,2\mbox{-}1,2\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1,3\mbox{-}1$ 

4-[4,2;6,4]-terpyridin-4-yl-biphenyl-4-carboxylic acid.



**Fig. S7** The luminescence intensity of complex **4** and **5** for the recognition of  $Cr_2O_7^{2-}$  (a) in **4**, (c) in **5**,  $CrO_4^{2-}$  (b) in **4**, (d) in **5**, after five recycling processes .



(a) (b) **Fig. S8** The PXRD patterns of simulated complexes **4** and **5**, the PXRD patterns of **4** and **5** for the recognition of  $Cr_2O_7^{2-}$  and  $CrO_4^{2-}$  after five recycling processes



**Fig. S9** The IR spectra of complexes **4** and **5**, the IR spectra of **4** and **5** for the recognition of  $Cr_2O_7^{2-}$  and  $CrO_4^{2-}$  after five recycling processes

(b)

(a)



**Fig. S10** Liquid UV-vis spectra of complexes **4** and **5**,  $Cr_2O_7^{2-}$  and  $CrO_4^{2-}$  in the aqueous solution



Fig. S11 The luminescence decay lifetimes of the complexes 4, 5 and Cr<sup>VI</sup> treated materials.



(a)

(b)

**Figure. S12** The possible quenching mechanism for detecting  $Cr_2O_7^{2-}/CrO_4^{2-}$  by complexes **4** (a) and **5** (b).<sup>S11</sup>

#### References

- S1 R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, *Journal of Materials Chemistry A*, 2016, 4, 15494-15500.
- S2. B. Joarder, A. V. Desai, P. Samanta, S. Mukherjee and S. K. Ghosh, *Chemistry*, 2015, **21**, 965-969.
- S3 C-S. Cao, H.-C. Hu, H. Xu, W.-Z. Qiao, and B. Zhao, CrystEngComm, 2016, 18, 4445.
- S4 B. Parmar, Y. Rachuri, K.K. Bisht, R. Laiya, and E. Suresh, *Inorg. Chem.*, 2017, 56, 2627.
- W. Liu, X. Huang, C. Xu, C. Chen, L. Yang, W. Dou, W. Chen, H. Yang and W. Liu, *Chemistry*, 2016, 22, 18769-18776.
- S6 R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, *Journal of Materials Chemistry A*, 2016, 4, 15494-15500.
- S7. Z. Sun, M. Yang, Y. Ma and L. Li, *Cryst. Growth.Des.*, 2017, **17**, 4326.
- W. J. Gong, R. Yao, H. X. Li, Z. G. Ren, J. G. Zhang and J. P. Lang, *Dalton Trans.*, 2017, 46, 16861.
- S9. G. X. Wen, M. L. Han, X. Q. Wu, Y. P. Wu, W. W. Dong, J. Zhao, D. S. Li and L. F. Ma, *Dalton transactions*, 2016, **45**, 15492-15499.

- S10. J. Liu, G. Ji, J. Xiao, and Z. Liu, *Inorg. Chem.*, 2017, **56**, 4197.
- S11 G.-Y. L, Z. Q. Yao, J. Xu, T.L. Hu, X. H. Bu, *Chem. Eur. J*, 2018, **24**, 3192–3198.