## A lactam-functionalized copper bent diisophthalate framework

## displaying significantly enhanced adsorption of CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub> over

## CH<sub>4</sub>

Minghui He<sup>#</sup>, Fengjie Xia<sup>#</sup>, Tingting Xu, Xiaoxia Gao, Zhenzhen Jiang, Xia Wang and Yabing He<sup>\*</sup>

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>



Fig. S0 Electronic photograph of the as-synthesized ZJNU-99.



Fig. S1 Comparison of the experimental and simulated PXRD patterns of ZJNU-99.



Fig. S2 Variable-temperature PXRD patterns of the as-synthesized ZJNU-99.



Fig. S3 TGA curve of the as-synthesized ZJNU-99 under a flowing nitrogen atmosphere.



Fig. S4 Comparison of FTIR spectra of the ligand  $H_4L$  and its corresponding as-synthesized MOF ZJNU-99.



 $S_{\text{BET}} = 1/(5.89366 \times 10^{-7} + 0.00206)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2113 \text{ m}^2 \text{ g}^{-1}$  $S_{\text{Langmuir}} = (1/0.00186)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2340 \text{ m}^2 \text{ g}^{-1}$ BET constant  $C = 1 + 0.00206/5.89366 \times 10^{-7} = 3496$ 

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.01663$$

**Fig. S5** The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-99**.



Fig. S6 The isosteric heat of  $C_2H_2$ ,  $CO_2$ , and  $CH_4$  adsorption in ZJNU-99 as a function of gas loadings.



**Fig. S7** Comparison of the pure-component isotherm data for (a)  $C_2H_2$ , (b)  $CO_2$ , and (c)  $CH_4$  in **ZJNU-99** with the fitted isotherms at 278 K, 288 K, and 298 K.



Fig. S8 (a)  $C_2H_2$ , (b)  $CO_2$ , and (c)  $CH_4$  isotherms of **PCN-306** at 278 K, 288 K, and 298 K.



**Fig. S9** Comparison of the pure-component isotherm data for (a)  $C_2H_2$ , (b)  $CO_2$ , and (c)  $CH_4$  in **PCN-306** with the fitted isotherms at 278 K, 288 K, and 298 K.



Fig. S10 IAST selectivities for the equimolar (a)  $C_2H_2/CH_4$  and (b)  $CO_2/CH_4$  gas mixtures in PCN-306 at three different temperatures of 278 K, 288 K, and 298 K.



14.0 ppm





**Fig. S11** <sup>1</sup>H and <sup>13</sup>C NMR spectra.

| MOFs                                                          | ZJNU-99                            |  |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|
| Empirical formula                                             | $C_{37}H_{52}Cu_2N_6O_{17}$        |  |  |  |  |  |  |
| Formula weight                                                | 979.92                             |  |  |  |  |  |  |
| $\lambda$ (Å)                                                 | 1.54178                            |  |  |  |  |  |  |
| Crystal system                                                | Orthorhombic                       |  |  |  |  |  |  |
| Space group                                                   | Стст                               |  |  |  |  |  |  |
|                                                               | a = 24.7465(12)  Å                 |  |  |  |  |  |  |
|                                                               | b = 33.4859(14)  Å                 |  |  |  |  |  |  |
| Unit call dimensions                                          | c = 18.4434(8)  Å                  |  |  |  |  |  |  |
| Unit cen dimensions                                           | $\alpha = 90^{\circ}$              |  |  |  |  |  |  |
|                                                               | $\beta = 90^{\circ}$               |  |  |  |  |  |  |
|                                                               | $\gamma = 90^{\circ}$              |  |  |  |  |  |  |
| $V(\text{\AA}^3)$                                             | 15283.3(12)                        |  |  |  |  |  |  |
| Ζ                                                             | 12                                 |  |  |  |  |  |  |
| $D_{\rm c} ({\rm g  cm^{-3}})$                                | 1.278                              |  |  |  |  |  |  |
| $\mu (\mathrm{mm}^{-1})$                                      | 1.610                              |  |  |  |  |  |  |
| <i>F</i> (000)                                                | 6120                               |  |  |  |  |  |  |
| $\theta$ range for data collection (°)                        | 3.267 to 65.206                    |  |  |  |  |  |  |
|                                                               | $-29 \le h \le 27$                 |  |  |  |  |  |  |
| Limiting indices                                              | $-37 \le k \le 39$                 |  |  |  |  |  |  |
|                                                               | $-19 \le l \le 21$                 |  |  |  |  |  |  |
| Reflections collected / unique                                | 30025/6892                         |  |  |  |  |  |  |
| R <sub>int</sub>                                              | 0.0552                             |  |  |  |  |  |  |
| Max. and min. transmission                                    | 0.890 and 0.843                    |  |  |  |  |  |  |
| Refinement method                                             | Full-matrix least-squares on $F^2$ |  |  |  |  |  |  |
| Data/restraints/parameters                                    | 6892/3/285                         |  |  |  |  |  |  |
| Goodness-of-fit on $F^2$                                      | 1.079                              |  |  |  |  |  |  |
| Einel <i>D</i> indices $[L > 2\pi(D)]$                        | $R_1 = 0.0688$                     |  |  |  |  |  |  |
| Final <i>R</i> indices $[1 > 20(1)]$                          | $wR_2 = 0.2074$                    |  |  |  |  |  |  |
| Pindiage (all data)                                           | $R_1 = 0.0875$                     |  |  |  |  |  |  |
| A mulees (an data)                                            | $wR_2 = 0.2255$                    |  |  |  |  |  |  |
| Largest diff. peak and hole (e <sup>-</sup> Å <sup>-3</sup> ) | 0.688 and -0.393                   |  |  |  |  |  |  |
| CCDC                                                          | 1907360                            |  |  |  |  |  |  |

