Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Molybdenum Carbide Catalyst for the Reduction of CO₂ to CO: Surface Science

Aspects by NAPPES and Catalysis Studies.

Kasala Prabhakar Reddy,^{a,b} Srikanth Dama, ^{a,b} Nitin B. Mhamane,^{a,b} Manoj K. Ghosalya,^{a,b} Thirumalaiswamy Raja,^{a,b} Chilukuri V. Satyanarayana, ^{a,b} and Chinnakonda S. Gopinath*^{a,b,c}

Electronic Supplementary Information (ESI)

Conversion and Selectivity calculation:

CO₂ Conversion:

$$X_{CO2} \% = \frac{Moles CO2 \text{ in} - Moles CO2 \text{ out}}{Moles CO2 \text{ in}} X 100$$

H₂ Conversion

$$X_{H2} \% = \frac{Moles H2 in - Moles H2 out}{Moles H2 in} X 100$$

CO Selectivity:

$$S_{CO} \% = \frac{Moles CO out}{Moles CO out + Moles CH4 out} X 100$$

CH₄ Selectivity:

$$S_{CH4} \% = \frac{Moles CH4 out}{Moles CO out+Moles CH4 out} X 100$$

Table S1: Physiochemical properties of as synthesized β -Mo₂C.

BET Surface Area (m^2/g)	Total Pore Volume (cc/g)	Average pore diameter (nm)
11.6	0.0124	4.2

Figure S1. Scanning Electron Microscopy (SEM) images of synthesized Mo_2C powder catalyst a) Before b) After reaction CO_2 hydrogenation reaction.

Figure S2. Transmission Electron Microscopy (TEM) and HRTEM images of (a-b) assynthesized Mo_2C powder catalyst, and,(c-d) after CO_2 hydrogenation reaction. Surface texture and particle size remains the same for fresh and spent catalysts.

Figure S3. XRD spectra of Mo foil before and after carburization process.

Figure S4. SEM-EDX analysis of as prepared Mo_2C foil with different electron energy source.

Figure S5. Mass spectrometry analysis of CO₂ hydrogenation on Mo₂C foil with different ratios of CO₂:H₂ (1:3) and CO₂:H₂ (1:7) at various temperatures. It is to be noted that CO₂, CO and CH₄ shows very similar intensity pattern, mainly due to secondary fragments (CO for CO₂) or same mass species bur originating from different sources (16 O from CO₂ and CO, and CH₄). Hence it is difficult to ascertain the reaction details from this data alone. However, more CO generation is observed with 1:7 compositions at high temperatures. Fluctuations in the intensity pattern are due to opening of leak valve to maintain the same pressure during reaction measurements.

Figure S6. Mo 3d spectra of CO_2 hydrogenation on Mo_2C foil with different ratios a) Alone CO_2 b) CO_2 :H₂ 1:3 and c) CO_2 :H₂ 1:7 at various temperatures.

Figure S7. NAPXPS spectra of Mo_2C foil oxidation at 0.1 mbar O_2 with various temperatures.