Table S1 Crystal data and structure refinement for ZJNU-99.

| Guest           | $q_{\rm sat}$ (mmol g <sup>-1</sup> ) | $b_0$<br>(kPa) <sup>-v</sup> | E<br>(kJ mol <sup>-1</sup> ) | V       | $R^2$   |  |
|-----------------|---------------------------------------|------------------------------|------------------------------|---------|---------|--|
| $C_2H_2$        | 15.73206                              | 1.24379×10 <sup>-5</sup>     | 19.844                       | 0.73516 | 0.99988 |  |
| CO <sub>2</sub> | 15.14643                              | 2.56684×10 <sup>-7</sup>     | 23.962                       | 1       | 0.99951 |  |
| CH <sub>4</sub> | 7.92144                               | 1.52239×10 <sup>-6</sup>     | 16.688                       | 1       | 0.99999 |  |

**Table S2** Langmuir-Freundlich parameters for adsorption of C<sub>2</sub>H<sub>2</sub>, CO<sub>2</sub>, and CH<sub>4</sub> in **ZJNU-99**.

| Guest           | $q_{\rm sat}$ (mmol g <sup>-1</sup> ) | $b_0$<br>(kPa) <sup>-<math>\nu</math></sup> | <i>E</i><br>(kJ mol <sup>-1</sup> ) | V       | $R^2$   |  |  |
|-----------------|---------------------------------------|---------------------------------------------|-------------------------------------|---------|---------|--|--|
| $C_2H_2$        | 20.56898                              | 1.83018×10 <sup>-5</sup>                    | 18.245                              | 0.65466 | 0.99922 |  |  |
| CO <sub>2</sub> | 21.01804                              | 2.96428×10 <sup>-7</sup>                    | 22.109                              | 1       | 0.99997 |  |  |
| CH <sub>4</sub> | 13.18114                              | 1.6832×10 <sup>-6</sup>                     | 14.953                              | 1       | 0.99995 |  |  |

**Table S3** Langmuir-Freundlich parameters for adsorption of  $C_2H_2$ ,  $CO_2$ , and  $CH_4$  in **PCN-306**.

| MOFs    | $S_{\rm BET}$<br>$S_{\rm Langmuir}$<br>$(m^2 g^{-1})$ | $V_{\rm p}$<br>(cm <sup>3</sup> g <sup>-1</sup> ) | D <sub>c</sub><br>(g cm <sup>-3</sup> ) | C <sub>2</sub> H <sub>2</sub> uptake <sup>a</sup> |       |                                            | $CO_2$ uptake <sup><i>a</i></sup> |                                           |       | CH <sub>4</sub> uptake <sup>a</sup> |       |       | C <sub>2</sub> H <sub>2</sub> /CH <sub>4</sub> (50/50, v/v) |       |       | CO <sub>2</sub> /CH <sub>4</sub> (50/50, v/v) |       |       |
|---------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------------|-------|--------------------------------------------|-----------------------------------|-------------------------------------------|-------|-------------------------------------|-------|-------|-------------------------------------------------------------|-------|-------|-----------------------------------------------|-------|-------|
|         |                                                       |                                                   |                                         | $(\text{cm}^3 \text{g}^{-1}, \text{STP})$         |       | $(\text{cm}^3 \text{ g}^{-1}, \text{STP})$ |                                   | $(\text{cm}^3 \text{g}^{-1}, \text{STP})$ |       | IAST selectivity <sup>a</sup>       |       |       | IAST selectivity <sup>a</sup>                               |       |       |                                               |       |       |
|         |                                                       |                                                   |                                         | 298 K                                             | 288 K | 278 K                                      | 298 K                             | 288 K                                     | 278 K | 298 K                               | 288 K | 278 K | 298 K                                                       | 288 K | 278 K | 298 K                                         | 288 K | 278 K |
| ZJNU-99 | 2113/2340                                             | 0.835                                             | 0.731                                   | 189.8                                             | 212.9 | 237.7                                      | 102.5                             | 128.9                                     | 160.7 | 21.4                                | 26.2  | 32.3  | 46.6                                                        | 56.1  | 71.1  | 6.8                                           | 7.8   | 9.2   |
| PCN-306 | 2825/3087                                             | 1.101                                             | 0.690                                   | 173.5                                             | 204.9 | 238.7                                      | 90.8                              | 115.6                                     | 147.0 | 20.6                                | 25.2  | 30.6  | 31.5                                                        | 35.3  | 40.4  | 5.3                                           | 5.9   | 6.7   |

Table S4 Summary of gas adsorption properties of ZJNU-99 and its parent compound PCN-306.

 $S_{\text{BET}}/S_{\text{Langmuir}} = \text{BET}$  and Langmuir surface areas;  $V_p = \text{Pore volume based on 77 K N}_2$  isotherm;  $D_c = \text{Framework density calculated from single-crystal X-ray data;}^a$ 

at 1 atm.